MANEJO DA ADUBAÇÃO FOSFATADA EM SOLOS DE CERRADO: QUAL É O CUSTO AGRONÔMICO DA OPERACIONALIDADE DA APLICAÇÃO A LANÇO?

Adilson de Oliveira Junior e Cesar de Castro

Pesquisadores da Embrapa Soja, Londrina, PR, e-mail: adilson.oliveira@embrapa.br; cesar.castro@embrapa.br

Atualmente, uma prática que tem sido adotada nos sistemas de produção de soja, principalmente, em áreas do Brasil Central é a aplicação a lanço dos fertilizantes, inclusive dos fosfatos. A justificativa técnica para esta prática é a maior agilidade no processo de semeadura da soja, tendo em vista a necessidade de se implantar as lavouras dentro do menor espaço de tempo possível. Ou seja, o custo operacional.

A recomendação de adubação das culturas está diretamente relacionada ao potencial de resposta a um ou mais nutrientes e, consequentemente, é função da disponibilidade destes no solo. Em áreas com baixa disponibilidade de nutrientes, além das práticas relacionadas à melhoria das propriedades químicas do solo, devem-se aplicar doses de adubos que resultem no incremento gradual da disponibilidade do nutriente no solo (adubação corretiva), para suprir a diferença entre a demanda do sistema agrícola e a capacidade do solo em fornecer os nutrientes. À medida que a fertilidade vai sendo construída, o critério para recomendação de adubação passa ser a “manutenção” da fertilidade, com maior eficiência de uso do fertilizante. Portanto, tendo por base que os nutrientes aplicados em maiores quantidades para a cultura da soja, via fertilizantes, são o fósforo (P) e o potássio (K) é preciso entender a dinâmica desses nutrientes no solo para então ajustar o manejo da adubação quanto à forma de aplicação dos fertilizantes.

Dessa forma serão abordados alguns resultados com intuito de esclarecer os aspectos da adubação
fosfatada tanto para correção quanto para manutenção da fertilidade do solo.

Adubação fosfatada corretiva - A adubação corretiva tem por objetivo transformar o solo originalmente de baixa fertilidade em solo fértil (SOUZA et al., 2002). Recomenda-se, portanto, que nessas condições o fósforo seja aplicado a lanço e incorporado na camada arável do solo, melhorando a distribuição de fósforo no perfil, o que proporcionará melhor desenvolvimento das raízes das plantas aumentando a eficiência de uso de água e dos fertilizantes. Como exemplo, na Figura 1 pode-se observar a resposta da cultura da soja à aplicação corretiva de superfosfato triplo (TSP) e Fosfato Natural de Arad (FR), quando aplicados a lanço incorporado ou no sulco de semeadura, em solo do Cerrado com 55% de argila e teor disponível de P (2 mg/dm³) muito baixo, insuficiente para atender a demanda das plantas (OLIVEIRA JUNIOR et al., 2008).

Observa-se que não houve diferença entre as formas de aplicação do TSP. Assim, com a aplicação a lanço, apesar do maior contato do fertilizante com o solo, que pode levar a maior perda do P aplicado por fixação, ocorre também a maior possibilidade de exploração do solo pelas raízes das plantas, resultando em maior acúmulo de P por unidade de raiz, tal qual observado por Klepker & Anghinoni (1995), o que estaria compensando os processos relacionados à fixação de P. Outra questão importante é que, de

Figura 1 - Efeito das doses e das fontes de P, aplicadas a lanço e incorporadas a 20 cm ou localizada no sulco de semeadura, na produtividade de soja (2004/05 e 2005/06). Modelos seguidos de mesma letra não diferem estatisticamente a 5% de probabilidade.
modo geral, as quantidades de fósforo aplicadas são maiores do que as quantidades exportadas pelos grãos e, desta maneira, sempre há um balanço positivo de entrada de P no sistema, aumentando os teores de fósforo no solo.

Nesse sentido, Sousa & Rein (2011) relatam que a aplicação corretiva de fertilizantes fosfatados deve ser realizada a lanço e incorporada no perfil do solo antes de se iniciar a implantação do plantio direto.

Adubação de manutenção - Considerando que se o teor disponível de P no solo é adequado, as doses de P recomendadas variam de 60 a 100 kg/ha de P₂O₅, dependendo da cultura e da produtividade esperada (Sousa et al., 2002). Em condições de alta disponibilidade (P maior que 6, 12, 20 e 25 mg/dm³, respectivamente para solos de textura muito argilosa, argilosa, média e arenosa), essas quantidades podem ser reduzidas pela metade, sem levar ao comprometimento da produtividade (Sousa & Rein, 2011). Entretanto, em condições de alta disponibilidade de P no solo a aplicação de fertilizantes fosfatados de alta solubilidade pode ser realizada no sulco de semeadura ou a lanço na superfície do solo sem maiores comprometimentos na produtividade, pois, com a construção da fertilidade no perfil do solo, a forma de aplicação tende a perder importância.

Contudo, muito cuidado deve se ter ao recomendar a aplicação a lanço de fertilizantes fosfatados por dois aspectos: 1. Mesmo em solos de fertilidade construída, a aplicação localizada tem demonstrado ser obtidos maiores ganhos de produtividade quando comparada com a aplicação na superfície. 2. A contínua aplicação superficial do fertilizante fosfatado, em plantio direto, levará a formação de um gradiente muito grande na variação da disponibilidade de P no perfil do solo, considerando que a mobilidade deste nutriento no perfil do solo é muito baixa.

