Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study

Lucia Maria Jaeger de Carvalho a,⁎, Patrícia Barros Gomes a, Ronoel Luiz de Oliveira Godoy b, Sidney Pacheco b, Pedro Henrique Fernandes do Monte a, José Luiz Viana de Carvalho b, Marília Regini Nutti b, Ana Cristina Lima Neves a, Ana Carolina Rodrigues Alves Vieira a, Semíramis Rabelo Ramalho Ramos c

a Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco K, Sala KI-38, Ilha do Fundão, 21941902, Rio de Janeiro, RJ, Brazil
b Embrapa Food Technology, Rio de Janeiro, RJ, Brazil
c Embrapa Coastal Tablelands, TE, Brazil

A R T I C L E I N F O

Article history:
Received 31 October 2010
Accepted 28 July 2011

Keywords:
C. moschata
Landraces
Total carotenoid
β-carotene
α-carotene
Z-isomers

A B S T R A C T

Landrace pumpkins occur in nature and their potential as source of pro-vitamin A may be investigated in order to be used in conventional plant breeding or biofortification programs, aiming to increase the total carotenoids and β-carotene contents. The objective of the study was to determine the total carotenoid, α-carotene, β-carotene and its isomers and contents in two landrace samples (A and B) of raw pumpkins (Cucurbita moschata) to verify its seed production potential. High Performance Liquid Chromatography and UV/Visible spectrophotometry were used to determine α-carotene, β-carotene and its isomers, and total carotenoid contents, respectively. All analyses were carried out in triplicate. The results showed mean total carotenoid contents of 404.98 in sample A, and 234.21 μg/g in sample B. The α-carotene contents varied from 67.06 to 72.99 μg/g in samples A and B, respectively. All E-β-carotene was the most abundant isomer found varying from 244.22 to 141.95 μg/g in samples A and B, respectively. The 9 and 13-Z-β-carotene isomers were still found in low concentrations in both analyzed landrace samples. The content of β-carotene in raw sample A showed to be promising for the production of seeds for cultivation and consumption.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The populations of underdeveloped and developing countries, such as Brazil, commonly suffer undernourishment and so-called hidden hunger, which can cause diseases from both caloric/protein and micronutrients deficiencies. Vitamin A deficiency constitutes a public health problem and affects mainly children and women. Interest in raw materials of vegetal origin that contain high levels of carotenoids with provitamin A activity, has increased substantially in recent years. Some cultivars of pumpkin (Cucurbita) staining intense yellow to orange have revealed high levels of carotenoids, mainly β and α-carotene (Arima & Rodriguez-Amaya, 1988; Azevedo-Meleiro & Rodriguez-Amaya, 2007; Nestel, Bouis, Meenakshi, & Pfeiffer, 2006).

In Brazil, there is a large variability in species of pumpkin for cultivation and consumption, mainly in the states of Sergipe, Maranhão, Pernambuco and Bahia, but all other Brazilian states cultivate and use it for human consumption. Its orange pulp may contain promising levels of carotenoids, especially β-carotene, essential micronutrients for human metabolism.

To minimize nutritional problems, especially those arising from vitamin A deficiency in children and women of needy areas in Brazil, Embrapa Coastal Tablelands, Aracaju, Embrapa research centers, in partnership with other universities, have started new projects to screen local pumpkin landraces to gain information about their carotenoid content for conventional breeding purposes.

The pumpkin (Cucurbita moschata Duch) of the Cucurbitaceae family is widely grown and consumed in many countries around the world (Juna, Leeb, Songc, & Kima, 2006). Some varieties such as C. moschata, C. maxima and C. pepo, with colors ranging from intense yellow to orange, have revealed high levels of carotenoids, mainly α and β-carotene, β-cryptoxanthina, lutein and zeaxanthin (Boiteux et al., 2007; Rodriguez-Amaya, Kimura, Godoy, & Amaya-Farfan, 2008).

With respect to the research and development of biofortified foods, Brazil is unique among countries. For example, Brazil is the only country where eight different crops are studied at the same time, namely, pumpkin, rice, sweet potatoes, beans, cowpeas, cassava, maize, and wheat (Nutti, 2011). Among the eight crops studied in Brazil's biofortification network, the pumpkin has increased in importance owing to its potentially high content of β-carotene, the...
precursor of vitamin A. This nutrient is a possible supplement to the diet of the populations in the areas of Brazil where vitamin A deficiency is a serious public health concern, mainly for children and women.

The objective of this preliminary study on pumpkin landraces was to determine the total amount of carotenoids, \(\alpha \)-carotene and \(\beta \)-carotene and its isomer content, in two samples (A and B) of raw pumpkins (C. moschata Duchesne).

2. Material and methods

2.1. Material

The pumpkin samples were cultivated at Embrapa Coastal Tablelands, Aracaju, Brazil. They were harvested 4 months after the planting (June 2009). Landraces A and B presented better agronomic performance, and five samples were selected and sent, by air, to the Laboratory of Food Technology, Universidade Federal do Rio de Janeiro and to Embrapa Food Technology, Rio de Janeiro, for analysis.

