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Abstract

Metabolomics analysis of wild type Arabidopsis thaliana plants, under control and drought stress conditions revealed
several metabolic pathways that are induced under water deficit. The metabolic response to drought stress is also
associated with ABA dependent and independent pathways, allowing a better understanding of the molecular mech-
anisms in this model plant. Through combining an in silico approach and gene expression analysis by quantitative
real-time PCR, the present work aims at identifying genes of soybean metabolic pathways potentially associated with
water deficit. Digital expression patterns of Arabidopsis genes, which were selected based on the basis of literature
reports, were evaluated under drought stress condition by Genevestigator. Genes that showed strong induction un-
der drought stress were selected and used as bait to identify orthologs in the soybean genome. This allowed us to se-
lect 354 genes of putative soybean orthologs of 79 Arabidopsis genes belonging to 38 distinct metabolic pathways.
The expression pattern of the selected genes was verified in the subtractive libraries available in the GENOSOJA
project. Subsequently, 13 genes from different metabolic pathways were selected for validation by qPCR experi-
ments. The expression of six genes was validated in plants undergoing drought stress in both pot-based and hydro-
ponic cultivation systems. The results suggest that the metabolic response to drought stress is conserved in
Arabidopsis and soybean plants.
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Introduction

Crop plants are often exposed to various biotic (vi-

ruses, bacteria and fungi) and abiotic stress factors (such as

water deficit and salinity) that may impair their growth, de-

velopment and ultimately affect productivity (Kang et al.,

2002; Mahajan and Tuteja, 2005). Damage caused by these

stresses represents a major concern for producers, consum-

ers and governments, especially in relation to crops of great

economic importance, such as wheat, corn and soybean,

whose losses may range between 78%-87% of maximum

yield under ideal conditions (Bray et al., 2000).

Soybean [Glycine max (L.) Merr.], the most impor-

tant legume grown worldwide, is an essential source of oil,

protein, macronutrients and minerals (Clemente and

Cahoon, 2009). Despite increased global demand, the cur-

rent losses in soybean production are estimated to be over

one fifth of the crop worldwide. Most of these losses are at-

tributed to abiotic factors, responsible for a decrease of

69% in comparison to the record yield capacity (Bray et al.,

2000). In Brazil, the occurrence of prolonged drought dur-

ing summer has become increasingly common in recent

years (Brando et al., 2010). In the state of Paraná, Brazil,

soybean yields have fallen due to drought resulting in a cu-

mulative decline of almost 11 million tons in total produc-

tion (Franchini et al., 2009). In 2008-2009, losses due to
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drought in the north and west of the state of Paraná, were

80% (Franchini et al., 2009). This situation may become

even more dramatic in light of current environmental pre-

dictions, which point to global warming and subsequent

occurrence of drought in water-stressed regions, which rep-

resent one-third of the world’s culturable land (Manavalan

et al., 2009).

In order to better cope with drought stress, plants pos-

sess a large repertoire of morphological, biochemical, phy-

siological and molecular adaptations and responses (Bray,

1993; Seki et al., 2003; Yamaguchi-Shinozaki and Shino-

zaki, 2006). Recent functional genomics studies using

combined strategies of transcriptomics, proteomics, and

metabolomics revealed a wide range of important genes in-

volved in the synthesis of metabolites in response to

drought, such as osmoprotectants, osmolytes, compatible

solutes, or signaling molecules (Shinozaki and Yama-

guchi-Shinozaki, 2007; Verbruggen and Hermans, 2008;

Urano et al., 2010).

The accumulation of osmolytes in plant cells results

in a decrease in osmotic potential, water absorption and cell

turgor pressure, which contribute to the maintenance of

physiological processes such as stomata opening, photo-

synthesis and plant growth (Hsiao, 1973; Shinozaki and

Yamaguchi-Shinozaki, 2000; Baxter et al., 2007). Solute

accumulation under stress is probably the most distinctive

feature of an adaptive response to stresses that involve a

component of water deficit, such as drought, freezing and

salinity (Hsiao, 1973; Thomashow, 1999; Zhu, 2002). A

specific physiological response to drought represents com-

binations of events that are activated and turned off by the

perception of stress. An understanding of how these events

interact is an important step towards the development of

crops with greater tolerance to drought.

Two experimental procedures are usually applied to

assess a gene expression profile during drought stress con-

ditions in soybean: the pot-based system (PSys) (Casa-

grande et al., 2001; Qin et al., 2007; Martins et al., 2008;

Tran et al., 2009) and the hydroponic system (HSys) (Mar-

tins et al., 2008; Kulcheski et al., 2010). Drought stress in

plants cultured in PSys is more similar to field conditions,

where the rate of water loss is slower, allowing acclimation

to the drought condition (Cowan, 1965). In the HSys, the

plants are placed in containers where a nutrient solution

composed of water and nutrients circulates, without the

presence of soil as a substrate. In this system, the simulation

of drought is carried out by removing the plants from the

nutrient medium, so water loss is more rapid, causing a

shock in the plant, and within minutes it is possible to ob-

serve the physical effects caused by the stress. HSys does

not allow plant acclimation (Munns et al., 2010).

In this work, we investigated several metabolic path-

ways potentially associated with water deficit in soybean

(G. max). For this purpose, we employed different strate-

gies, combining an in silico approach and gene expression

analysis by qPCR. The gene expression analysis was per-

formed with plants cultivated under HSys and PSys, which

allowed us to compare the effects and responses to differ-

ences in acclimation. The identification of such genes is the

first step to better understand the effects of water deficit on

the regulation of expression of metabolic pathway genes in

soybean. This knowledge should also be helpful in the iden-

tification of drought tolerant soybean cultivars and provide

better tools to develop water-stress tolerant crops.

Material and Methods

Plant material, growth conditions and treatments

The Glycine max L. Merrill cultivars BR 16 and Em-

brapa 48 have been shown to have contrasting responses to

water deficit; BR 16 is very sensitive to drought, and Em-

brapa 48 shows a high tolerance to this stress (Casagrande

et al., 2001; Texeira et al., 2008).

We used two different water deficit treatments, a

pot-based system (PSys) in which plant were grown in sand

and a hydroponics system (HSys) in which plants were

grown in a nutrient solution (Martins et al., 2008; Kul-

cheski et al., 2010).

Plants grown in the PSys were maintained in a green-

house at 30 °C � 5 °C temperature and 60% � 20% relative

humidity. The cultivars BR16 and Embrapa 48 were germi-

nated in washed sand where they remained for about 10

days. After this period, seedlings were transplanted to pots.

Seedlings at the V4 development stage (fourth trifoliate

fully expanded) (Fehr et al., 1971) were watered on a daily

basis in the control pots, whereas watering was suspended

in the pots of plants under drought stress. The water poten-

tial (�w) was measured daily (always between 05:00 and

06:00) after the second day of the interruption of watering.

The �w for each plant was measured by the Scholander-

type pressure chamber. Seven days after the interruption of

watering the �w was -1.5 � 0.2 MPa (moderate stress level)

and after ten days -3.0 � 0.2 MPa (severe stress level). The

roots with sand were removed from their pots and then im-

mediately and gently rinsed with water for 1 min, in order

to remove all the sand. To remove biological contaminants,

the roots were carefully immersed in 2% SDS solution for

1 min, and washed gently with ultrapure water for 1 min.

After this process, the root samples for one plant from each

treatment, in total, two plants (two biological replicates),

were immediately frozen in liquid nitrogen and stored at

-80 °C for RNA extraction.

For cultivation in the hydroponic system (HSys),

seeds were pre-germinated on moist filter paper in dark

conditions at 25 °C � 1 °C and 65% � 5% relative humidity.

