"Integrated Protection and Production in Viticulture"

2nd – 5th October 2011
Lacanau, France
Acknowledgements

The meeting is generously supported by:
Prediction of population dynamics of the grape berry moth *Eupoecilia ambiguella* and the grapevine moth *Lobesia botrana* using the simulation model “Twickler” .. 21

Astrid Baumann, Petra Höng, Peter Schwappach, Kai Schmidt

Brazilian ground pearl Euphractus brasiliensis: bioecology and management in vineyards 22

Marcos Botton, Alina Nondillo, Odair Bueno e Vanja Sganzerla

Can European Grapevine Moth, *Lobesia botrana* (Lepidoptera: Tortricidae) be eradicated from California? .. 23

Lucia G. Varela, Monica L. Cooper, Rhonda J Smith

South American fruit fly *Anastrepha fraterculus* damage and management in *Vitis vinifera* table grapes in southern Brazil .. 24

Marcos Botton, Marcelo Zart, Ruben Machota Jr., Rodrigo Formol

Management of bitter rot and ripe rot of grapes in sub-tropical vineyards in Australia 25

Christopher C Steel, Lindsay A Greer, Sandra Savocchia

SESSION PATHOLOGY: BIOLOGY AND EPIDEMIOLOGY OF PATHOGENS, FUNGAL AND PHYSIOLOGICAL DISEASES .. 26

Different susceptibility of European grapevine cultivars for downy mildew .. 27

S. Boso and H.H Kassemeyer

Molecular, proteomic and morphological characterization of the ascomycete *Guignardia bidwellii*, agent of grape black rot .. 28

Barbara Wicht, Mauro Jermini, Cesare Gessler, Orlando Petrini, Giovanni Antonio Lodovico Broggin

Characterization of fungal and bacterial communities that colonise the various wood tissues of healthy and Esca-diseased vines .. 29

E. Bruez, J. Vallance, J. Gerboire, P. Lecomte, L. Guérin-Dubrana, P. Rey

Relationships between the wood necroses in Esca-affected vines and possible links with the expression of foliar symptoms .. 30

Lucia Guérin-Dubrana, Nevile Maher, Jiulie Piot, Sylvie Bastien, Patrice Rey

New Aspects on the Source of Inoculum causing Infections of Grapevine Berries by *Botrytis cinerea*. 31

Hanns-Heinz Kassemeyer, Evi Bieler, Franziska Peters

Influence of downy mildew and grape berry moth in *Botrytis* incidence in Rioja Alavesa vineyards 32

Diez-Navajas Ana Maria and Ortiz-Barredo Amaia

Climate change and Mycotoxins in Wine .. 33

Michelangelo Storari, Giovanni Al Broggin, Ilaria Pertot and Cesare Gessler

Biology and epidemiology of *Botryotinia fuckeliana* sub-populations .. 34

Nicola Ciliberti, Sara Elisabetta Legler, Tito Caffi, Luca Languasco, Vittorio Rossi

SESSION ENTOMOLOGY: BIOLOGY AND POPULATION DYNAMICS OF INSECTS AND MOTHS 35

Lobesia botrana females contribute to the success of the mating disruption methods .. 36

Aly Harari, Tirtza Zahavi

Performance of a wine trap device to monitor *Lobesia botrana* adult population in Murcia vineyards .. 37

Bruno Bagnoli, Alfonso Lucas Espadas, José Serrano Palao, Blanca M. Garcia Perez, Maria Pastor Juan, Arancha Puche Cascales, Maria Ortega, Paolo Sambado, Andrea Lucchi

Mating behaviour related to the intensity of vibrational signals .. 38

A. Eriksson, A. Lucchi, G. Anfora, M. Virant-Doberlet, V. Mazzoni

Should Grape moth larval immunity be considered to explain resistance against natural enemies? 39

Fanny Vogelweith, Morgane Dourneau, Denis Thiéry, Yannick Moret, Jérôme Moreau

Occurrence of earwigs in vineyards and their impact on aroma and flavour of ‘Chasselas’ and ‘Pinot Noir’ wines .. 40

Jean-Philippe Burdet, Jocelyne Karp, Pascale Deneulin, Christian Linder, Patrik Kehrli

Notes on the biology and the pest status of *Antispila* sp. (Lepidoptera Heliozelidae) in North-eastern Italy .. 41

Carlo Duso, Mario Baldessari, Alberto Pozzebon, Elisa Ferrari, Marco Taller, Gino Angeli, Luca Mazzon, Erik J. van Nieuwerkerken

Performance of *Typhlodromus pyri* SCHEUTEN on 75 different Grape Varieties .. 42

VI
Brazilian ground pearl Eurhizococcus brasiliensis: bioecology and management in vineyards

Marcos Botton, Aline Nondillo, Odair Bueno e Vania Sganzerla
Embrapa Grape and Wine. Livramento St 515. P.O. Box 130. 95700-000. Bento Gonçalves, RS, Brazil. Centro de Estudos de Insetos Sociais, Instituto de Biociências, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil

Abstract: Brazilian ground pearl (BGP) Eurhizococcus brasiliensis (Wille, 1922) (Hemiptera: Margarodidae) is one of the major grape pests occurring in the country. BGP is a soil scale native to southern Brazil and its immature stage feeds on the roots of more than 80 species of plants. Scale reproduction is mainly by parthenogenesis with one generation per year, producing crawlers from November to March. Infested plants show a gradual decline in vigor that becomes more severe with time. Plant decline and death are the result of scale sap suction in the roots. Shoots become shorter and thinner, with smaller leaves, followed by death of the cordons, finally the entire vine dies. The duration of this process varies but vines can be killed within four years. Great economic hardship occurs in the vineyards where growers must abandon grape cultivation and move to new areas free of the pest. Scale spread occurs mainly associated with the roots of host plants and machinery used in infested fields. After contamination in the field, pest dispersion usually starts in patches that gradually become larger because of the migration of nymphs in the soil. This movement is assisted by Linepithema micans (Forel, 1908) (Hymenoptera: Formicidae) which tend nymphs, helping the pest to colonize new roots. Measures to reduce BGP damage are difficult to implement because of scale polyphagy, subterranean development, an apodous feeding nymphal instar called a cyst and the defensive strategy of constructing a separate protective layer around their body from their own liquid excreta. Current pest management techniques are based mainly on cover crop management inside vineyards to reduce pest dispersal and application of neonicotinoids (imidacloprid and thiamethoxan) insecticides. Rootstock resistance like VR 43-43 and VR 39-16 (V. rotundifolia x V. vinifera) are showing promising results in some areas however, they are susceptible to some soil fungi like Cylindrocarpon, reducing the potential of success of this strategy. New crossings and trials using V. rotundifolia as the source of resistance are being conducted.

References:

Keywords: Eurhizococcus brasiliensis, Cylindrocarpon, Linepithema