RNAi-Mediated Resistance to Bean golden mosaic virus in Genetically Engineered Common Bean (Phaseolus vulgaris)

Kenny Bonfim,1,2 Josias C. Faria,3 Elsa O. P. L. Nogueira,1 Érica A. Mendes,1 and Francisco J. L. Aragão1,2

1Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, 70770-900, Brasília, DF, Brazil; 2Universidade de Brasília, Departamento de Biologia Celular, Campus Universitário, 70910-900, Brasília, DF, Brazil; 3Embrapa Arroz e Feijão, Rodovia GO-462, km 12 Zona Rural C.P. 179, 75375-000 Santo Antônio de Goiás, GO, Brazil

Bean golden mosaic virus (BGMV) is transmitted by the whitefly Bemisia tabaci in a persistent, circulative manner, causing the golden mosaic of common bean (Phaseolus vulgaris L.). The characteristic symptoms are yellow-green mosaic of leaves, stunted growth, or distorted pods. The disease is the largest constraint to bean production in Latin America and causes severe yield losses (40 to 100%). Here, we explored the concept of using an RNA interference construct to silence the sequence region of the ACI viral gene and generate highly resistant transgenic common bean plants. Eighteen transgenic common bean lines were obtained with an intron-hairpin construction to induce post-transcriptional gene silencing against the ACI gene. One line (named 5.1) presented high resistance (approximately 93% of the plants were free of symptoms) upon inoculation at high pressure (more than 300 viruliferous whiteflies per plant during the whole plant life cycle) and at a very early stage of plant development. Transgene-specific small interfering RNAs were detected in both inoculated and non-inoculated transgenic plants. A semiquantitative polymerase chain reaction analysis revealed the presence of viral DNA in transgenic plants exposed to viruliferous whiteflies for a period of 6 days. However, when insects were removed, no virus DNA could be detected after an additional period of 6 days.

Additional keywords: Begomovirus, geminivirus, RNA interference.

Bean golden mosaic virus (BGMV) belongs to genus Begomovirus (family Geminiviridae). The majority of the Begomovirus genome comprises two single-stranded DNA molecules, designated as DNA-A and DNA-B, both of which are essential for infectivity. Genes from DNA-A encode proteins responsible for viral replication (AC1 and AC3), regulation of gene expression (AC2), and particle encapsidation (AV1), whereas two genes from DNA-B encode proteins involved in cell-to-cell and long-distance movement with plant tissues and host range and symptom modulation (Hanley-Bowdoin et al. 1999; Vanitharani et al. 2005). AC1 encodes a complex, multifunctional protein (Rep) that acts as a rolling-circle replication initiation factor, which is the only protein strictly essential for viral genome replication and is capable of regulating its own expression (Eagle et al. 1994; Elmer et al. 1988), whereas AC3 encodes a replication enhancer protein (REN) (Sunter et al. 1990). AC2 encodes a transcriptional regulatory protein (TrAP), which is required for efficient transcription of both AV1 and BV1 genes (Sunter and Bisaro 1992, 1997). In addition, TrAP interacts and inactivates SNF1 and adenosine kinases involved in defense response (Hao et al. 2003; Wang et al. 2003). Furthermore, it has been suggested that it acts as a suppressor of RNA silencing (Trinks et al. 2005; Vanitharani et al. 2005; Wang et al. 2005).

BGMV is transmitted by the whitefly Bemisia tabaci (Gennadius) in a persistent, circulative manner, and causes the golden mosaic of common bean (Phaseolus vulgaris L.). The characteristic symptoms are yellow-green mosaic of leaves, stunted growth, or distorted pods. Control measurements have been focused primarily on controlling the vector by contact or systemic insecticides, with the concomitant problems of development of insecticide resistance, low cost-benefit ratio, and environmental concerns. The disease is the largest constraint to bean production in Latin America and causes significant yield losses (40 to 100%) in South and Central America, Mexico and the United States (Morales 2006; Morales and Anderson 2001). In Latin America, BGMV causes severe yield losses, particularly during the warmer months when the B. tabaci population is higher, leading to a great reduction of summer plantings of common bean. Extensive screening of common bean germ plasm for resistance to BGMV has revealed no genotypes with high levels of resistance. The resistance often is unsatisfactory and commercial cultivars are susceptible under early, moderate, or severe infection (Garrido-Ramirez et al. 2000; Morales and Anderson 2001; Seo et al. 2004).