Plantlets were then placed in polystyrene supports in such a

way that the roots of the seedlings were completely im-

mersed in the solution. Each tray containing seedlings was

maintained in a greenhouse at 25 °C � 2 °C and 60% � 5%
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relative humidity, under natural daylight (photosynthetic

photon flux density (PPFD) = 1.5 x 103
�moles m-2 s-1,

equivalent to 8.93 x 104 lux) and a 12 h day length. After

15 days, seedlings at V4 development stage were submitted

to different treatments in which they were removed from

the hydroponic solution and kept in a tray in the dark with-

out nutrient solution or water for 0 min (T0, or unstressed),

50 min (T50), 100 min (T100) and 150 min (T150). Two bi-

ological replicates of root samples from both cultivars were

collected at these time points and immediately frozen in liq-

uid nitrogen followed by storage at -80 °C for posterior

RNA extraction.

Total RNA isolation

Root samples from the PSys were processed for RNA

extraction using the Plant RNAeasy kit (Qiagen) following

the manufacturer’s instructions. The samples of dried roots

from hydroponic experiments were processed for RNA ex-

traction with Trizol® Reagent (Invitrogen). To remove any

DNA contamination, samples were treated with RNAse-

free DNAseI (BioLabs). RNA concentration and purity

were determined before and after DNAse I treatment using

a NanoDropTM spectrophotometer ND-1000 (Thermo Sci-

entific), and RNA integrity was verified by electrophoresis

in a 1% agarose gel.

Real-time quantitative polymerase chain reaction
(RT-qPCR)

Primers were designed using the Primer 3 plus soft-

ware (Untergasser et al., 2007) using as criteria the genera-

tion of amplicons ranging from 80 to 200 bp with a Tm of

60 °C � 1 °C (primer sequences are listed in Table S1). Both

candidate and housekeeping genes were amplified in a one

step protocol. As housekeeping genes, ACT11 (cytos-

keleton structural protein) and FBOX (F-Box protein fam-

ily) (Kulcheski et al., 2010) were used for normalization of

target gene expression. Melting curve and gel electrophore-

sis analysis of the amplification products confirmed that the

primers amplified only a single product of expected size

(data not shown).

PCRs were carried out in an optical 96-well plate with

a Realplex 4 Eppendorf Masterclycler® Ep gradient se-

quence detection system (Eppendorf) Power SYBR® Green

RNA-to-Ct TM 1-Step Kit (Applied Biosystems) was used

as recommended by the manufacturer. For each sample,

25 ng of RNA was used in the reaction mixture in a final

volume of 20 �L. Reaction mixtures were incubated for

30 min at 48 °C and 10 min at 95 °C, followed by 40 ampli-

fication cycles of 15 s at 95 °C, and 1 min at 60 °C. Primer

set efficiencies were estimated for each experimental set by

Miner software (Zhao and Fernald, 2005) and these values

were used in all subsequent analyses. Miner software was

used to determine the starting and ending points of the ex-

ponential phase of PCR from raw fluorescence data. It also

estimated primer set amplification efficiencies through a

nonlinear regression algorithm without the need for a stan-

dard curve. In addition, the values of the threshold cycle

(quantification cycle value – Cq) were converted by the

program QBASE v1.3.5 (Hellemans et al., 2007) into rela-

tive amounts normalized (NRQ). All references and sam-

ples for each experimental condition were evaluated in

technical triplicates.

Bioinformatic tools

Identification of metabolic pathway genes in soybean

Arabidopsis genes associated with response to

drought in different pathways were selected based on infor-

mation from the literature (Sanchez et al., 2008; Bundy et

al., 2009; Urano et al., 2009; Hey et al., 2010). Gene mod-

els for the metabolic pathway genes were obtained using

the tools AraCyc metabolic pathway from the TAIR (The

Arabidopsis Information Resource) and KEGG pathways

websites. The digital expression pattern of these genes un-

der drought conditions in Arabidopsis was evaluated by us-

ing the Genevestigator web tool (Hruz et al., 2008). Subse-

quently, the protein sequences of possible orthologs in

soybean were used to conduct Blastp searches in Phyto-

zome. All sequences with an e-value = 0, or, in the absence

of sequences with e-value = 0, the first five with e-value

lower than 10-30 were analyzed for their presence in sub-

tractive libraries available in the GENOSOJA LGE (Labo-

ratory of Genomic and Expression: Project GENOSOJA)

database (Rodrigues et al., 2012). These subtractive librar-

ies are composed of samples from leaves and roots in three

separate bulks with regard to the dehydration period: bulk 1

(T25-50 min); bulk 2 (T75-100 min) and bulk 3 (T125-

150 min), for both cultivars (Rodrigues et al., 2012). The

presence of a given gene in these libraries is indicative of

the induction of its expression during water deficit. The se-

lected genes represented in the libraries were also submit-

ted to a dendrogram analysis, as well as a validation of their

expression pattern through qPCR.

Generation of dendrograms

The protein sequences of A. thaliana were used to

search for all aligned genes in G. max and Oryza sativa (out

group) genomes, as well as in Arabidopsis. The alignment

of amino acid sequences was done using the ClustalW2

software (Larkin et al., 2007). The software MEGA v.4 was

used to construct dendrograms by means of the Neigh-

bor-Joining algorithm (Tamura et al., 2007), under a Pois-

son model, complete deletion, and bootstrapping with

1,000 replications (Sitnikova et al., 1995). G. max, O.

sativa and A. thaliana genes were selected considering

e-values smaller than 10-15 in the Phytozome and TAIR da-

tabases.

Promoter analysis

Sequences of 1,000 bp upstream to the start codon of

the genes of the soybean genome were obtained by using
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the genome browse tool in the Phytozome database. Cis-

regulatory elements related to drought stress, salinity stress

and ABA were identified in the database of Plant Cis pro-

gram-acting Regulatory DNA Elements –(PLACE) by a

keyword search (Higo et al., 1999). The POBO tool (Kan-

kainen and Holm, 2004) was used for comparison of motif

occurrences in promoters of putative orthologous genes by

using the whole genome of G. max as background informa-

tion.

Results

In silico identification and characterization of
soybean genes involved in different pathways in
response to dehydration

The metabolic pathways of Arabidopsis involved the

synthesis and degradation of metabolites during drought

stress were selected based on information from the litera-

ture (Sanchez et al., 2008; Bundy et al., 2009; Urano et al.,

2009; Hey et al., 2010). Each step of the metabolic path-

ways was investigated in the AraCyc metabolic pathway

(Zhang et al., 2005) and KEGG pathway tools (Zhang and

Wiemann, 2009). The digital expression profile for each

gene under water deficit was evaluated through clustering

analysis by the Genevestigator web tools (Hruz et al.,

2008). This procedure allowed us to select 80 genes from

Arabidopsis belonging to 39 different metabolic pathways

that are regulated during water deficit (Table S2). For sim-

plicity, this group was named “Arabidopsis Genes of the

Metabolic Pathways” (AGMPs). The diagram of the search

strategy employed is illustrated in Figure 1.

The 354 putative soybean orthologs of the 80

Arabidopsis genes were identified by Blastp searches on

the Phytozome website. The putative soybean ortholog

genes had their expression pattern evaluated by subtractive

library tools of the GENOSOJA LGE (Laboratory of Geno-

mic and Expression: Project GENOSOJA) (Rodrigues et

al., 2012). This step allowed us to check whether the ex-

pression of these genes is induced during drought stress.

The selection criteria were the presence of the gene in at

least two subtractive libraries related to drought stress. This

strategy allowed us to identify 13 putative soybean ortho-

log genes belonging to seven different metabolic pathways

(data not shown). We herein focus on the description of

three pathways: lysine degradation, putrescine biosynthesis

and stachyose biosynthesis.

