zeamais.

A diferença entre o número de insetos emergidos pode ser atribuída a fatores inerentes aos grãos. Sejam eles químicos ou físicos, ambos podem ser determinados por fatores genéticos. O Quadro 111 apresenta a média de 4 repetições do experimento. Observou-se que os genótipos Doce Opaco e Doce Havaí foram os que produziram menor número de insetos emergidos. - Jamilton P. Santos.

QUADRO 111. Caracterização da susceptibilidade de genótipos de milho com relação à incidência do gorgulho Sitophilus zeamais. CNPMS, Sete Lagoas, MG, 1983.

Variedades	No. médio de insetos emergido
Doce Opaco	0,5
Doce do Havaí	1,0
SP VII - Cateto	1,5
Pipoca Miúdo	1,7
Pontinha São Simão	2,2
Cateto Composto Botucatu	3,5
Piracar I - Água Branca	4,2
Pipoca Guarani	4,7
RGS V - Dentado Riog, Liso	5,0
Azteca Opaco 2 70%	5,5
WP 7 - Eto Branco	5,7
Pipoca UFV Roxo	6,0
Pipoca Branco de Assis	6,2
Piramex brbr Martinho	6,5
RGS XI - Dent. Branco	45
Riograndense	6,5
Dentado Composto Água Santa	6,5
Cateto Composto São Simão	7,5
Pérola Piracicaba Tatuí	7,7
RGS VII - Cravo Riograndense	8,5
SP VI - Amostra Especial	9,5
Reliance B	9,5
Composto Ouro 02 UFV	9,5
Cateto Colômbia VII	•
Bol. III - Moroti	9,7
	9,7
CMS 07 - Comp. Planta Baixa Flint Amarelo de Pé A2	10,0
BA III - Iuson	10,7
	11,0
Brasil 2294	11,0
Centralmex 02 UFV	11,2
CMS 15 - Pool 26	12,2
Cateto Sete Lagoas	12,5
CMS 08 - Tixpeño Crema 1	13,5
SC II - Dent. Branco Riograndense	14,0
Branco Dentado	14,5
NT U - Moroti	15,2
CE I - Cateto	15,5
Amarelo Cruz Alta	16,0
Composto Caçador	16,2
WP 4 - Nariño x Peru	16,5
Composto Indígena	16,5
Azteca Prolífico V RPE VII	17,0
BA I - Cateto - 4496	18,0
IAC - I - 02 - IV	18,2
RGS XII Dent. Branco Riogran-	
dense	18,7

QUADRO 111. Continuação.

Variedades	No. médio de insetos emergidos	
RGS XVI Semidentado	PER DESCRIPTION OF CARDAGO	
Riograndense	19,2	
RGS I - Dent. Riogrand. Rugoso	19,7	
BA II - Cristal (Ribeirão preto) 4501	20,5	
ARG VIII - Cristal Sulino	20,5	
RGS XIX - Moroti 3006	20,5	
Centralmex	21,0	
SP XII - Caingang	22,0	
RGS III - Dent. Riograndense		
Rugoso	23,2	
Kalahari Blitz	23,5	
MT II - Moroti	26,7	
Bol. II - Moroti	27,2	
Composto Guarani	30,0	
ARG V - Cateto Sulino	32,5	
MT III - Moroti	37.0	

COMPARAÇÃO ENTRE POPULAÇÕES DE Sitophilus sp QUANTO À RESISTÊNCIA A INSETICIDAS PIRETRÓIDES E FOSFORADOS

O tratamento de grãos e sementes de milho com inseticidas, visando combater insetos como o caruncho do milho, Sitophilus sp e a traça dos cereais, Sitotroga cerealella, é uma prática muito utilizada. Grande parte das sementes de milho era, até uns quatro anos atrás, tratada com uma mistura de DDT + Diazinon + Malathion, que, embora fosse eficiente no combate aos insetos, foi proibida devido aos efeitos nocivos ao meio ambiente, causados pelos produtos organoclorados.

Com a proibição dos inseticidas clorados surgiu a necessidade de se pesquisarem outros produtos químicos para proteção de sementes contra insetos. Após dois anos de testes ficou comprovada a eficiência do inseticida piretróide Deltamethrin 2,5 ce e do fosforado Pirimiphos-metil 50 ce, já registrados no Ministério da Agricultura para uso em grãos e que poderiam também ser usados em sementes.

No transcorrer da pesquisa sobre tratamento de sementes, observou-se que um lote tratado com Deltamethrin 2,5 ce e armazenado em Santo Antônio da Platina, PR, foi infestado por uma população de carunchos natural do armazém.