Several strategies have been employed for genetically engineering resistance to viruses in transgenic plants. For begomoviruses, most of them have involved the expression of truncated defective genes (Antignus et al. 2004; Brunetti et al. 1997, 2001; Chellappan et al. 2004a; Duan et al. 1997; Hong and Stanley 1996; Kunik et al. 1994; Lucioli et al. 2003; Noris et al. 1996; Yang et al. 2004) and antisense RNA (Asad et al. 2003; Bejarano and Lichtenstein 1994; Bendahmane and Gronenborn 1997; Day et al. 1991; Zhang et al. 2005). We have used antisense RNA successfully to produce transgenic common bean showing delayed and attenuated golden mosaic symptoms upon whitefly-mediated inoculation (Aragão et al. 1998). Expression of AC1-double-stranded RNA (dsRNA) re-
revealed reliable resistance to Cotton leaf curl virus in transgenic tobacco (Asad et al. 2003) and to Tomato yellow leaf curl virus (TYLCV)-Is in transgenic tomato (Yang et al. 2004). Transient expression of dsRNA targeting the common region of the Vigna mungo yellow mosaic virus in Vigna spp. resulted in recovery from virus infection (Poogin et al. 2003).

RNA interference (RNAi) is a post-transcriptional gene-silencing mechanism that mediates resistance to both endogenous parasitic and exogenous pathogenic nucleic acids, as well as regulates the expression of protein-coding genes (Herr 2005). The potential of constructs encoding self-complementary hairpin RNA (hpRNA) to efficiently silence genes in plants has been demonstrated (Wesley et al. 2001). The self-complementary RNA transcripts form a dsRNA that triggers a sequence-specific mRNA degradation in a process known as RNAi. dsRNA is processed by an RNase III, called Dicer, into small interfering RNAs (siRNAs). The strand of siRNA complementary to the target RNA becomes incorporated into a multiprotein complex (RISC) leading to mRNA degradation and gene silencing. It has been found that DNA viruses, including geminiviruses, are capable of inducing gene silencing (Bian et al. 2006; Chellappan et al. 2004b; Fuentes et al. 2006; Kjemtrup et al. 1998; Vanitharani et al. 2003).

In this article, we explore the RNAi concept to silence the AC1 viral gene in common bean to generate transgenic lines with strong resistance to BGMV. We report here the successful engineering of high resistance to the geminivirus displayed by one transgenic line. The resistance is correlated with post-transcriptional gene silencing (PTGS) through the production of transgene-specific siRNAs.

RESULTS

hpRNA construct and plant transformation.
To assess the effectiveness of siRNA to produce common bean plants resistant to BGMV by silencing the AC1 viral gene, we generated an intron-spliced hpRNA vector (pBGMVRNAiAHAS) into which an AC1 gene fragment was directionally cloned to generate sense and antisense arms (Fig. 1). Of 2,706 embryonic axes bombarded with the vector pBGMVRNAiAHAS, 18 common bean transgenic lines were produced, presenting a transformation efficiency of 0.66%. All primary transformants (R0) contained both ahas and ΔAC1 cassettes and showed a normal phenotype.

Plant inoculation and symptom screening.
Primary transformants were tested for resistance to BGMV by inoculation with viruliferous whiteflies. Except for line 5.1, all 17 other primary transformants were susceptible to the virus. Line 5.1 was phenotypically immune and was allowed to set seed. Subsequent experiments focused on this transgenic line. The F1 generation was cultivated in the greenhouse and presented normal phenology (plant height, site of insertion of first pod, number of branches, internode length, foliar area, and total number of flowers and pods). Polymerase chain reaction (PCR) analysis revealed non-Mendelian segregation. Of 15

