The 2010 Annual Meetings, "Green Revolution 2.0: Food + Energy and Environmental Security," was a success. Thank you to all of the attendees, exhibitors, sponsors, donors, vendors, and volunteers.

Save the date for next year: Oct. 16-19, 2011, San Antonio, TX.

Save on books with the LONG BEACH promo code through 11/30 at our Society Store.

Abstracts Online: Search by author, keyword, division

ASA, CSSA, SSSA Scholarship, Awards, & Fellows

View resumes and jobs from the Career Center

More News

American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America will host 3,000 scientists, professionals, educators, and students to the 2010 International Annual Meetings, Oct. 31-Nov. 3 in Long Beach, CA.
In the present study was developed a comparative analysis of the capacity agricultural of important cropping systems and native areas located in Sub-Saharan Africa to soil carbon assessment. With the aim to determine soil carbon stocks (CS) according to soil classes, altitude, temperature gradient, climatic parameters, crop classes and native vegetation, as related to global change, soils from main cropping systems as tea, coffee and maize, located in Embu, Nairobi, Kenya, were sampled. These soils were sampled, in triplicates, in five layers from 0 to 30 cm depths and processed for total carbon analysis in duplicate. CS (Mg ha\(^{-1}\)) were calculated in equivalent soil mass taking the native vegetation as reference. Using a linear additive model for a nested sampling scheme, CS were compared, among cropping systems using MANOVA and orthogonal contrasts. The whole soil samples were analyzed using the Laser-Induced Fluorescence spectroscopy (LIFS) to assess the carbon stability of these areas. We used a new device, developed by EMBRAPA-Agricultural Instrumentation, employing laser-induced optical techniques to measure the carbon levels and their stability in whole soil samples. The device is so light and convenient that it can be used directly in the field. Also, the portable LIFS system is of utmost importance in agro ecosystems contributing with studies of capture of carbon under variable climatic conditions. The results showed wide variations in the levels and stability of carbon stored in the soil depending on factors such as land use, crops grown, water content, elevation, and agricultural practices.