2.2. Sampling

Ten samples of raw pumpkin (five from A and five from B) were peeled, and each one was divided into four parts by two longitudinal cuts from one end to the opposite. Of these four sections, two sections (opposite from each other) were discarded, and the remaining two, in preparation for analysis, were fragmented and placed in a vertical ultraturrax model (T18 basic) to obtain a homogeneous mass (Rodriguez-Amaya & Kimura, 2004).

2.3. Instrumental analyses

The total amount of carotenoids was determined using a spectrophotometer (Specord 210, model Analytikjena), at 450 nm. Alpha and \(\beta \)-carotene and its isomers (E and Z) were analyzed with a high-performance liquid chromatography (Waters 2690 — Alliance Model, Milford, USA) UV/Visible photodiode array detector and scanned between 350 to 600 nm using Empower software. A C30 column (YCM Carotenoid S-3, 4.6 mm×250 mm reversed phase) was purchased from Waters. The mobile phase HPLC grade solvents were obtained from Waters. The mobile phase remained. Then, the extract was transferred through a funnel to a 50 mL volumetric flask containing 15 g of anhydrous sodium sulfate. The volume was made up by petroleum ether, and the samples were read at 450 nm. The total carotenoid content was calculated using the following formula:

$$ \text{Carotenoids content (ug/g)} = \frac{A \times V(\text{mL}) \times 10^4}{A_{1\text{cm}} \times P(\text{g})} $$

where \(A = \text{Absorbance} \); \(V = \text{Total extract volume} \); \(P = \text{Sample weight} \); \(A_{1\text{cm}} = 2592 \) (\(\beta \)-carotene Extinction Coefficient in petroleum ether).

2.5. Identification and quantification of \(\alpha \)-carotene, \(\beta \)-carotene and its isomers

The cis (Z) isomers were quantified because they present smaller pro-vitamin A activity (Bauernfeind, 1972; Clydesdale, Fleischman, & Franz, 1970; Ihl, Monslaves, & Bifani, 1998 in Dutta, Raychaudhuri, & Chaharaborty, 2005; Rodriguez-Amaya & Kimura, 2004) and may be present in the samples in significant proportions compared to the total carotenoid content.

To determine the total amount of carotenoids, \(\beta \)-carotene and its Z and E isomer content, approximately 15 g of the samples, plus 3 g of celite 454 (Tedla, Ohio, USA) were weighed in a mortar on a digital balance (Bel Engineering, model MA0434/05). For the carotenoid extraction, successive additions of 25 mL of acetone were made to obtain a paste, which was transferred into a sintered funnel (5 \(\mu \)m) coupled to a 250 mL Buchner flask and filtered under vacuum. This procedure was repeated three times or until the sample became colorless. The extract obtained was transferred to a 500 mL separatory funnel containing 40 mL of petroleum ether. The acetone was removed through the slow addition of ultrapure water (Milli-Q — Millipore) to prevent emulsion formation. The aqueous phase was discarded. This procedure was repeated four times until no residual solvent remained. Then, the extract was transferred through a funnel to a 50 mL volumetric flask containing 15 g of anhydrous sodium sulfate. The volume was made up by petroleum ether, and the samples were read at 450 nm. The total carotenoid content was calculated using the following formula:

$$ \text{Carotenoids content (ug/g)} = \frac{A \times V(\text{mL}) \times 10^4}{A_{1\text{cm}} \times P(\text{g})} $$

where \(A = \text{Absorbance} \); \(V = \text{Total extract volume} \); \(P = \text{Sample weight} \); \(A_{1\text{cm}} = 2592 \) (\(\beta \)-carotene Extinction Coefficient in petroleum ether).

2.6. Statistical analysis

Each sample of the two landraces (5 of sample A and 5 of sample B) was extracted in triplicate. All data was reported as the mean ± standard error of triplicate determinations, analyzed using one-way analysis of variance (ANOVA) with significant differences between means determined at \(p<0.05 \) and measured with Duncan’s multiple range tests using the Statistical Package for Social Science Research version 14 (SPSS).

Table 1

<table>
<thead>
<tr>
<th>Landrace samples</th>
<th>Total carotenoid*</th>
<th>All—E-(\beta)-carotene*</th>
<th>9-Z-(\beta)-carotene*</th>
<th>13-Z-(\beta)-carotene*</th>
<th>(\alpha)-carotene*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>404.98 a</td>
<td>244.22 a</td>
<td>2.34 a</td>
<td>3.67 a</td>
<td>67.06 a</td>
</tr>
<tr>
<td></td>
<td>± 17.37</td>
<td>± 9.63</td>
<td>± 0.35</td>
<td>± 0.32</td>
<td>± 0.33</td>
</tr>
<tr>
<td>B</td>
<td>234.21 b</td>
<td>141.95 b</td>
<td>0.97 b</td>
<td>1.84 b</td>
<td>72.99 b</td>
</tr>
<tr>
<td></td>
<td>± 1.01</td>
<td>± 0.39</td>
<td>± 0.14</td>
<td>± 0.14</td>
<td>± 0.11</td>
</tr>
</tbody>
</table>

* Standard Deviation, and * mean of triplicates of the five landrace pumpkins (A and B samples).

