Anais da I Jornada de Iniciação Científica da Embrapa Amazônia Ocidental
Documentos 35

Anais da I Jornada de Iniciação Científica da Embrapa Amazônia Ocidental

Levy de Carvalho Gomes
José Jackson Bacelar Nunes Xavier
Marcos Vinícius Bastos Garcia
Eduardo Lleras Pérez
Luadir Gasparotto
Adônis Moreira

Manaus, AM
2004
Exemplares desta publicação podem ser adquiridos na:

Embrapa Amazônia Ocidental
Rodovia AM-010, km 29, Estrada Manaus/Itacoatiara
Caixa Postal 319
Fone: (92) 621-0300
Fax: (92) 3621-0320 / 3621-0317
www.cpaa.embrapa.br
sac@cpaa.embrapa.br

Comitê de Publicações da Unidade

Presidente: José Jackson Bacelar Nunes Xavier
Membros: Adauto Maurício Tavares
Cintia Rodrigues de Souza
Edsandra Campos Chagas
Francisco Célio Maia Chaves
Gleise Maria Teles de Oliveira
José Clério Rezende Pereira
Maria Augusta Abtibol Brito
Maria Perpétua Beleza Pereira
Paula Cristina da Silva Ângelo
Raimundo Nonato Vieira da Cunha
Sebastião Eudes Lopes da Silva

Revisor de texto: Maria Perpétua Beleza Pereira
Normalização bibliográfica: Maria Augusta Abtibol Brito
Diagramação e arte: Gleise Maria Teles de Oliveira
Capa: Doralice Campos Castro
1ª edição

Todos os direitos reservados.
A reprodução não autorizada desta publicação, no todo ou em parte,
constitui violação dos direitos autorais (Lei nº 9.610).

Embrapa Amazônia Ocidental.

Gomes, Levy de Carvalho et al.
Anais da I Jornada de Iniciação Científica da Embrapa Amazônia
Ocidental / (editado por) Levy de Carvalho Gomes et al.

ISSN 1517-3135

1. Pesquisa. 2. Ciência. I. Título. II. Série.

CDD 501

© Embrapa 2004
Produção de biomassa de caapeba, em função de épocas de colheita, nas condições de Manaus - AM

Elder de Araújo Pena¹, Ana Cristina da Silva Pinto¹, Adrian Martin Pohlit² e Francisco Celio Maia Chaves³

¹Bolsista Pibic/Fapeam; ²Instituto Nacional de Pesquisas da Amazônia, CPPN, Av. André Araújo, 2.936, Petrópolis, 69083-000, Manaus, Amazonas, Brasil, ampohlit@inp.gov.br; ³Embrapa Amazônia Ocidental, Rodovia AM 010, km 29, Zona Rural, Caixa Postal 319, 69010-970, Manaus-AM. E-mail: celio@cpaa.embrapa.br

Resumo - Conhecida como caapeba, pariparoba, a espécie Pothomorphe peltata Miq. é usada, popularmente, no tratamento de afeções do aparelho digestivo, insuficiência hepática e como antipirética. É diurética, estomáquica e carminativa. Apesar da sua importância, praticamente não existem estudos agronômicos dessa espécie medicinal. O objetivo desta pesquisa foi analisar os efeitos de épocas de colheita na produção de biomassa, nas condições de Manaus - AM. Os tratamentos constaram de quatro épocas de colheita. As mudas foram produzidas em setembro/2003. O plantio (22/12/03) foi realizado na Embrapa Amazônia Ocidental, no espaçamento de 1 x 1 m. Em 11/02, 12/04, 12/06 e 14/08 de 2004, foram realizadas colheitas de toda a planta com avaliações da produção de folhas, caules, inflorescências, raízes e produção total, número de folhas e inflorescências por planta e determinação da relação caule/folha. Em cada parcela foram avaliadas quatro plantas. Observou-se que, em todas as partes da planta, houve aumento no acúmulo de biomassa em função da idade da planta, com exceção para folhas, que decresceu na última avaliação.

Termos para indexação: Pothomorphe peltata Miq., cultivo, metabolismo secundário.