Fig. 1. Diagram representing the Bean golden mosaic virus BGMV genome and the fragment vector used to transform common bean plants. A, BGMV genome organization showing the two components (denoted DNA-A and DNA-B) which encode genes involved in expression, replication, or encapsidation (AC1, AC2, AC3, and AV1) and movement (BC1 and BV1), respectively; and the AC1 fragment (interfering fragment) used for the construction of the intron-hairpin RNA expression cassette. CR corresponds to the common region. B, Map of pBGMVRNAiAHAS fragment containing the ahas gene (ahas5′: ahas gene promoter; ahas cds: Arabidopsis thaliana AHAS coding sequence; ahas3′: ahas gene terminator) and the ΔAC1 cassettes (35S: 35S promoter of Cauliflower mosaic virus; intron: Flaveria trinervia pdk intron; ocs3′: octopine synthase terminator). AC1 interfering fragment was cloned in sense and antisense orientations. Small arrows indicate primers used for polymerase chain reaction screening. Solid bars in A and B represent probes used for RNA interference (probes a, b, and c) and Southern blot analysis (probe d).
plants, only three revealed the presence of transgenes \((\chi^2 = 24.2, P = 0.01, 1 \text{ df; testing ratio of 3:1})\) (Fig. 2). Plants were exposed to 60 viruliferous whiteflies and all transgenic plants remained without virus symptoms and were allowed to set seed. Of 58 plants (F\(_2\) generation), 42 revealed the presence of both \(ahas\) and \(\Delta AC1\) transgenes, presenting a Mendelian segregation pattern of 3:1 \((\chi^2 = 0.2, P = 0.64, 1 \text{ df})\) (Fig. 2). Except for three plants, all transgenic plants revealed immunity to the BGMV and PCR analysis revealed an absence of viral DNA in the symptomless plants. The three infected plants showed normal growth and showed mild symptoms in leaves from the top of the plant 30 days after virus inoculation (Fig. 3). All segregating (not containing the transgenes) and nontransgenic plants (controls) revealed characteristic severe symptoms of the golden mosaic disease (yellow-green mosaic in leaves, stunted growth, and distorted pods) 2 weeks after virus inoculation (Fig. 3).

Using PCR analysis, it was possible to identify two homozygous sublines in the R\(_2\) generation (Fig. 2). In all, 32 homozygous transgenic plants and 20 nontransgenic plants were highly inoculated with the virus, using viruliferous whiteflies (135 to 357 whiteflies per plant), for 6 days. The results showed that 94.1 and 100% plants for both transgenic sublines remained without symptoms, whereas all nontransgenic plants revealed severe symptoms 29 days after inoculation (Fig. 2). PCR analysis showed that the virus DNA was absent in the transgenic plants (data not shown).

Genomic analysis.

Southern blot analysis of genomic DNA isolated from line 5.1 was carried out to evaluate the integration of the \(\Delta AC1\) cassette (Fig. 4). Because it was used as a linearized vector for bean transformation, Southern analysis using genome digestion with \(XhoI\) revealed that all transgenic plants analyzed presented the same pattern, suggesting that transgene copies were not independently segregating in the R\(_2\) generation of self-pollinated plants. DNA isolated from a nontransgenic plant did not hybridize with the \(\Delta AC1\) cassette probe.

siRNA in transgenic plants.

Northern analyses were carried out to detect the siRNA in inoculated leaves of transgenic and nontransgenic bean plants. Plants were maintained in contact with viruliferous whiteflies (200 to 350 whiteflies per plant) for a period of 6 days; then, the insects were removed. At day 6 and 12, transgenic and nontransgenic leaves were analyzed for the presence of siRNA (Fig. 5). The analysis showed siRNA bands of expected size range in both inoculated and noninoculated transgenic plants (Fig. 5A). The amount of transgene-derived siRNA did not significantly increase. No signal was observed in either inoculated or noninoculated nontransgenic plants. Signals corresponding to inoculated transgenic leaves were slightly more intense than those observed in noninoculated transgenic plants. However, it detected the presence of siRNAs only representing parts of the target RNA. No signal was observed when probes outside the region homologous to the triggering \(AC1\) gene were used (Fig. 5B and C). All nontransgenic plants inoculated with the virus developed typical mosaic symptoms, whereas all inoculated transgenic plants did not show virus symptoms.

A semiquantitative PCR analysis was carried out to detect and estimate viral DNA accumulation in the same leaves analyzed for the presence of siRNA (Fig. 5D). At day 6, viral DNA was detected in inoculated transgenic leaves. However, at day 12, no signal was observed. A strong signal was observed in nontransgenic inoculated leaves either 6 or 12 days after inoculation. Noninoculated leaves did not present any signal.