A partir de um lote de sementes infestadas coletou-se um número de carunchos que foram multiplicados e testados em laboratório, em condições controladas, com relação à resistência ao inseticida Deltamethrin. Os resultados estão resumidos no Quadro 112. Nesse ensaio, ficou constatada a baixa eficiência do inseticida piretróide Deltamethrin no controle dos insetos que infestaram aquele lote de sementes, armazenado em Santo Antônio da Platina, PR. Esses carunchos receberam o nome de Jacarezinho. Observou-se também, nesse ensaio, que o inseticida Deltamethrin eliminou 100% dos insetos originados da região de Sete Lagoas e criados em laboratório. Os inseticidas fosforados eliminaram

100% dos insetos da raça Jacarezinho e dos originados de Sete Lagoas, MG.

QUADRO 112. Eficiência de vários inseticidas e doses sobre duas raças de Sitophilus sp. 1986.

Inseticidas			% Efic	iência 1	
	ppm	Dose	Origem dos insetos		
		por t/milho	S.Lagoas-MG	Jacarezinho	
		- 1	Laboratório	Armazém	
	0,25	125g	94,7	00,0	
	0,50	250g	100	00,0	
Deltametrin	0,75	375g	100	55,6	
0,2% p6	1,00	500g	100	30,5	
	1,50	750g	100	62,6	
	2,00	1.000g	100	67,9	
	4,00	2.000g	100	90,9	
	0,25	10ml	100	30,5	
	0,50	20ml1	100	53,0	
Deltametrin	0,75	30ml	100	55,6	
2,5% CE	1,00	40ml	100	34,2	
	1,50	60ml	100	50,3	
	2,00	80ml	100	50,3	
	4,00	160ml	100	48,1	
	2	50g	100	100	
	4	100g	100	100	
Malathion pó	8	200g	100	100	
4%	12	300g	100	100	
	16	400g	100	100	
	20	500g	100	100	
	40	1.000g	100	100	
	2	4ml	100	100	
	4	8ml	100	100	
Malathion líquido	8	16ml	100	100	
50 CE	12	24ml	100	100	
	16	32ml	100	100	
	20	40ml	100	100	
	40	80ml	100	100	
	2	4ml	100	100	
	4	8ml	100	100	
Pirimiphos methyl	8	16ml	100	100	
50 CE	12	24ml	100	100	
· · · · · · · · · · · · · · · · · · ·	16	32ml	100	100	
	20	40ml	100	100	
	40	80ml	100	100	

¹Calculada pela fórmula Abbot

Posteriormente foi conduzido outro ensaio no qual se testou a resistência de quatro diferentes populações do caruncho com relação a eficiência dos inseticidas Deltamethrin, Malathion e Pirimiphos-metil. Os resultados estão no Quadro 113, onde se observa que o Deltamethrin não controlou satisfatoriamente os carunchos da raça Jacarezinho e outros originados de Santa Cruz do Sul, RS, mas os fosforados eliminaram por completo os insetos das quatro populações.

Num terceiro ensaio resolveu-se testar outros piretrói-

des além do Deltamethrin. Os resultados estão no Quadro 114, onde se observa que todos os piretróides não controlaram bem os carunchos de Jacarezinho, donde se conclui que a resistência desses insetos foi adquirida contra o grupo de piritróides e não somente contra o Deltamethrin. A eficiência de inseticida foi calculada através da seguinte fórmula:

onde:

E = % de eficiência do inseticida

% VTE = percentagem de insetos vivos na testemunha % VTR = percentagem de insetos vivos no tratamento

- Jamilton P. Santos.

QUADRO 113. Eficiência de vários inseticidas e doses sobre o caruncho do milho originado de várias regiões. CNPMS, Sete Lagoas, MG, 1987.

Inseticidas ppm to	nnm	Dose por	Eficiência¹ (%) Origem dos Insetos			
		MG	Sto. A. da Platina Armazém	do Sul	MG	
Deltame-						70 53
thrin pó	1,5	750g	100	89,6	77,7	100
2,5%	20	1.000g	100	79,3	86.0	100
•	4,0	2.000g	100	98,3	96,4	100
Deltame-						
thrin	0,7	30ml	100	1,6	25,9	100
2.5% CE	1,0	40ml	100	8,3	3.1	100
	1,5	60ml	100	25,9	32,6	100
Malathion						
pó	16,0	400g	100	100.0	100.0	100
4,0 %	20,0	500g	100	100.0	100.0	100
	40,0	1.000g	100	100,0	100,0	100
Malathion						
líquido	16,0	32ml	100	100.0	100.0	100
50 CE	20,0	40ml	100	100,0	100,0	100
	40,0	80ml	100	100,0	100,0	100
Pirimiphos						
metil	16,0	32ml	100	100.0	100.0	100
59 CE	20,0	40ml	100	100,0	100,0	100
	40,0	80ml	100	100,0	100,0	100

¹Calculada pela fórmula de Abbot.

QUADRO 114. Eficiência de vários inseticidas e doses sobre carunchos de milho de duas regiões. CNPMS, Sete Lagoas, MG, 1986.