In order to identify the best candidates in the soybean

genome for the AGMPs, we performed dendrogram analy-

ses. These included the genes GmaxLKR/SDH-like1,

GmaxLKR/SDH-like2 and GmaxADC2-like1 (Figure 3)

and also GmaxGOLS2-like1, GmaxGOLS2-like2, and

GmaxGOLS2-like3 (Figure 4). These genes are part of the

metabolic pathways of lysine degradation II, putrescine

biosynthesis I and stachyose biosynthesis, respectively (Fi-

gure 2). For those soybean genes where the neighbor-

joining analysis was not able to determine the closest

Arabidopsis ortholog, the selection of the soybean gene(s)

for posterior analysis was based on their expression fre-

quency in the drought induced subtractive library of the

GENOSOJA LGE database (Table S2). The putative soy-

bean orthologs of AGMPs were identified through Blastp

searches in the soybean genome on the Phytozome website,

followed by dendrogram analysis. For each AGMP, we

identified a putative ortholog in the G. max and O. sativa

genomes. The dendrogram analysis indicated that the
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Figure 1 - Strategy of ortholog gene search in soybean subjected to

drought stress.

Figure 2 - Schematic diagram of pathways for (A) Lysine degradation II,

(B) Putrescine biosynthesis I, and (C) Stachyose biosynthesis. Enzyme

names are in green letters and italics.



Arabidopsis genes AtLKR/SDH (At4g33150) and

AtGOLS2 (At1g56600) have two putative orthologs in the

soybean genome. For the gene GmaxLKR/SDH the putative

orthologs are Glyma13g17580 and Glyma17g0492, while

for the gene GmaxGOLS2 the putative orthologs are

Glyma20g22700, Glyma03g38080 and Glyma19g40680

(Figures 3A and 4). The dendrogram analysis of ADC2

pointed to Glyma04g00960 as being the closest gene to

AGMP. However, Glyma04g00960 was present only in a

single subtractive library whereas Glyma06g00990 was

represented in four. Therefore, Glyma06g00990 was also

selected to be validated by qPCR (Figure 3B).

RT-qPCR

Through in silico analysis we selected six genes for

validation by qPCR of root samples of the sensitive (BR16)

and tolerant (Embrapa 48) cultivars submitted to water def-

icit in PSys and HSys.

The genes GmaxLKR/SDH-like1 and

GmaxLKR/SDH-like2 showed higher expression in PSys

compared to HSys (Figure 5A, B). The expression profile

in the sensitive cultivars showed a gradual increase in all

conditions tested. Interestingly, the expression of

GmaxLKR/SDH-like1 and GmaxLKR/SDH-like2 in the tol-

erant cultivar was down-regulated in the PSys when ex-

posed to drought. In the HSys condition, these genes

showed a higher increase in expression at a later time

(T100 min and T150 min) in both cultivars.

The GmaxADC2-like1 gene showed similar expres-

sion dynamics for both cultivars in the two systems studied,

with a peak of relative expression under moderate stress in

PSys (�w -1.5 MPa) at 100 min (T100) in the HSys culture

condition. Furthermore, expression levels were signifi-

cantly higher in the HSys condition (Figure 5C).

The GmaxGOLS2-like1 gene presented a quite differ-

ent expression profile during drought stress in the two

tested systems when compared with the other two

GmaxGOLS2 soybean orthologs, GmaxGOLS2-like2 and

GmaxGOLS2-like3. It is worthy of note that the level of ex-

pression of GmaxGOLS2-like1 is eight times higher in the

tolerant cultivar at an early time point (T50 min) in HSys

compared to the non-stress sample, while the sensitive

cultivar showed a level of expression four times higher for

the same time point (T50 min) compared to the control

sample. In PSys, the tolerant cultivar showed a subtle in-

crease in the GmaxGOLS2-like1 expression level under

moderate stress (-1.5 MPa) compared to the control, while

the sensitive cultivar exhibited mild repression under the

same stress level (Figure 5D)

The GmaxGOLS2-like2 and GmaxGOLS2-like3

showed fairly similar gene expression profiles for both
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Figure 3 - Dendrogram using a gene model of drought responsive genes in

Arabidopsis thaliana, Oryza sativa and Glycine max based on the amino

acid sequences. (A) Dendrogram of LKH/SDH-like1 and LKH/SDH-like2,

and (B) of ADC2-like 1. The green solid arrows indicate the soybean can-

didates and the blue dotted arrows the respective Arabidopsis reference

genes. Bootstrap values (1,000 replications) are indicated at the base of

each branch.

Figure 4 - Dendrogram of the GOLS gene using a gene model based on

amino acid sequences for drought of responsive genes in Arabidopsis

thaliana, Oryza sativa and Glycine max,. The green solid arrow indicates

soybean candidates, while the blue dotted arrow point to Arabidopsis ref-

erence gene, and the black dot indicates another GmGOLS candidate gene.

Bootstrap values (1,000 replications) are indicated at the base of each

branch.



cultivars in the two systems studied. These genes reached

the highest level of relative expression under the most se-

vere stress (�w -3.0 MPa) in the PSys condition. Notwith-

standing, it is important to note that the expression level of

GmaxGOLS2-like2 was about ten times higher than that of

GmaxGOLS2-like3. In the HSys conditions, expression

levels were very low for both cultivars which indicates that

these genes are not regulated during water deficit stress in

this system (Figure 5E,F).

In addition to the gene expression studies we investi-

gated the presence of cis-regulatory elements in soybean

drought-response genes selected for in silico analysis. By

means of the Place tool, 17 candidate motifs related to

drought were identified (data not show) and the statistical

significance of their enrichment was assessed using the

POBO tool, which compares motif abundance in the given

promoter set relative to G. max background (BG) frequen-

cies. The analysis revealed that two ABA responsive bind-

ing elements, named AREBs, (ACGTG and ACGTGKC)

and one motif for the early response to dehydration, named

ERD (ACGT) are enriched in the promoter of the selected

genes when compared to the background genome. The

analysis in POBO also indicated that the ACGTG motif

was present in 54.5% of the promoters of all genes of inter-

est. The average number of promoters that presented this

motif was 2.55 compared to an average of 0.88 for all G.

max promoters (BG) (t-test; p > 0.0001). The ACGTGKC

motif was present in 54.5% of the promoters of all genes of

interest. The average number of promoters that showed this

motif in the selected gene set was 1.46 compared to an aver-

age of 0.13 for all G. max promoters (t-test; p > 0.0001).

The ACGT motif is the most representative one within the

set of target genes, being present in 81.8% of the promoters.

The average number of promoters harboring this motif was
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Figure 5 - Expression profile analyses of drought stress-related genes in pot-based (PSys) and hydroponic (HSys) cultivation conditions. A)

GmaxLKR/SDH-like1, B) GmaxLKR/SDH-like2, C) GmaxADC2-like1, D) GmaxGOLS2-like1, E) GmaxGOLS2-like2 and F) GmaxGOLS2-like3. The

PSys condition is represented by green solid bars and HSys by blue solid gray bars. The sensitive (BR16) and tolerant (Embrapa 48) cultivars are indicated

at the bottom of the bars. Relative expression levels of these genes are represented on the Y-axis, relation to the reference genes ACT and FBOX in both

cultivars and systems. The C, -1.5 and -3.0 represent control and the water potentials of soybean plants (�w) measured after the second day of the inter-

ruption of watering. Seven days after the interruption of watering the �w was -1.5 � 0.2 MPa (moderate stress level) and after ten days -3.0 � 0.2 MPa (se-

vere stress level). The T0 (control), T50 (50 min), T100 (100 min) and T150 (150 min) indicate the different times under drought stress which the soybean

seedlings were submitted after removed of the hydroponic solution.



5.96 compared to an average of 3.03 in the promoter re-

gions of the G. max genome (Table S3).

