FUNGOS MICORRIZICOS ARBUSCULARES OCORRENTES NA RIZOSFERA DE ESPÉCIES DOS GÊNEROS *Prosopis* E *Acacia* NA REGIÃO SEMI-ÁRIDA BRASILEIRA

Adriana Mayumi Yano de Melo¹
Leonor Costa Maia²
Orivaldo José Saggin Júnior³

Atualmente, a utilização de espécies arbóreas para reflorestamento vem merecendo destaque, visto que constitui uma forma de minimizar as alterações decorrentes do desmatamento e do extrativismo intensivo sobre ecossistemas naturais, tais como a caatinga, no Nordeste brasileiro. A formação de simbiose com fungos micorrizicos arbusculares (FMAs) é uma estratégia das espécies vegetais que auxilia em sua nutrição e adaptação a ambientes estressantes. Desta forma, a produção de mudas micorrizadas poderá auxiliar no incremento do crescimento e no estabelecimento das espécies florestais na região semi-árida brasileira. Sendo assim, torna-se importante uma avaliação da ocorrência natural dos FMAs presentes em solos de caatinga.

O objetivo deste trabalho foi coletar, identificar e registrar as espécies de fungos micorrizicos arbusculares que ocorrem na rizosfera de espécies de *Prosopis* e *Acacia* plantadas em solos de caatinga na região do semi-árido nordestino brasileiro.

Amostras de solo e de raízes das espécies de *Acacia* e *Prosopis* foram coletadas no Campo Experimental da Caatinga em Petrolina-PE, pertencente ao Centro de Pesquisa Agropecuária do Trópico Semi-Árido (CPATSA), da EMBRAPA. Estas amostras foram coletadas com o auxílio de um trado até a profundidade de 20cm, para análise das características químicas e

¹ Bolsista CNPq-DCR. EMBRAPA-CPATSA. Cx. Postal 23, 56300-000, Petrolina-PE;
² Prof. Adjunto IV. Depto. Micologia. CCB. UFPE. 50670-710, Recife-PE;
³ Pesquisador em Microbiologia do Solo. EMBRAPA-CPATSA. Petrolina-PE.
biológicas. Para a identificação das espécies de FMAs, parte do material coletado foi colocado em vasos plásticos, com capacidade para três litros, e cultivado com sorgo (Sorghum bicolor) por um período de três meses e meio. Esse procedimento visa a obtenção de maior esporulação dos FMAs no material coletado, como, também, melhor qualidade dos esporos, objetivando a identificação das espécies bem como a separação destas para multiplicação e posterior utilização em experimentos. A identificação das espécies de FMAs foi feita a partir da extração dos esporos contidos nos vasos de multiplicação por peneiramento úmido e centrífugação e sacarose 40% (Gerdemann & Nicolson, 1963), sendo utilizado, basicamente, como referência taxonômica o trabalho de Schenck & Pérez (1990). Com a outra parte do material coletado fez-se a extração dos esporos (Gerdemann & Nicolson, 1963). Aliquotas extraídas contendo esporos de cada uma das amostras foram colocadas em placa canaletada, sendo o número de esporos contado com o auxilio de um estereomicroscópio. As análises químicas dos solos coletados foram feitas no Laboratório de Solos da EMBRAPA-CPATSA.

Os resultados das análises químicas dos solos amostrados demonstram, de maneira geral, que estes são levemente ácidos, com o pH variando entre 5,3 e 6,1, favorecendo a ocorrência de FMAs que estão adaptados a esses valores. Os resultados parciais indicam, até o momento, a presença das seguintes espécies de FMAs: Acaulospora sp., pendicula, A. scrobiculata, A. scrobiculata, A. tuberculata, Glomus constrictum, Gl. occultum, Gl. macrocarpum e Glomus sp. Dentre estas espécies, destaca-se a grande ocorrência de A . sp., pendicula, tanto em número de esporos como em frequência na rizosfera das diferentes espécies de Acacia e Prosopis. O número de esporos de FMAs na rizosfera das espécies do gênero Prosopis e Acacia variou de 18, em A. radiana, a 117 em P. flexuosa (Tabela 1).

Pelos resultados preliminares, observa-se que, embora os solos de caatinga tenham um grande déficit hídrico devido ao escasso regime de chuvas da região, há uma considerável diversidade de espécies de FMAs. Até o momento, não se pode afirmar qual a influência que estes FMAs têm na adaptação de algumas das espécies exóticas estudadas. Isso poderá ser evidenciado posteriormente através da inoculação de FMAs ocorrentes na área e de estudos envolvendo relações entre parâmetros químicos do solo e fisiológicos das plantas.
Tabela 1. Número de esporos de fungos micorrízicos arbusculares na rizosfera de espécies dos gêneros *Prospis* e *Acacia*, em áreas de caatinga do semi-órido pemambucano.

<table>
<thead>
<tr>
<th>ESPÉCIES</th>
<th>ORIGEM</th>
<th>DENSIDADE DE ESPOROS (nº/100g de solo)</th>
<th>ESPÉCIES IDENTIFICADAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia aneaura</td>
<td>Austrália</td>
<td>60</td>
<td>*</td>
</tr>
<tr>
<td>Acacia nilotica</td>
<td>Sudão</td>
<td>75</td>
<td>*</td>
</tr>
<tr>
<td>Acacia raddiana</td>
<td>Senegal</td>
<td>18</td>
<td>*</td>
</tr>
<tr>
<td>Acacia senegal</td>
<td>Senegal</td>
<td>34</td>
<td>A. appendiculata, A. tuberculata, Glomus sp.</td>
</tr>
<tr>
<td>Prosopis cineraria</td>
<td>Paquistão</td>
<td>55</td>
<td>A. appendiculata, A. scrobiculata, A. tuberculata, Glomus macrocarpus, Glomus occultum</td>
</tr>
<tr>
<td>Prosopis flexuosa</td>
<td>Argentina</td>
<td>117</td>
<td>*</td>
</tr>
<tr>
<td>Prosopis juliflora</td>
<td>Brasil</td>
<td>71</td>
<td>*</td>
</tr>
<tr>
<td>Prosopis juliflora</td>
<td>Honduras</td>
<td>49</td>
<td>*</td>
</tr>
<tr>
<td>Prosopis juliflora</td>
<td>México</td>
<td>32</td>
<td>A. appendiculata, A. tuberculata</td>
</tr>
<tr>
<td>Prosopis juliflora</td>
<td>Senegal</td>
<td>61</td>
<td>A. appendiculata, Glomus constrictum, Glomus occultum</td>
</tr>
<tr>
<td>Prosopis pallida</td>
<td>(Ica) Peru</td>
<td>52</td>
<td>*</td>
</tr>
</tbody>
</table>

*avaliação em andamento.

REFERÊNCIAS BIBLIOGRÁFICAS

Revisão Editorial: Eduardo Assis Menezes
Composição: Nivaldo Torres dos Santos
Normalização bibliográfica: Edineide Maria Machado Maia
Impressão: 500 exemplares