Em relação ao primeiro aspecto, há duas safras tem sido conduzido um estudo, em parceria com o corpo técnico do Centro Tecnológico COMIGO, com objetivo de avaliar a produtividade da soja à aplicação de doses de P a lanço em superfície e no sulco de semeadura. Em ambas as safras, a aplicação a lanço do P resultou em menores produtividades, em especial quando o teor disponível no solo era inferior ao valor crítico. Assim, na Figura 2 estão apresentados os dados da safra 2012/2013, onde se pode
observar a melhor resposta da soja quando o fertilizante foi localizado no sulco de semeadura, inclusive nas maiores doses de P (condição onde a disponibilidade de P é alta).

Ao se realizar a comparação horizontal das formas de aplicação, que possibilita definir qual é a dose de P necessária para se alcançar um dado valor de produtividade, verifica-se, por exemplo, a necessidade de se aplicar 95 kg/ha de P₂O₅ a lanço para se obter 3800 kg/ha de soja (63 sacas/ha), ao passo que, essa mesma produtividade foi obtida com a aplicação de 65 kg/ha de P₂O₅ quando aplicado no sulco de semeadura. Se elevarmos a comparação para 3900 kg/ha (65 sacas/ha), as doses de P que resultam nesse valor aumentam para 85 e 120 kg/ha de P₂O₅, respectivamente para a aplicação no sulco e a lanço em superfície. Isto evidencia claramente o custo que a "operacionalidade" de semeadura pode trazer à produtividade das culturas. Assim, é importante o agricultor ter conhecimento de que para alcançar as mesmas produtividades, no mínimo, deve ser considerada a necessidade da aplicação a lanço doses maiores de P no sistema de produção.

Um segundo aspecto que deve ser bem discutido é o nível crítico de P no solo, caso o produtor opte por realizar a aplicação a lanço, mesmo conhecendo os riscos e o custo que esta prática traz consigo. Souza & Rein (2011) mencionam valores médios de P disponível para a camada 0-20 cm, já apresentados nesse texto, do qual não se espera grandes variações na produtividade em resposta às formas de aplicação do P. Entretanto, com a adoção do sistema do plantio direto, independentemente se o SPD esteja sendo adequa-

![Imagem da Figura 2](https://via.placeholder.com/150)

Figura 2 - Produtividade da soja, na safra 2012/2013, em resposta à aplicação de doses de P no sulco de semeadura e a lanço na superfície do solo.
damente realizado ou não, tem-se criado um grande gradiente vertical na disponibilidade de P, podendo reduzir o volume de solo explorado pelas raízes e, consequentemente, de água e nutrientes. Nesta situação, em condições de estresse hídrico, serão maiores os risco de queda de produtividade.

Assim, com base nos resultados do experimento com doses e formas de aplicação de P, ao correlacionar as produtividades de soja com os respectivos teores de P (Mehlich-1) nas camadas 0-10 e 10-20 cm (Figura 3), verifica-se uma relação direta entre o aumento da produtividade com o aumento do P disponível na camada 10-20 cm. Ou seja, quando o P na camada 10-20cm é menor que 6, independentemente dos teores na camada 0-10 cm, as produtividades da soja foram baixas e/ou limitadas a 3000 kg/ha. Por outro lado, produtividades superiores a 4000 kg/ha ocorreram somente quando os teores de P na camada 10-20cm estavam muito próximos ou eram superiores a 10 mg/dm³.

Desses resultados pode ser feito duas constatações:

Figura 3 - Produtividade da soja em resposta à disponibilidade de P nas camadas 0-10 e 10-20 cm. Rio Verde, CTC, Safra 2012/2013.

1. Altas produtividades com aplicação a lanço em superfície só ocorrem quando o teor de P disponível na camada 10-20 cm é maior que 10 mg/dm³.

2. Devido a baixa mobilidade do P no perfil do solo, com a apli-
cação contínua do fertilizante fosfatado a lanço em superfície, a tendência é que aumente o gradientes de disponibilidade desse nutriente, levando ao acentuado aumento dos teores na camada 0-10 cm (concentrada nos primeiros 3 cm), não só pelas aplicações de fertilizantes, como pela ciclagem de nutriente, associada à redução da disponibilidade de P na camada mais profunda. Sob essa condição (alta disponibilidade de 0-10 cm e baixa de 10-20 cm), a produtividade de soja não passou dos 2800 kg/ha (Figura 3).

Com base nos resultados de pesquisa e nos conceitos da dinâmica do nutriente, gostaríamos de deixar como mensagem final que a aplicação a lanço dos fertilizantes fosfatados possui um custo agronômico que, evidentemente, pode refletir na produtividade da soja. Outra questão importante é que o critério para adoção da aplicação a lanço deve estar associado à disponibilidade de P na camada 10-20 cm, com valores acima do nível crítico.

Finalmente, com o aumento do gradientes no teor de fósforo no perfil, a tendência é de que essa prática não seja capaz de manter altos patamares de produtividade, em especial, durante safras com problemas climáticos.

REFERÊNCIAS