Discussion

Herein we identified several soybean genes that are

responsive to drought stress. These belong to different met-

abolic pathways based on previous information of the

model plant Arabidopsis (Taji et al., 2002; Sanchez et al.,

2008; Urano et al., 2009, 2010). We identified 354 putative

orthologs in the soybean genome within 39 metabolic path-

ways. We used the subtractive libraries performed on soy-

bean root tissues obtained from the GENOSOJA database

to direct us in the selection of the key genes. Through in

silico analysis, we selected six soybean genes from three

metabolic pathways for qPCR validation. The expression

was assayed in roots of plants under water deficit in two

ways: (i) PSys, in which the rate of water loss is slower, and

allows the plant to adapt to the unfavorable environmental

conditions, and (ii) HSys, in which the rate of water loss is

very rapid, not giving the plant time to adapt to the stress

conditions (Bray, 1993). Employing these alternative sys-

tems helped us to understand the control of gene expression

involved in drought-induced metabolism.

Drought in plants starts as a complex set of responses,

beginning with the perception of stress, which triggers a

cascade of molecular events that comprise various levels of

physiological, metabolic and developmental responses

(Mahajan and Tuteja, 2005). Previous studies indicate that

PSys and HSys physiological responses were observed at a

stress level of -3.0 MPa and T100 min, respectively (Mar-

tins et al., 2008). At this point, soybean plants begin a pro-

cess of wilting, where the rate of photosynthesis decreases,

leading to stomata closure and increased leaf temperature.

Our expression analysis allowed to characterize the two

systems, revealing a distinct perception of stress in the

plants kept under PSys and HSys in cultivars that are toler-

ant and sensitive to drought, respectively.

In previous studies carried out with different soybean

cultivars, the Embrapa 48 cultivar showed a reduced re-

sponse to the evaluated characteristics, such as lower rates

of reduction in germination rate, lower percentage of reduc-

tion in primary root length, and lower photosynthetic rate

under moderate and severe water deficit, compared to other

cultivars, including BR16 (Casagrande et al., 2001; Texeira

et al., 2008). Hence, the Embrapa 48 cultivar is considered

more tolerant to water deficit because it reacts more rapidly

to the adverse situation. In our analysis, GmaxGOLS2-like2

and GmaxGOLS2-like3, for instance, were expressed in

both cultivars in the Psys condition, but expression levels

were significantly higher in Embrapa 48 (Figure 5E,F).

Differences in the regulation of gene expression between

cultivars were also noted when the expression of

GmaxLKR/SDH-like1 and GmaxLKR/SDH-like-2 were

evaluated in the Psys condition. Both presented high ex-

pression levels under this control condition, which may in-

dicate that the Embrapa 48 cultivar presents naturally

higher levels of protective compounds and can better cope

with a water deficit. These conclusions do not apply to the

HSys experiment, where practically no differences were

observed between the cultivars. These results strongly sug-

gest that a water deficit in the sensitive and tolerant cultivar

activates distinct molecular switches depending on the cul-

tivation system.

The adaptive response to stress at cellular and molec-

ular levels involves the accumulation of osmolytes and pro-

teins related to stress tolerance (Kishor et al., 1995; Ki-

yosue et al., 1996; Zhu, 2002; Mahajan and Tuteja, 2005;

Fujita et al., 2006; Hummel et al., 2010; Ashraf et al.,

2011). In Arabidopsis, drought stress responses are per-

ceived by the biosynthetic genes BCAT2, LKR/SDH,

P5CS1 and ADC2 pertaining to the ABA-dependent path-

way, while the raffinose (RFO) and galactinol (GOLS2)

genes are not regulated by ABA during dehydration stress

(Taji et al., 2002; Sanchez et al., 2008; Hirayama and

Shinozaki, 2010). If the GOLS2 ABA independent re-

sponse is conserved in the three putative soybean homo-

logues, our results suggest that an ABA independent re-

sponse is activated in both systems tested (PSys and HSys).

Among the genes expected to participate in the

ABA-dependent pathway in soybean, GmaxLKR/SDH-

like1, GmaxLKR/SDH-like2 and GmaxADC2-like1

showed different expression dynamics during water depri-

vation. The putative paralogs GmaxLKR/SDH-like1 and

GmaxLKR/SDH-like2 displayed a quite similar expression

pattern (Figure 5A,B). Moreover, the gene GmaxADC2-

like1 showed higher levels of expression in the HSys condi-

tion (Figure 5C). On the other hand, genes belonging to the

ABA-independent pathway presented distinct patterns of

gene expression, such as those displayed by GmaxGOLS2-

like1, GmaxGOLS2-like2 and GmaxGOLS2-like3 (Figu-

re 5D-F)

Lysine is catabolized in plants from saccharopine to

glutamic acid and acetyl-CoA. Lysine catabolism is largely

regulated by two enzymes, lysine-ketoglutarate reductase

(LKR) and saccharopine dehydrogenase (SDH). These are

linked to each other by a single bi-functional protein en-

coded by a single LKR/SDH gene (Arruda et al., 2000;

Galili et al., 2001; Anderson et al., 2010) (Figure 2A). The

response of LKR/SDH gene expression to ABA as well as to

biotic and abiotic stresses (Moulin et al., 2000) implies that

the Lys catabolism pathway participates in a metabolic net-

works that helps plants withstand such stresses. A dendro-

gram analysis allowed us to identify the putative soybean

orthologs of LKR/SDH (Figure 3A). The analysis also sug-

gests that duplication events occurred in the soybean

LKR/SDH genes, generating the two genes found in the

soybean genome, GmaxLKR/SDH-like1 and

GmaxLKR/SDH-like2 (Figure 3A). This event has already

been described in other crop species, such as sugarcane,

coffee, cotton, maize and tobacco, and generated a large
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number of paralogous genes for LKR/SDH (Soltis and Sol-

tis, 1999; Schmutz et al., 2010). This is in accordance with

previous studies that indicated two major duplication

events in the soybean genome, resulting in a current confor-

mation with almost 75% of the genes represented in multi-

ple copies that were maintained over time (Schmutz et al.,

2010). In the gene expression analysis, the

GmaxLKR/SDH-like1 and GmaxLKR/SDH-like2 soybean

genes presented quite similar expression regulation indicat-

ing that the respective promoter regions may not have di-

verged among the duplicated genes. However, these genes

showed a rather distinct gene expression profile between

sensitive and tolerant cultivars in the Psys condition (Fig-

ure 5A, B).

Arginine decarboxylase (ADC) is a key plant enzyme

that converts arginine into putrescine, an important mediator

of abiotic stress tolerance (Figure 2B) (Peremarti et al.,

2010). The over-expression of ADC2 in transgenic

Arabidopsis showed that higher levels of putrescine in-

creased drought tolerance (Alcazar et al., 2006, 2010).

Dendrogram analysis allowed us to identify two paralogs,

GmaxADC2-like1 (Glyma06g00990) and GmaxADC2-like2

(Glyma04g0960) (Figure 3B). An analysis by qPCR was not

done for GmaxADC2-like2 because previous information

from subtractive library data did not indicate its expression

during water deficit. The GmaxADC2-like1 reached peak

expression at a water deficit of -1.5 MPa in the PSys and at

the T100 time point in the HSys condition in both cultivars.

Interestingly, unlike the GmaxLKR/SDH-like1 and

GmaxLKR/SDH-like2 genes, the expression levels of

GmaxADC2-like1 were lower in the PSys when compared to

the HSys condition (Figure 5C). This indicates that the regu-

lation of GmaxADC2-like1 expression may be early and

transient after the onset of a water deficit sensitivity.