Biomass production during cultivation of Pothomorphe peltata (Piperaceae), in Amazonas State - Brazil

Abstract - The aim of this study was to evaluate the influence of harvest time on biomass production for the native species Pothomorphe peltata in Manaus, Amazonas State, Brazil. At four different harvest times (February, April, June and August 2004) leaf, stem, root, flower, total and leaf/stem proportional biomass production were evaluated. The experimental design was in four randomized blocks, using a spacing of 1.0 x 1.0 m. Plots of 4 plants in four replications were analyzed. In almost all parts of the plants increases in the accumulation of biomass occurred as a function of plant age. An exception was leaves which, despite a general increase in the number of leaves with age, decreased biomass in the last evaluation period.

Index terms: Pothomorphe peltata Miq., medicinal plant, secondary metabolism, harvest times.

Introdução

A oferta de matéria-prima de boa qualidade ao longo do ano requer práticas fitotécnicas adequadas a cada espécie de planta medicinal, que está sob a influência das estações climáticas, época de colheita, capacidade de rebroto, da absorção de nutrientes disponíveis no solo, secagem e luminosidade. Nas condições brasileiras, a maioria das plantas medicinais não é ainda cultivada, mas coletada através do extrativismo, e a grande parte das espécies cultivadas encontra-se no estágio inicial de domesticação, sem estar sistematicamente investigada. Esse extrativismo dispensa os esforços e despesas com o cultivo, porém provoca a degradação do ecossistema, a baixa qualidade do material e diversificação de produto (Bustamante, 1993; Corrêa Jr, et al., 1996).
A Amazônia é o maior ecossistema de floresta tropical e é considerada a maior reserva de plantas medicinais do mundo, a qual vem sendo explorada de forma desordenada, comprometendo todo o seu potencial de recursos genéticos, principalmente as medicinais, das quais apenas 5% do total de espécies tem sido objeto de pesquisa (Matos, 1990), em sua maioria na área química e farmacológica, tanto para as espécies nativas e as introduzidas, sem levar em conta o devido suporte da área agronômica, que pode aliviar a pressão extrativista desorganizada sobre o ecossistema e permitir a obtenção de material de qualidade superior.

Dentre as espécies nativas encontra-se a Pothomorphe peltata Miq. (Piperaceae), pequena erva bianual ou semipernana, usada na medicina popular de quase todo o Brasil, empregando-se as folhas, hastes e raízes. Já foram identificados alguns metabólitos secundários, tais como óleos essenciais, esteroides, mucilagens, substâncias fenólicas, pigmentos e também o 4-nerolidilcetol. É considerada diurética, antispasmodica, antiinflamatória, usada contra doenças do fígado, inflamações das pernas, contra erípise e filariose (Lorenzi e Matos, 2002). Somente para o composto 4-nerolidilcetol foi demonstrado atividade antimialárica, antitumoral, prevenção espontânea de peroxidização de lipídios do cérebro e também potencial antioxidante através de aplicação em formulações cosméticas (Pinto, 2002).

Este trabalho teve como objetivo determinar a melhor época de colheita de biomassa de cacépea nas condições de Manaus, Amazonas.

Material e Métodos

O experimento foi conduzido no Campo Experimental da Embrapa Amazônia Ocidental do Km 29, Rodovia AM 010. A coleta de solo foi realizada em setembro/2003 e encaminhada para análise no Laboratório de Análises de Solos e Plantas - Lasp. Em virtude da recomendação de correção da acidez, foi feita a calagem, aplicando-se 4 t/ha de calcário e incorporado (por gradagem) após roço e aração da área.

No viveiro de plantas medicinais da Embrapa Amazônia Ocidental, preparou-se substrato com terriço + esterco de galinha - 2:1. Utilizaram-se sacos de polietileno preto com esse substrato, nos quais as sementes foram semeadas em 9/9/2003. As sementes foram coletadas no viveiro da Coordenação de Pesquisas de Produtos Naturais (CPPN) do Instituto Nacional de Pesquisas da Amazônia (Inpa), a partir de matrizes adultas de aproximadamente um ano de idade. A germinação ocorreu 30 dias após, e em 2/11/2003 fez-se o desbaste e repicagem, deixando-se a planta mais vigorosa no saco. As plantas permaneceram sob irrigação diária até o plantio, em 22/12/2003. O experimento foi instalado em blocos ao acaso, com 4 repetições (16 plantas/repetição, colhendo-se as 4 centrais como área útil), adotando-se o espaçamento de 1 x 1 m. Os tratamentos foram 4 épocas de colheita (fevereiro, abril, junho e agosto de 2004), a intervalos de 60 dias. Em cada época de colheita foram avaliadas as seguintes variáveis: folhas, caules, raízes, inflorescências e total, todas em base seca (duas amostras de 20 g/pacela), após secagem em estufa a 65°C, até peso constante. Os dados foram submetidos à análise de variância pelo Teste F e as médias submetidas ao ajuste de modelos de regressão.