![Fig. 2. Schematic representation of the transgenic (gray boxes) and nontransgenic (white boxes) plants in the first generation (R\(_1\)) and in heterozygous (R\(_2\)) and homozygous (R\(_{2H}\)) lines in the second generation. Plants showing Bean golden mosaic virus symptoms are marked with a solid dot. Arrow indicates progenies (R\(_2\) generation) derived from the three transgenic plants identified in the first generation. C represents control (nontransgenic plants).](image-url)
Northern analyses were carried out to detect AC1-specific siRNA in leaves of transgenic plants maintained for a period of 5 days at different temperatures (15, 25, and 35°C). When compared with the amount of siRNA found at 25°C, results showed a slight decrease in the amount of accumulated siRNA at 15°C and a decrease in smaller siRNA at 35°C (Fig. 6).

Comparison of BGMV resistance in plants expressing a hairpin RNA (RNAi strategy) and a mutated rep gene (transdominance strategy).

To compare the resistance of line 5.1 with a partially resistant transgenic bean line expressing a mutated Rep protein (line M1-4) (Faria et al. 2006), homozygous plants were germinated in the presence of a viruliferous whitefly colony. The number of whiteflies was estimated to be at an average of 100 individuals per plant at the beginning of the inoculation, and more than 300 insects per plant at the end of inoculation period (38 days). Results revealed that 28 of 29 plants (96.6%) from line M1-4 presented symptoms whereas, for line 5.1, only 2 of 28 plants (7.1%) presented symptoms, and all nontransgenic plants had severe symptoms (Fig. 7). In addition, a remarkable delay in the appearance of viral symptoms was observed in those two plants of line 5.1. The viral DNA could not be detected by PCR in plants that were free of symptoms.

DISCUSSION

Geminivirus diseases, particularly bean golden mosaic, are the most important constraint to the production of common bean and vegetable crops in the tropical lowlands and mid-altitude valleys of Latin America (Morales 2006). Control measures in infected regions are based on the chemical control of the vector population, with partial efficacy, environmental negative effect, elimination of natural enemies, and appearance of pesticide-resistant whitefly. Thus, the best way to control the disease in the field is to achieve genetic resistance to or tolerance for the virus. In this study, we hypothesized that silencing the AC1 viral gene expression by sequence-specific degradation of target mRNA interfering with viral replication would reduce or prevent viral DNA accumulation and, consequently, appearance of symptoms.

Fig. 3. Golden mosaic disease symptom in whitefly Bean golden mosaic virus-inoculated transgenic and nontransgenic common bean plants. A, Nontransgenic plant (1) presenting severe symptoms, transgenic plant presenting mild symptoms (2) or symptom free (3). Approximately 7% of transgenic plants present mild and delayed symptoms, B, which start with yellowing areas (arrows) in the leaves from the top, then C, progress to the whole leaf. Images were taken 35 days after inoculation. A, Bar represents 50 cm.
Advances in molecular biology have led to the development of pathogen-derived resistance, in which the expression of a pathogen-derived gene or sequence in a plant provides resistance to the pathogen. Many examples of this engineered resistance to RNA plant viruses have been presented. However, there are relatively fewer reports of engineered resistance to DNA viruses, and most of the experiments have been carried out in model plants (Prins 2003; Vanderschuren et al. 2006). Defective viral DNA, antisense AC1 gene, defective AC1 protein, defective movement protein, and coat protein have been employed with varying success rates (Aragão et al. 1998; Bejarano and Lichtenstein 1994; Bendahmane and Gronenborn 1997; Day et al. 1991; Hong and Stanley 1996; Kunik et al. 1994; Noris et al. 1996; Stanley et al. 1990; von Arnim and Stanley 1992; Yang et al. 2004). However, most of the previously described transgenic plants had no immune response and the conferred resistance was moderate. The use of siRNAs, an intermediate in the gene-silencing pathway, has become a powerful tool for specifically downregulating gene expression, as has been demonstrated successfully in a wide variety of cells and organisms (Waterhouse et al. 2001). It was recognized that an RNA-silencing (PTGS) mechanism was responsible for the resistance against RNA viruses, and that it depends on the formation of dsRNA, whose antisense strand is complementary to the transcript of a targeted gene (Brodersen and Voinnet 2006; Herr 2005). This discovery led to the introduction in transgenic plants of constructs to produce intracellular generation of siRNA-like species to efficiently induce targeted gene silencing and virus resistance. Constructs encoding self-complementary hpRNA have been shown to be capable of gen-

Fig. 4. Southern blot analysis of genomic DNA to detect the foreign ΔAC1 cassette in common bean plants (R2 generation) from transgenic line 5.1. Lanes 1 to 6: transgenic plants; lane 7: nontransgenic plant. Hybridization was carried out with probe d.

