

FIGURA 50. Porcentagem de açúcares solúveis no intermódio durante o enchimento de grãos. CNPMS, Sete Lagoas, MG, 1989/90 - 1990/91.

TABELA 139. Dados médios de quebramento do colmo (%) e produção de grãos (kg/ha). CNPMS, Sete Lagoas, MG, Ano agrícola 1989/90.

Genótipos	Quebramento do colmo (%)	Produção de grãos (kg/ha)	
CMS 352 ¹	93,02 A ³	4.013 A	
AG 104 ¹	77,00 AB	3.287 A	
CMS 354 ¹	75,57 AB	3.170 A	
CMS 351 ¹	59,43 AB	2.475 A	
CMS 353 ¹	51,50 BC	3.827 A	
Agromen 2012 ¹	43,10 BCD	3.315 A	
Dina 46 ²	33,07 CD	4.402 A	
BR 201 M ¹	29,77 CD	4.398 A	
Contimax 133 ²	25,87 CD	3.203 A	
AG 106 ¹	16,43 D	3.880 A	

¹Susceptíveis ao quebramento.

TABELA 140. Dados médios de altura de plantas, índice de espigas, porcentagem de quebramento e produção de grãos. CNPMS, Sete Lagoas, MG, 1990/91.

Cultivares	Altura (m)	Índice de espiga	Quebramento (%)	Produção (kg/ha)
CMS 203 ¹	1.57 AB ³	1.0 A	56,41 A	7.248 A
G.O. 1063 ¹	1.72 A	1.0 A	18,22 B	7.277 A
$G - 85^2$	1.35 C	1.0 A	6,72 C	7.595 A
Cargill 525 ²	1.45 BC	1.0 A	5,29 C	7.217 A

¹Susceptíveis ao quebramento

EFEITOS DE DIFERENTES TIPOS DE DESPENDOAMENTO NO COMPORTAMENTO DE ALGUNS GENÓTIPOS DE MILHO

A relação fonte/dreno é da mais alta importância para o milho, pois um desbalanceamento nessa relação pode afetar diretamente a produção. A prática do despendoamento do milho, dependendo do método utilizado, tanto pode favorecer como prejudicar a planta. A retirada pura e simples do pendão, que é um forte dreno, pode favorecer a planta, uma vez que diminui a concorrência por fotoassimilados; já o arranquio do cartucho pode resultar em prejuízos à planta, porque normalmente ocorre uma perda de 4 a 5 folhas superiores. Ainda hoje, não se dispõe de dados capazes de responder a tais questionamentos. O objetivo dessa pesquisa foi comparar métodos de despendoamento de milho, quantificando possíveis perdas ou ganhos decorrentes do uso dessa prática.

Esse experimento foi iniciado no ano agrícola de 1990/91. Foram utilizados três genótipos de milho: linhagem A, linhagem B e o híbrido simples CMS 355, formado das linhagens A e B. Esses materiais foram despendoados de cinco maneiras diferentes: manual, mecânica, arranquio do cartucho, sem despendoar e macho estéril, que poderia ser considerado um despendoamento biológico. A combinação desses tratamentos resultou num total de 15, repetidos quatro vezes. Os parâmetros avaliados após a imposição dos tratamentos foram: altura da planta, área foliar, peso da matéria seca, índice de espiga e produção de grãos. A análise dos genótipos isoladamente demonstrou uma predominância do híbrido simples sobre as linhagens A e B nos diversos parâmetros analisados (Tabelas 141 e 142). Os métodos de despendoamento (Tabelas 143 e 144) mostram que as plantas mais altas ocorreram no tratamento testemunha e as mais baixas no tratamento

TABELA 141. Altura de plantas, área foliar e peso da matéria seca/planta de três genótipos de milho. CNPMS, Sete Lagoas, MG, 1990/91.

Genótipos	Altura (m)	Área foliar (cm²)	Peso mat. seca (g)
H.S. CMS 355	2,27 A	4.103 A	184 A
Linhagem A	1,91 B	3.572 B	136 B
Linhagem B	1,80 C	2.105 C	104 C

TABELA 142. Altura de espiga, índice de espiga e produção de grãos de três genótipos de milho. CNPMS, Sete Lagoas, MG, 1990/91.

Genótipos	Altura de espiga	Índicee de espiga	Produção (kg/ha)
H.S. CMS 355	1,40 A ¹	1.89 A	6.645 A
Linhagem B	1,17 B	1,73 B	3.433 B
Linhagem A	1,20 B	1,47 C	2960 C

¹Médias seguidas pela mesma letra não diferem entre si, ao nível de 5% de probabilidade, pelo teste de 'lukey.

²Resistentes ao quebramento.

³Médias seguidas pela mesma letra não diferem entre si, ao nível de 5% de probabilidade, pelo teste de Tukey.

²Resistentes ao quebramento

 $^{^3\}text{M}\textsc{\'e}$ dias seguidas pela mesma letra não diferem entre si, ao nível de 5% de probabilidade, pelo teste de Tukey.