The conversion of myo-inositol to galactinol or to

other raffinose series oligosaccharides (Figure 2C) under

abiotic stress was studied in Arabidopsis (Seki et al., 2002;

Taji et al., 2002; Shinozaki and Yamaguchi-Shinozaki,

2007; Urano et al., 2009,2010). Among the key genes of this

pathway, AtGOLS1 and AtGOLS2 are the best studied. Their

expression patterns are tightly regulated by drought stress

and the over-expression of AtGOLS2 in Arabidopsis in-

creases dehydration tolerance (Taji et al., 2002). The neigh-

bor joining analysis suggests that there are six genes in the

soybean genome related to AtGOLS1, AtGOLS2 and

AtGOLS3: GmGOLS (Glyma10g28610), GmaxGOLS2-

like1 (Glyma20g22700) GmaxGOLS2-like2

(Glyma19g40680), GmaxGOLS2-like3, GmaxGOLS2-like4

(Glyma03g33910) and GmaxGOLS2-like5

(Glyma19g41550) (Figure 4). The genes GmaxGOLS2-like4

and GmaxGOLS2-like5 were not selected for validation by

qPCR because they were absent in the subtractive libraries

(Table S2). Our analysis in HSys revealed that

GmaxGOLS2-like1 shows higher levels of gene expression

at earlier stages (T50 min) in the tolerant cultivar (Embrapa

48), while the sensitive cultivar (BR16) shows a slower re-

sponse to water deficit (Figure 5D). A similar expression

profile was also observed in PSys, but expression levels were

significantly lower when compared with HSys (Figure 5D).

In contrast, GmaxGOLS2-like2 and GmaxGOLS2-like3

were induced exclusively in the PSys condition (Figure 5E,

F). Moreover, the expression levels in the tolerant cultivars

were dramatically higher under severe stress (Figure 5E, F).

This result indicates that the expression of

GmaxGOLS2-like2 and GmaxGOLS2-like3 is not regulated

during the sudden water deficit promoted by the HSys treat-

ment, but may be fundamental during the slow adaptation to

drought in a PSys condition. The disparity observed in the

regulation of gene expression between GmaxGOLS2-like1

and the two paralogs GmaxGOLS2-like2 and

GmaxGOLS2-like3 fits with the well-accepted model ac-

cording to which changes in the transcriptional regulation of

duplicated genes play an important role for their fixation in

the genome (Carroll, 2000). The distinct regulation of ex-

pression of the GmaxGOLS2 genes may be important to soy-

bean plants to promote tight control of GOLS2 expression

under a multitude of environmental conditions.

The analysis of soybean gene promoters, using the

POBO tool, revealed a cluster composed of up-regulated

genes in PSys or HSys, where the frequency of the ACGT

(ERD1), ACGTG (ABRE) and ACGTGKC (ABRE) cis-el-

ements is higher. The high frequency of these cis-elements

suggests that they may function as important regulatory

players in genes that participate in different metabolic path-

ways during drought stress.

The results presented here indicate that several genes

of different metabolic pathways have their expression

tightly regulated by drought stress in soybean. Moreover,

the data show that the dynamics and the expression level

can change drastically depending on the drought stress sys-

tem and also among closely related orthologs. Our work has

shed light on the gene expression response of key genes in-

volved in soybean metabolism during drought stress. The

information provided here is important to better understand

the molecular mechanisms involved in water deficit toler-

ance in soybean and may contribute to the development of

soybean varieties that are more apt to cope with water

stress.
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Table S1 - Sequences and features of primers used in this study.

Gene model Forward primer sequence [5’3’] Reverse primer sequence [5’3’] Amplicon length (pb)

GmaxACT11 CGGTGGTTCTATCTTGGCATC GTCTTTCGCTTCAATAACCCTA 142

GmaxFBOX AGATAGGGAAATGGTGCAGGT CTAATGGCAATTGCAGCTCTC 93

GmaxLKR/SDH1 ATCCTGCCACCTACAAATGG ACGGAAAATGGTTGATGCTT 182

GmaxLKR/SDH 2 GGGGAATGGTGTGATATGCT ATTGGCTATGCAAGCTCTCC 166

GmaxADC2 CAGGAGTATGTCAGCCACGA CAGATCTTGAGCAGCAGGAA 144

GmaxGOLS2 like-1 CCTGAGAACGTTGAGCTTGA CCACCACTTCTTCACCAACA 132

GmaxGOLS2 Like-2 AGTCACCACTCCCACTTCGT CCCGTATATCTCCACGGTTT 192

GmaxGOLS2 Like-3 TTGCCATGGCTTATTACGTC TACCTCAATGTCTCCGTCCA 98



Metabolic 
Pathways

Arabidopsis 
thaliana 

Gene
Soybean Matches

L1_T25-
50min 
(BR16)

L2_T75-
100min 
(BR16)

L3_T125-
150 min 
(BR16)

L4-T25-
T50min 

(EMB48)

L5-T75-
T100min 
(EMB48)

L6-T125-
T150min 
(EMB48)

R1_T25-
T50min 
(BR16)

R2_T75-
T100min 
(BR16)

R3_T125-
T150 min 
(BR16)

R4_T25-
50min 

(EMB48)

R5_T75-
100min 

(EMB48)

R6T125-
150min 

(EMB48)

Glyma02g40840.1 No No No No No No No No No No No No
Glyma14g39170.1 No No No No No No No No No No No No
Glyma18g04940.1 Yes No No No No No No No No No Yes Yes

Glyma09g29900.1 No No No No No No No No No No No No
Glyma16g34450.1 No No No No No No No No No No No No
Glyma08g09670.1 Yes Yes Yes No No No No No No Yes Yes Yes
Glyma08g09660.1 No No No No No No No No No Yes No No

Glyma05g26660.1 Yes No Yes No No No No No No Yes Yes Yes
Glyma08g09650.1 Yes Yes Yes No No No No No No No No No
Glyma11g33280.1 No Yes Yes No No No No No No No No Yes
Glyma12g02510.2 No No No No No No No No No No No No
Glyma12g02510.1 No No No No No No No No No No No No
Glyma09g29900.1 No No No No No No No No No No No No
Glyma16g34450.1 No No No No No No No No No No No No
Glyma18g04940.1 Yes No No No No No No No No No Yes Yes
Glyma08g09660.1 No No No No No No No No No Yes No No
Glyma08g09670.1 Yes Yes Yes No No No No No No Yes Yes Yes
 Glyma15g41690.1 No No No No No No No No No No No No
 Glyma08g17450.1 No No No No No No No No No No No No
Glyma13g37080.1 No No No No No No No No No No No No
Glyma12g33350.1 No No No No No No No No No No No No
Glyma12g26170.1 No No No No No No No No No No No No
Glyma06g35630.1 No No No No No No No No No No No No
Glyma06g35580.1 No No No No No No No No No No No No
Glyma13g37080.1 No No No No No No No No No No No No
Glyma12g33350.1 No No No No No No No No No No No No
Glyma12g26170.1 No No No No No No No No No No No No
Glyma06g35630.1 No No No No No No No No No No No No
Glyma06g35580.1 No No No No No No No No No No No No
Glyma20g28720.5 No No No No No No No No No No No No
Glyma20g28720.4 No No No No No No No No No No No No
Glyma20g28720.3 No No No No No No No No No No No No
Glyma20g28720.1 No No No No No No No No No No No No
Glyma19g34120.1 No No No No No No No No No No No No

Methionine 
biosynthesis II 

At4g23590

At4g23600

At3g22740

Table S2 -  Prevalence of soybean matches regarding different metabolic pathways respon

Glutamate 
degradation IV 

At5g17330

At3g22200

At3g17720

At1g79440



Glyma03g38080.1 No No No No Yes Yes No No No No No No
Glyma03g38910.1 No No No No No No No No No No No No
Glyma19g40680.1 No No No Yes Yes Yes No No No No No No
Glyma19g41550.1 No No No No No No No No No No No No
Glyma20g22700.1 No No No No Yes Yes No No No Yes Yes Yes
Glyma03g29440.1 No No No Yes Yes Yes No No No No No Yes
Glyma14g01430.1 No No No No No No No No No No No No
Glyma02g47330.1 No No No Yes No No No No No No No No
Glyma17g11970.1 No Yes No No No No No No No No No No
Glyma17g11970.3 No Yes No No No No No No No No No No
Glyma17g11970.4 No No No No No No No No No No No No
Glyma13g22890.1 No No No No No No No No No No Yes No