\(^a\)\(^b\) Variation in the letters between samples indicates significance difference at 5% level (\(p<0.05 \)) utilizing Duncan’s test.
3. Results and discussion

In Table 1, the total carotenoid content, α-carotene, β-carotene and the 9 and 13 Z-β-carotene isomers, from the analyzed pumpkin landraces can be observed.

The results showed a mean total carotenoid content of 404.98 μg/g in landrace sample A and 234.21 μg/g in landrace sample B. These values are similar to those found by Ramos et al. (2009) in the pumpkin (C. moschata), which ranged from 100.50 to 365.40 μg/g. This cultivar is commonly found in Northeastern Brazil. However, these pumpkins are also cultivated by Southern farmers (C. moschata) and have values of carotenoid content higher than the average reported by other authors (Ramos et al., 2009).

On the other hand, a previous study evaluating twenty-two cultivars of C. moschata reported a total carotenoid content ranging from 7.02 μg/g to 138.56 μg/g (Assis et al., 2010, as well as Azizah, Woe, Azizah, & Azizah, 2009).

The yellow pumpkin (C. maxima) showed total carotenoid content levels of 2120 μg/100 g and β-carotene 1180 μg/100 g in an evaluation study of these micronutrients in vegetables, spices and condiments (Kandikunta, Rajendran, & Thingnganing, 2008).

The α-carotene content varied from 67.06 to 72.99 μg/g in landrace samples A and B, respectively, superior results to those found in C. moschata pulp, cultivar Baianinha, peeled (47 μg/g) by Rodriguez-Amaya et al. (2008) and by Kurz, Carle, and Schieber (2008) in C. moschata grown in Germany (10.60 e 0.58 μg/g de α-carotene).

Total E-β-carotene content varied from 244.22 μg/g to 141.95 μg/g in samples A and B, respectively; E-β-carotene was the most abundant in both landrace samples.

Considering that E-β-carotene has 100% pro-vitamin A activity, these results are promising. Previous studies have reported levels of 235 μg/g of β-carotene in C. moschata pulp, cultivar Baianinha, peeled (Rodriguez-Amaya et al., 2008), 7 mg/100 g of β-carotene in C. moschata, cultivar Long Island Cheese and 3.5 mg/100 g of β-carotene in a cross between C. maxima × C. moschata (cultivar Buto Tetsuko) grown in Austria (Murkovic, Mulleder, & Neunteufl, 2005), Seo, Burri, Quan, and Neidlinger (2005) evaluated the carotenoid content of the pumpkin (C. moschata) and found that E-β-carotene was the most abundant isomer, followed by α-carotene.

As expected, low Z-β-carotene isomer content was observed. In the samples of C. moschata analyzed in this study, levels of 9-Z-β-carotene were 2.34 (sample A) and 0.97 μg/g (sample B), respectively. Similarly, levels of 13-Z-β-carotene were relatively negligible when compared to levels of α and β-carotene, ranging from 3.67 (sample A) to 1.84 μg/g (sample B).

The chromatograms of α-carotene, β-carotene and its 9 and 13-Z-isomers in the A and B samples of the landraces, respectively, can be observed in Figs. 1 and 2. Reduced levels of the isomers 9 and 13-Z-β-carotene ranged from 0.28 to 1.61, and 0.22 to 1.24 μg/g, respectively, were also found in yellow bitter cassava roots (Manihot esculenta) (Oliveira, Carvalho, Nutti, Carvalho, & Fukuda, 2010). In the presence of two isomers, 9...
and 13-Z-ß-carotene, low pro-vitamin A occurs in various matrices, but usually their levels are not very high, compared to the ß-isomer ß-carotene.

Studies reviewed by Rodriguez-Amaya, Nutti, and Carvalho (2011) indicate that the carotenoid compositions of sweet potato roots, cassava roots and corn kernels vary widely between varieties and crops. This preliminary study in Brazilian pumpkin landraces for the quantification and identification of their carotenoid composition can be considered as an important preliminary step towards the use of these landraces in conventional breeding of this crop. Raising the pro-vitamin A contents of the pumpkin may be a goal to pursue, especially by the Biofortification Project in Brazil, considering the loss of carotenoids during the processing and storage of the flour produced from staple foods, such as cassava and sweet potato, that has been reported and the influencing factors that have been pointed out (Chávez et al., 2007; Van Jaarsveld et al., 2000). The study and identification of the carotenoid content in pumpkin landraces are of importance not only to Brazil, but also to Venezuela, El Salvador, and Mexico, among other countries, in order to have a local source of foods with a high carotenoid content. Additionally, the possibility for the breeding of these foods should be investigated.

4. Conclusions

This study showed that sample A of landrace C. moschata contained a high content of α and ß-carotene and thus can be considered a promising source for the production of seeds for cultivation and consumption. However, additional studies with different pumpkin landraces are being conducted to determine which ones have high carotenoid content.

Acknowledgments

The authors would like to thank the Embrapa–Monsanto Research Fund, which financially supports the BioFORT project.

References

Web references