Tratamentos	Origem dos carunchos e % de eficiência		
	Sto Antônio Platina-PR (armazém)	Sete Lagoas-MG (Laboratório)	
Avermectin 5 ppm	100	98,8	
Pirimiphos-Methyl - 15ppm	100	100	
Chlorpirifos-Methyl-20ppm	98.7	100	
Cypermethrin: 8P-4:20ppm	37,2	100	
Deltamethrin: BP-2:20ppm	34,6	100	
Fenvalerate: BP-2:10 ppm	0	62.5	
Flucytrinate ¹	0	100	

¹Inseticidas piretróides.

IDENTIFICAÇÃO E PURIFICAÇÃO DE UM VÍRUS DE GRANULOSE EM Spodoptera frugiperda (Lepidoptera: Noctuidae)

Foi constatada a presença de um vírus de granulose infectando lagartas de Spodoptera frugiperda (lagarta-do-cartucho do milho) na região de Sete Lagoas, MG. O vírus de granulose (VG) pertence ao gênero Baculovirus e caracteriza-se por apresentar suas partículas oclusas, individualmente, em uma cápsula de proteína (granulina), formando estruturas características que são chamadas corpos de inclusão (CIs). O objetivo deste trabalho foi identificar e purificar esse vírus de granulose, visando sua utilização como bioinseticida para o controle da lagarta-do-cartucho do milho. A preparação do extrato foi feita partindo de uma lagarta macerada em 40ml de água destilada. O homogeneizado foi coado em quatro camadas de gaze e centrifugado a 1.600g duran te 25 minutos. O precipitado foi ressuspenso em 200ml de

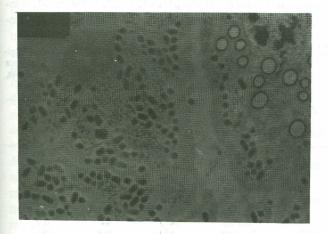


FIGURA 19. Vírus de granulose em Spodoptera frugiperda

água destilada. O vírus, após a limpeza das partículas maiores, mostrou ser patogênico, causando até 100% de mortalidade em lagartas jovens criadas artificialmente em laboratório (Quadro 115). Poucas lagartas morreram com sintomas e em estádios diferentes das larvas infectadas. A identificação do vírus foi feita através de microscopia eletrônica (Figura 19) e a purificação dos CIs foi feita utilizando centrifugações diferenciais e em gradientes de sacarose.

Devido a sua estabilidade, patogenicidade, grande quantidade de Cls por lagarta infectada e facilidade de purificação, o vírus em estudo apresenta um grande potencial para ser usado como bioinseticida no controle da lagarta do cartucho.- Fernando H. Valicente, Maria J.V.V.D. Peixoto, Edilson Paiva, Elliot W. Kitajima.

QUADRO 115. Mortalidade da lagarta-do-cartucho, de 6 dias de idade, tratadas com folhas de milho infectadas com vírus de granulose (VG). CNPMS, Sete Lagoas, MG. 1986.

Idade da lagarta tratada com VG	Lagartas mortas por vírus (%)	Pupas normais (%)
3 dias	100,0	S
6 dias	29,2	70,8
8 dias	16,7	79,2

CONSUMO FOLIAR DA LAGARTA-DO-CARTUCHO DO MILHO, Spodoptera frugiperda, INFECTADA COM VÍRUS DE GRANULOSE OU DE POLIEDROSE NUCLEAR

Com o objetivo de quantificar a área foliar consumida e o tempo letal médio de larvas infectadas com vírus da granulose e da poliedrose nuclear (VG e VPN), respectivamente, um experimento foi conduzido no Laboratório de Patologia de Insetos do CNPMS, em Sete Lagoas, MG.

As amostras de folha foram obtidas com um vazador e a área, determinada por um aparelho medidor de área foliar (cm²). O VG foi purificado através de centrifugações diferenciais e em gradientes de sacarose. A suspensão do VG foi feita através da mistura de 1,0 ml do vírus purificado (cada ml do vírus purificado possui 22 mg de corpos de inclusão) com 10 ml de água destilada e tween a 0,1%. Dessa suspensão, 30 ml foram diluídos em 30 ml de água destilada. Na suspensão do VPN havia 2,5 x 106 poliedros/ml. As folhas de milho foram, então, imersas nessa suspensão, enquanto que a testemunha foi apenas imersa em água e tween a 0,1%. As lagartas foram alimentadas com essas folhas por 24 e 48 horas. Depois as larvas foram tratadas com folhas sadias até atingirem a fase de pupa ou morrerem infectadas com o vírus .

Os resultados para o VG mostraram que, enquanto o período larval das lagartas infectadas foi mais longo do que o das sadias, o consumo foliar de lagarta sadia foi, em média, 134,03 cm², enquanto que o de larva infectada foi de 109,3 cm². O tempo letal médio foi de 11,5 dias. Os resultados pa-