Glyma04g36410.1 No No No No No No No No No No No No
Glyma14g01430.2 No Yes No No No No No No No No No No
Glyma17g11970.2 No Yes No No No No No No No No No No
Glyma09g01940.1 No No No No No No No No No No No No
Glyma11g07250.1 No No No No No No No No No No No No
Glyma05g08550.1 No No No No No No No No No No No No
Glyma01g38200.2 No No No No No No No No No No No No
Glyma01g38200.1 No No No No No No No No No No No No
Glyma11g07250.2 No No No No No No No No No No No No
Glyma11g07250.1 No No No No No No No No No No No No
Glyma02g06400.1 No No No No No No No No No No Yes No
Glyma01g38200.2 No No No No No No No No No No No No
Glyma01g38200.1 No No No No No No No No No No No No
Glyma05g08550.1 No No No No No No No No No No No No
Glyma17g10880.3 No No No No No No No No No No No No
Glyma17g10880.2 No No No No No No No No No No No No
Glyma17g10880.1 No No No No No No No No No No No No
Glyma06g34190.1 No No No No No No No No No No No No
Glyma05g01010.1 No No No No No No No No No No No No
Glyma17g10880.2 No No No No No No No No No No No No
Glyma12g19520.1 No No No No No No No No No No No No
Glyma11g04720.1 No No No No No No No No No No No No
Glyma07g30430.1 No No No No No No No No No No No No
Glyma06g34190.1 No No No No No No No No No No No No

At1g70820 Glyma20g02220.1 No No No No No Yes No No No No No No
Glyma18g46390.1 No No No No No No No No No No No No
Glyma09g39800.1 No No No No No No No No No No No No
Glyma15g12230.1 No No No No No No No No No No No No
Glyma09g01380.1 No No No No No No No No No No No No
Glyma07g39620.1 No No No No No No No No No No No No

TCA cycle 
variation III 
(eukaryotic)

At2g18450

At5g66760

At3g47520

At1g53240

Ascorbate 
biosynthesis I 
(L-galactose 

pathway)

At2g45790

At3g02870

At3g57520

Stachyose 
biosynthesis 

At1g56600 



Glyma11g10320.1 No Yes No No No Yes No No No Yes No Yes
Glyma12g02610.1 No No No No No No No No No No No No
Glyma04g02140.1 No No No No No No No No No No No No
Glyma06g02240.1 No No Yes No No No No No No No Yes No
Glyma14g39880.1 No No No No No No No No No No No No
Glyma17g38120.1 No No No No No No No No No No No No
Glyma14g39880.2 No No No No No No No No No No No No
Glyma14g39880.3 No No No No No No No No No No No No
Glyma12g31920.1 No No No No No No No No No No No No
Glyma06g46350.1 No No No No No No No No No No No No
Glyma17g01580.1 No No No No No No No No No No No No
Glyma12g10420.1 No No No No No No No No No No No No
Glyma07g39160.1 No No No No No No No No No No No No
Glyma17g21490.1 No No No No No No No No No No Yes No
Glyma01g38980.1 No No No No No No No No No No No No
Glyma11g06290.2 No No No No No No No No No No No No
Glyma11g06290.1 No No No No No No No No No No No No
Glyma11g06290.3 No No No No No No No No No No No No
Glyma17g21530.1 No No No No No No No No No No No No
Glyma11g10320.1 No Yes No No No Yes No No No Yes No Yes

Glyma04g02140.1 No No No No No No No No No No No No
Glyma14g39880.1 No No No No No No No No No No No No
Glyma17g38120.1 No No No No No No No No No No No No
Glyma14g39880.2 No No No No No No No No No No No No
Glyma12g02610.1 No No No No No No No No No No No No
Glyma14g39880.3 No No No No No No No No No No No No
Glyma06g46350.1 No No No No No No No No No No No No
Glyma12g31920.1 No No No No No No No No No No No No
Glyma17g01580.1 No No No No No No No No No No No No
Glyma12g10420.1 No No No No No No No No No No No No

Glyma12g07780.2 No No No No No No No No No No No No
Glyma12g07780.1 No No No No No No No No No No No No
Glyma12g07780.3 No No No No No No No No No No No No

Glyma11g33700.1 No No No No No No No No No No No No
Glyma18g04510.1 No No No No No No No No No No No No
Glyma11g33700.2 No No No No No No No No No No No No
Glyma20g38440.1 No No No No No No No No No No No No
Glyma10g43730.1 No No No No No No No No No No No No
Glyma17g01580.1 No No No No No No No No No No No No
Glyma07g39160.1 No No No No No No No No No No No No

Glyma17g38120.1 No No No No No No No No No No No No
Glyma14g39880.1 No No No No No No No No No No No No

Ascorbate 
glutathione

At4g38420

At5g66920

At1g21850

At1g07890

At5g16710



Glyma04g02140.1 No No No No No No No No No No No No
Glyma12g02610.1 No No No No No No No No No No No No
Glyma06g02240.1 No No Yes No No No No No No No Yes No
Glyma12g31920.1 No No No No No No No No No No No No
Glyma06g46350.1 No No No No No No No No No No No No
Glyma14g39880.2 No No No No No No No No No No No No
Glyma12g10420.1 No No No No No No No No No No No No
Glyma14g39880.3 No No No No No No No No No No No No
Glyma07g39160.2 No No No No No No No No No No No No
Glyma01g38980.1 No No No No No No No No No No No No
Glyma11g06290.2 No No No No No No No No No No No No
Glyma11g06290.1 No No No No No No No No No No No No
Glyma11g06290.3 No No No No No No No No No No No No
Glyma17g21490.1 No No No No No No No No No No Yes No
Glyma04g02140.1 No No No No No No No No No No No No
Glyma06g02240.1 No No Yes No No No No No No No Yes No
Glyma17g38120.1 No No No No No No No No No No No No
Glyma14g39880.1 No No No No No No No No No No No No
Glyma14g39880.2 No No No No No No No No No No No No
Glyma12g02610.1 No No No No No No No No No No No No
Glyma14g39880.3 No No No No No No No No No No No No
Glyma06g46350.1 No No No No No No No No No No No No
Glyma12g31920.1 No No No No No No No No No No No No
Glyma12g10420.1 No No No No No No No No No No No No
Glyma17g01580.1 No No No No No No No No No No No No
Glyma07g39160.1 No No No No No No No No No No No No
Glyma06g46350.2 No No No No No No No No No No No No
Glyma01g38980.1 No No No No No No No No No No No No
Glyma17g21490.1 No No No No No No No No No No Yes No
Glyma11g06290.2 No No No No No No No No No No No No
Glyma11g06290.1 No No No No No No No No No No No No
Glyma11g06290.3 No No No No No No No No No No No No
Glyma07g39160.2 No No No No No No No No No No No No
Glyma11g36390.1 No No No No No No No No No No No No
Glyma12g10420.1 No No No No No No No No No No No No
Glyma06g46350.1 No No No No No No No No No No No No
Glyma04g02140.1 No No No No No No No No No No No No
Glyma06g02240.1 No No Yes No No No No No No No Yes No
Glyma10g07820.1 No No No No No No No No No No No No