Resultados e Discussão

Na Figura 1, observa-se que a produção de folhas aumentou até a terceira colheita (em torno de 94 g/pl) e decresceu a partir daí. A fase reprodutiva, nas condições desse experimento, só evidenciou-se após os 110 dias do transplantio, pois nessa época de avaliação a produção foi apenas de 0,32 g/pl. Na avaliação seguinte, essa produção alcançou o valor de 59,75 g/pl (Figura 2). Até então, a planta, por ser mais jovem e consequentemente se encontrar na fase vegetativa, investiu suas reservas para a produção de folhas. Observou-se também que, por ocasião da quarta colheita, houve decréscimo na produção de folhas. As produções de caules e raízes (Figuras 3 e 5), por sua vez, foram crescentes desde a primeira colheita, embora a maior contribuição tenha sido dos caules, que
Nas duas primeiras colheitas a produção de caules ficou abaixo da produção de folhas, com a planta direcionando suas reservas para as estruturas fotosintetizantes, para depois aumentar na formação de caules, que dá sustentação por meio dos tecidos lignificados (Metcalf & Chalk, 1985 e Cutter, 1986). Isso ficou bem evidenciado pela relação folha/caule (Figura 4), que decresceu em função das épocas de colheita. Embora os números de folhas e inflorescências tenham sido crescentes com o avanço da idade da planta (Figura 7), houve queda na produção de biomassa de folhas/pl., na última colheita (48,01 g/pl), é isso deve-se ao fato de que, na última avaliação (no mês de agosto), ocorreu baixa precipitação pluviométrica, e o experimento não foi conduzido sob a condição de irrigação. Essas condições ambientais contribuíram para a queda de folhas maduras, embora a produção total de biomassa (Figura 6) tenha sido crescente, mas essa resposta depende das outras estruturas. Nas condições em que o experimento foi desenvolvido houve aumento na produção de biomassa total, com contribuição menor das folhas na última

Figura 1. Produção de folhas de caapeba, em função da idade de colheita, nas condições de Manaus - AM. Manaus/AM, 2004.

Figura 2. Produção de inflorescências de caapeba, em função da idade de colheita, nas condições de Manaus - AM. Manaus/AM, 2004.

Figura 3. Produção de caules de caapeba, em função da idade de colheita, nas condições de Manaus - AM. Manaus/AM, 2004.

Figura 4. Relação folha/caule de caapeba, em função da idade de colheita, nas condições de Manaus - AM. Manaus/AM, 2004.

Figura 5. Produção de raízes de caapeba, em função da idade de colheita, nas condições de Manaus - AM. Manaus/AM, 2004.

Figura 6. Produção de biomassa total de caapeba, em função da idade de colheita, nas condições de Manaus - AM. Manaus/AM, 2004.
Conclusões

Considerando as condições em que o experimento foi conduzido, pode-se concluir que a caapeba apresentou aumento de biomassa em todas as partes que compõem a planta, em função das épocas de colheitas avaliadas, com exceção para produção de folhas que reduziu na última colheita.

Agradecimentos

À Fundação de Amparo à Pesquisa do Estado do Amazonas (Fapeam), pela concessão da Bolsa Pibic; e à Fundação BioAmazônia - Contrato Fepad/Basa, pelo suporte financeiro.

Referências Bibliográficas

PINTO, A. C. S. Estudo fitoquímico e biológico de Pothomopoe peltata (L.) Miquel (Piperaeeae). 2002. 156 f. Dissertação (Mestrado) Universidade Federal do