TABELA 143. Altura de plantas, área foliar e peso da matéria seca/planta para cinco tipos de despendoamento de milho. CNPMS, Sete Lagoas, MG, 1990/91.

Tipos de despendoamento	Altura (m)	Área foliar (cm ²	Peso mat seca (g)
Sem despendoamento	2,22 A	3.426 AB	150 A
Manual	2,17 AB	3.796 A	155 A
Macho estéril	2,10 B	3.382 AB	156 A
Mecânico	1,95 C	2.920 B	124 B
Arranquio do cartucho	1,52 D	2.775 B	124 B

TABELA 144. Altura da espiga, índice de espiga e produção de grãos para cinco tipos de despendoamento. CNPMS, Sete Lagoas, MG, 1990/91.

Tipo de despendoamento	Altura (m)	Índice de espiga	Produção (kg/ha)
Manual	1,25 A ¹	1,72 A	4.995 A
Macho estéril	1,26 A	1,70 A	4.520 AB
Arranquio do caruncho	1,26 A	1,72 AB	4.368 AB
Sem despendoamento	1,26 A	1,64 A	4.223 AB
Mecânico	1,24 A	1,69 A	4.024 B

¹Médias seguidas pela mesma letra não diferem entre si, ao nível de 5% de probabilidade, pelo teste de l'ukey.

de arranquio do cartucho. A mesma tendência foi observada para área foliar e peso seco, enquanto que no parâmetro produção de grãos o maior e menor rendimento ocorreram no despendoamento manual e mecânico, respectivamente. A retirada do pendão manualmente deve ter contribuído para que as plantas carreassem mais fotoassimilados para a espiga. Já o despendoamento mecânico resultou na menor produção, devido provavelmente a danos nas plantas decorrentes do uso dessa prática. Com relação ao arranquio do cartucho, os resultados sugerem que, apesar de a planta ter perdido suas folhas superiores (4-5), provavelmente houve translocação de fotoassimilados do colmo para a espiga. - Paulo César Magalhães, Elto Eugenio Gomes e Gama, Ricardo Magnavaca.

EFEITO DO SOMBREAMENTO ARTIFICIAL SOBRE A PRODUÇÃO E ALGUMAS CARACTERÍSTICAS FISIOLÓGICAS DO FELIOEIRO

A consorciação milho/feijão é uma prática muito utilizada pelos agricultores, sendo hoje considerada uma realidade nacional. Já existem trabalhos conclusivos sobre o manejo das práticas culturais da consorciação; todavia, há uma lacuna relativa à competição interespecífica das plantas na consorciação. A competição por luz exercida pelo milho sobre o feijoeiro é considerada um dos fatores responsáveis pela redução de até 50% na produção da leguminosa.

O objetivo dessa pesquisa foi quantificar os efeitos da luz sobre o feijoeiro. Para tal, foram utilizadas telas de sombrite com diferentes níveis de sombreamento, para simular a competição por luz, constituindo, assim, os tratamentos: 100% (testemunha), 38%, 35% e 15% da radiação fotossinteticamente ativa (RFA). Foram estudados os parâmetros: porcentagem de flores caídas, altura da planta, área foliar, peso seco, número de vagens por planta, número de sementes por vagem e rendimento de grãos. O ensaio foi instalado em duas épocas: inverno (julho) e verão (novembro) de 1989 no CNPMS, em Sete Lagoas.

No ensaio de inverno (Tabela 145), os resultados mostraram uma superioridade da testemunha (100% RFA) em relação aos demais tratamentos. Essa tendência

TABELA 145. Valores médios relativos a área foliar, peso seco da planta, nº de vagens/planta, nº de sementes/planta e produção de grãos, obtidos em plantas de feijão submetidas a 3 níveis de luz. Média de 4 repetições. CNPMS, Sete Lagoas, MG, Inverno de 1989.

			Nº vagem/ Planta	Nº sementes/ Planta	Produção (kg/ha)
100	1.713 A ²	38 A	7 A	27 A	1.104 A
35	1.206 A	21 B	6 A	30 A	638 AB
15	1.482 A	15 B	6 A	26 A	508 B

¹Valores são médias de cinco plantas em cada repetição.

foi observada para a maioria dos parâmetros avaliados. No ensaio de verão (Tabela 146), a altura de plantas foi o único parâmetro que não foi influenciado pelos tratamentos. Os demais mostraram sempre a mesma tendência observada na época de inverno.

Ficou evidenciada a alta importância do fator luz no desenvolvimento do feijoeiro. Apesar das características anatômicas e fisiológicas dessa leguminosa, que é uma planta C-3, o desenvolvimento e a produção de grãos foram bastante afetados pelas condições de baixa luminosidade (Figura 51), comprovando ser esse, um dos fatores do meio-ambiente

 $^{^2}$ Médias seguidas pela mesma letra não diferem entre si, ao nível de 5% de probabilidade, pelo teste de Tukey.