Glyma0169s00210.1 No No No No No Yes No No No Yes Yes Yes
Glyma16g07970.1 No No No No No No No No No No No No
Glyma19g14500.1 No No No No No No No No No No No No
Glyma08g02100.1 No No No No No No No No No No No No

glutathione 
cycle 

At4g22010

At1g76160

At1g75790

At5g03630



Glyma10g07820.1 No No No No No No No No No No No No
Glyma0169s00210.1 No No No No No Yes No No No Yes Yes Yes
Glyma16g07970.1 No No No No No No No No No No No No
Glyma19g14500.1 No No No No No No No No No No No No
Glyma08g02100.1 No No No No No No No No No No No No
Glyma18g03840.1 No No No No No No No No No No No No
Glyma11g34550.1 No No No No No No No No No Yes No No
Glyma14g07150.1 No No No No No No No No No No No No
Glyma02g41820.1 No No No No No No No No No Yes Yes Yes
Glyma04g01170.3 No No No No No No No No No No No No
Glyma04g01170.1 No No No No No No No No No No No No
Glyma06g01210.1 No No No No No No No No No No No No
Glyma04g01170.2 No No No No No No No No No No No No
Glyma02g37160.1 No No No No No No No No No No No No
Glyma14g35440.1 No No No No No No No No No No No No
Glyma11g08320.1 No No No No No No No No No No No No
Glyma12g03610.1 No No No No No No No No No No No No
Glyma11g11460.1 No No No No No No No No No No No No
Glyma03g28410.2 No No No No No No Yes No No No No No
Glyma03g28410.1 No No No No No No No No No No No No
Glyma19g31120.2 No No No No No No Yes No No No No No
Glyma19g31120.1 No No No No No No Yes No No No No No
Glyma14g32500.1 No Yes Yes No No No No No No No No Yes
Glyma06g13280.1 Yes No No No No No No No No No No No
Glyma06g13280.2 No No No No No No No No No No No No
Glyma04g41540.1 No No No Yes No No No No No No Yes No
Glyma19g16450.1 No No No No No No No No No No Yes Yes
Glyma06g13280.2 No No No No No No No No No No No No
Glyma04g41540.1 No No No Yes No No No No No No Yes No
Glyma14g32500.1 No Yes Yes No No No No No No No No Yes
Glyma19g16450.1 No No No No No No No No No No Yes Yes
Glyma06g13280.1 Yes No No No No No No No No No No No
Glyma03g28410.2 No No No No No No Yes No No No No No
Glyma03g28410.1 No No No No No No No No No No No No
Glyma19g31120.2 No No No No No No Yes No No No No No
Glyma19g31120.1 No No No No No No Yes No No No No No

Glyma03g28410.1 No No No No No No No No No No No No
Glyma03g28410.2 No No No No No No Yes No No No No No
Glyma19g31120.2 No No No No No No Yes No No No No No

Glyma19g31120.1 No No No No No No Yes No No No No No
Glyma06g13280.1 Yes No No No No No No No No No No No
Glyma06g13280.2 No No No No No No No No No No No No
Glyma04g41540.1 No No No Yes No No No No No No Yes No

Glyma01g41310.1 No No No No No No No No No No No No

Glutamate 
biosynthesis IV 

, ammonia 
assimilation 

cycle II 

At5g04140

At2g41220 

At5g53460

At2g41220

Ascorbate 
biosynthesis I 
(L-galactose 

pathway) 

At2g39770

At4g30570

At4g39120

Ascorbate and 
aldarate 

metabolism

At4g09010

At4g35970    



Glyma05g05460.1 No No No No No No No No No No No No
Glyma17g15740.1 No No No No No No No No No No No No
Glyma16g04560.3 No No No No No No No No No No No No
Glyma16g04560.1 No No No No No No No No No No No No
Glyma16g04560.2 No No No No No No No No No No No No
Glyma19g28770.1 No No No No No No No No No No No No
Glyma19g28770.2 No No No No No No No No No No No No
Glyma16g26940.1 No Yes Yes No No No No No No No Yes Yes

Glyma02g07940.1 No Yes No No No No No No No Yes Yes Yes

At1g15110 Glyma10g41430.1 No No No No No No No No No No Yes No

At2g26830 Glyma04g18940.1
No No No No No No No No No No No No

Glyma09g29840.1 No No No Yes Yes Yes No No No Yes Yes Yes
Glyma16g34360.1 No No No No Yes Yes No No No No No Yes
Glyma20g36590.2 No No No No No No No No No No No No
Glyma20g36590.1 No No No No No No No No No No No No
Glyma10g30880.3 No No No No No No No No No No No No

Glyma10g30880.2 No Yes No No No No No No No No No No
Glyma10g30880.1 No Yes No No No No No No No No No No
Glyma03g41120.1 No No No No No No No No No No Yes No
Glyma06g05280.4 No No No No No No No No No No No No
Glyma06g05280.1 No No No No No No No No No No No No
Glyma04g05190.3 No No No No No No No No No No No No
Glyma04g05190.1 No No No No No No No No No No No No
Glyma12g30660.1 No No No No No No No No No No No No
Glyma17g05290.1 No No No No No Yes No No No Yes No No
Glyma11g19430.1 No No No No No No No No No No No No
Glyma12g09050.1 No No No No No No No No No No No No
Glyma17g01610.1 No No No No No No No No No No No No
Glyma10g40140.1 No No No No No No No No No No No No
Glyma07g13320.1 No No No No No No No No No No No No
Glyma11g03070.1 No No No No No No No No No Yes No No

At5g53970 Glyma06g35580.1 No No No No No No No No No No No No
Glyma01g42290.1 No No No No No No No No No No No No
Glyma06g08670.1 No No No No No No No No No No No No
Glyma04g08560.1 No No No No No No No No No No No No
Glyma20g31970.1 No No No No No No No No No No No No
Glyma10g35580.1 No No No No No No No No No No No No
Glyma18g03270.1 No No No No No No No No No No No No
Glyma20g23680.1 No No Yes No No No No No No No No No
Glyma18g03260.1 No No No No No No No No No No No No
Glyma14g05810.1 No No No No No No No No No No No No
Glyma02g42680.1 No No No No No No No No No No No No

Phenylalanine 
biosynthesis II 

At5g22630 

Phenylalanine 
degradation III 

At1g62960

At5g11520

 Tryptophan 
biosynthesis

At2g28880

At3g55870

Phosphatidyleth
anolamine 

biosynthesis I, 
II

Starch 
degradation 

At3g23920

Glycine 
biosynthesis 

At1g08630

Valine 
biosynthesis 

At1g10070

Glutamate 
degradation I 

At5g07440



Glyma14g05810.4 No No No No No No No No No No No No
Glyma14g05810.2 No No No No No No No No No No No No
Glyma14g05810.3 No No No No No No No No No No No No

At2g34850 Glyma05g30410.1 No No No No No No No No No No No No
Glyma09g03490.1 No Yes No No No No No No No No No No
Glyma09g03490.3 No No No No No No No No No No No No
Glyma08g13540.1 No No No No No No No No No No No No
Glyma09g03490.2 No Yes No No No No No No No No No No
Glyma05g30410.1 No No No No No No No No No No No No
Glyma08g13540.1 No No No No No No No No No No No No
Glyma09g03490.1 No Yes No No No No No No No No No No
Glyma09g03490.3 No No No No No No No No No No No No
Glyma09g03490.2 No Yes No No No No No No No No No No
Glyma13g28180.4 No No No No No No No No No No No No
Glyma13g28180.1 No No No No No No No No No No No No
Glyma13g28180.2 No No No No No No No No No No No No
Glyma13g28180.3 No No No No No No No No No No No No
Glyma15g10890.3 No No No No No No No No No No No No
Glyma15g10890.2 No No No No No No No No No No No No
Glyma15g10890.1 No No No No No No No No No No No No

At3g17820 Glyma09g30370.1 No No No No No No No No No No No No
 Glyma16g27220.2 No No No No No No No No No No No No
 Glyma16g27220.1 No No Yes No No No No No No No No No
 Glyma16g27220.2 No No No No No No No No No No No No
 Glyma16g27220.1 No No Yes No No No No No No No No No
Glyma15g13910.1 No No No No No No No No No No No No
 Glyma09g02960.1 No No No No No No No No No No No No
 Glyma08g08630.1 No No No No No No No No No No No No
Glyma19g36070.1 No No No No No No No No No No No No
Glyma03g33360.1 No No No No No No No No No No No No
Glyma17g14040.1 No No No No No No No No No No No No
Glyma03g03270.1 No No No No No No No No No No No No
Glyma01g33750.1 No No No No No No No No No No No No
Glyma01g33640.1 No No No No No No No No No No No No
Glyma17g14040.1 No No No No No No No No No No No No
Glyma03g03270.1 No No No No No No No No No No No No
Glyma01g33750.1 No No No No No No No No No No No No
Glyma01g33640.1 No No No No No No No No No No No No
Glyma06g00990.1 No No No No No Yes No No No Yes Yes Yes
Glyma04g00960.1 No No No No No No No No No No Yes No
Glyma18g51400.1 No No No No No No No No No No No No
Glyma13g07110.1 No No No No No No No No No No Yes No
Glyma08g28460.1 No No No No No No No No No No No No
Glyma19g05570.1 No No No No No No No No No Yes Yes Yes

Putrescine 
biosynthesis I, 

II,IV

At4g08870

At4g08900

At4g34710

Proline 
degradation II

At5g38710/A
t3g30775

UDP-L-
arabinose 

biosynthesis I 
(from UDP-

xylose)

At4g20460

At1g30620

 Glutamine 
biosynthesis I 

At5g35630

Histidine 
biosynthesis

At5g10330

At1g71920

At5g63890

At1g09795

At5g48220



Glyma19g05580.1 No No No No No No No No No Yes No No
Glyma05g27360.1 No No No No No No No No No No No No
Glyma08g10340.1 No No No No No No No No No No No No
Glyma05g27360.2 No No No No No No No No No No No No
Glyma01g03340.1 No No No No No No No No No No No No
Glyma02g04270.1 No No No No No No No No No No No No
Glyma04g36040.1 No No No No No No No No No No No No
Glyma06g18880.1 No No No No No No No No No No No No
Glyma17g09400.1 No No No No No No No No No No No No
Glyma14g04610.1 No No No No No No No No No Yes No No
Glyma20g10240.1 No No No No No No No No No No No No
Glyma02g44170.1 No No No No Yes No No No No No No No
Glyma02g44160.1 No No No No No No No No No No No No
Glyma20g10240.2 No No No No No No No No No No No No
Glyma02g12870.1 No No No No No No No No No No No Yes
Glyma01g06970.1 No No No No No No No No No No No No
Glyma08g26520.1 Yes Yes Yes No No No No No No Yes Yes Yes
Glyma18g50000.1 Yes Yes Yes Yes Yes Yes No No No Yes Yes Yes
Glyma19g03500.1 No No Yes No No No No No No Yes Yes No
Glyma13g06050.1 No No Yes No No No No No No Yes No No
Glyma05g00590.1 No No No No No No No No No No No No

At5g57655 Glyma17g07380.1 No No No No No No No No No No No No
Glyma04g09340.1 No No No No No No No No No No No No
Glyma06g09490.1 No No No No No No No No No No No No
Glyma17g04920.1 No No No Yes No Yes No No No Yes Yes No
Glyma13g17580.1 No No No Yes No Yes No No No No No No

Chorismate 
biosynthesis

At2g21940 Glyma08g14980.1 No No No No No No No No No No No No
Glyma15g12100.1 No No No No No No No No No No No No
Glyma09g01270.1 No No No No No No No No No No No No

At1g06570 Glyma14g03410.1 No No No No No No No No No No No No
Glyma12g20220.1 No No No No No No No No No No No No
Glyma06g34940.1 No No No No No No No No No No No No
Glyma18g10270.1 No No No Yes Yes Yes No No No No No Yes
Glyma18g10260.1 No No No No No No No No No No No No
Glyma12g02240.1   No No No No No No No No No No No No
Glyma12g02250.1 No No No No No No No No No No No No
Glyma12g02230.1 No No No No No No No No No No No No

 Glucosinolate 
biosynthesis 

from tryptophan
 At5g57220 Glyma16g26520.1

No No No No No No No No No No No No
Glyma04g39190.1 No No No No No No No No No No No No

At5g19440

Galactose

 phenylethanol 
biosynthesis

 Xylose 
degradation I

ysine degradation 

At1g12050

At5g49650

At4g33150

Tyrosine 
degradation I

At5g54080

Proline 
biosynthesis II 
(from arginine)

At5g46180

 IAA 
biosynthesis I

At1g70560

Galactose 
degradation III

At1g22430

At1g26570



Glyma06g12780.1 No No No No No No No No No No No No
Glyma04g41990.1 No No No No No No No No No No No No
Glyma02g14180.1 Yes No No No No No No No No No No No
Glyma02g14180.2 Yes No No No No No No No No No No No
Glyma01g10080.1 No No No No No No No No No No No No
Glyma17g13150.1 No No No No No No No No No No No No
Glyma05g07870.1 No No No No No No No No No No No No
Glyma13g06340.1 No No No No No No No No No No No No
Glyma16g04560.3 No No No No No No No No No No No No
Glyma16g04560.1 No No No No No No No No No No No No
Glyma16g04560.2 No No No No No No No No No No No No
Glyma19g28770.1 No No No No No No No No No No No No
Glyma19g28770.2 No No No No No No No No No No No No
Glyma16g26940.1 No Yes Yes No No No No No No No Yes Yes
Glyma02g07940.1 No Yes No No No No No No No Yes Yes Yes
Glyma05g05460.1 No No No No No No No No No No No No
Glyma17g15740.1 No No No No No No No No No No No No
Glyma01g41310.1 No No No No No No No No No No No No
Glyma11g36390.1 No No No No No No No No No No No No
 Glyma07g35180.1 No No No No No No No No No No No No
 Glyma20g03030.1 No No No No No No No No No No No No
 Glyma07g35170.1 No No No No No No No No No No No No

Glyma12g08720.1 No No No No No No No No No No Yes No

Glyma02g14210.1 No No No No No No No No No No Yes No

Glyma05g04940.1 No No No No No No No No No No Yes No

Glyma11g03800.1 No No No Yes Yes Yes No No No Yes No Yes

Glyma01g41600.1 No No No No No Yes No No No No No No

Glyma17g15320.1 No No No No No No No No No No No No

Glyma14g14990.1 No No No No No No No No No No No No

Genes present in the subtractive libraries are represented by “Yes” and absent genes are represented by “No”.  
nt times. Sensitive (BR16) and tolerant (Embrapa48) cultivars are indicated in relation to the different times and tissues evaluated.

Jasmonic acid 
biosynthesis 

At4g16760

Choline 
biosynthesis III 

At3g25585

At5g34930
Tyrosine 

biosynthesis II

Glutamate 
degradation I

At5g18170

 Ascorbate 
glutathione 

cycle
At1g55570

Galactose 
degradation III

At1g77120

Spermidine 
biosynthesis  
and spermine 
biosyntesis

At5g15950



Table S3 -  Results obtained after transcription factor binding site verification performed with POBO tool.

All analyzed promoter sequences presented 1,000 bp and POBO was run with the following parameters: number pseudoclusters 50
and length of the background promoter 1,000 bp, bootstrap 1,000. The symbol K was used in addition to A or T. Calculated t-test
using the linked on line GrapPad web site: ttp://www.graphpad.com/quickcalcs/DistMenu.cfm; p < 0.0001.

Motif Data set
Number of promoters

in each dataset
Number of promoters
containing the pattern

Total number of
patterns in each dataset

Promoter mean

ACGT BG 77222 55801       ( 72.3%) 233388 3.03
Cluster 1 11 9             (81.8%) 66 5.96

ACGTGKC BG 77222 8532       (11.0%) 10189 0.13
Cluster 1 11 6             (54.5%) 16 1.46

ACGTG BG 77222 37257     (48.2%) 68328 0.88
Cluster 1 11 6            (54.5%) 28 2.55