Fig. 5. Northern blot analysis of small interfering (si)RNA isolated from intron-hairpin RNA-transformed common bean plants. Plants were maintained in contact with viruliferous whiteflies for a period of 6 days. RNA was isolated from the primary leaves at days 6 and 12 from transgenic (T) and nontransgenic (NT) plants, inoculated (i) and noninoculated (ni) with Bean golden mosaic virus (BGMV). RNA blots were probed to detect the presence of siRNA molecules corresponding to A, AC1, B, AC2, and C, AC3 mRNA sequences. C+: 50 ng of a BGMV AC1 (in A), AC2 (in B), and AC3 (in C) gene-derived oligomers. Ethidium bromide-stained RNA serves as the loading control. All transgenic plants remained free of symptoms, whereas all nontransgenic plants had severe symptoms. D, The virus DNA was detected in a semiquantitative polymerase chain reaction. The genomic Pv18SrRNA gene was used as internal control.
erating post-transcriptional silence to undetectable levels of the targeted mRNA transcript (Nunes et al. 2006; Wesley et al. 2001). Using this type of construct containing the common region of the begomovirus \textit{Vigna mungo yellow mosaic virus} in a transient assay, Pooggin and associates (2003) obtained recovery from virus infection. Vanitharani and associates (2003) reported that the use of siRNAs blocked the accumulation of the \textit{AC1} mRNA of the geminivirus \textit{African cassava mosaic virus} (ACMV) in cultured plant cells. Tobacco plants engineered to express the 3' and 5' regions from the \textit{AC1} gene from \textit{Cotton leaf curl virus}, in sense and antisense orientations, revealed high resistance to the virus after continuous exposure to viruliferous whiteflies (Asad et al. 2003). Recently, Fuentes and associates (2006) reported immunity against the TYLCV in transgenic tomato plants transformed with an intron-hairpin construction produced with 726 bp within the \textit{C1} viral gene. Tomato plants transformed with an intron-hairpin construct from the \textit{C2} gene of \textit{Tomato leaf curl virus} (TLCV) and presenting \textit{C2}-specific siRNA accumulation developed mild symptoms at 20 to 25 days after virus inoculation (Bian et al. 2006). In contrast, tomato plants engineered through RNAi strategy to silence the \textit{rep (C1)} gene of \textit{Tomato yellow leaf curl Sardinia virus} accumulated high amounts of specific siRNA but were susceptible to the virus when challenged by agroinoculation or use of high viruliferous whitefly pressure (Noris et al. 2004).

\textit{AC1} is the only protein strictly essential for viral genome replication and probably abundant early in the infection cycle; therefore, it seems to be an obvious target for disrupting the virus cycle by biotechnological approaches. Our results showed that \textit{AC1} gene-based RNAi is an effective strategy to achieve high resistance to BGMV in genetically modified common bean. In addition, the resistant line generated in this study showed remarkable resistance when compared with a recently generated transgenic bean line expressing a mutated \textit{AC1} gene (transdominance strategy) (Faria et al. 2006).

The ability to genetically engineer common bean is still not trivial (Veltcheva et al. 2005), and the previously reported efficiency of transformation using linearized vectors was 0.2% (Vianna et al. 2004). Use of linear vectors is important to eliminate undesirable antibiotic selective genes. One important constraint to the transformation system based on bombardment of meristematic tissues of embryonic axes is the difficulty of having an efficient selection for transformed meristematic cells because only a few are transformed. We used a novel system for selecting transformed meristematic cells based on the use of imazapyr, an herbicidal molecule capable of systemically translocating and concentrating in the apical meristematic region of plant embryos. This selectable marker resulted in a significant increase (threefold) in the recovery of fertile, transgenic lines compared with the standard common bean transformation protocol (Vianna et al. 2004). The improvement in the bean transformation technology was essential for obtaining a larger number of transgenic lines, increasing the probability to select transformation events presenting virus immunity.

Of 18 common bean transgenic lines tested for resistance to BGMV, one line (5.1) remained without virus symptoms and was further analyzed. The resistance frequency was very low when compared with those observed for RNA viruses. It has been shown that gene constructs encoding intron-spliced RNA

Fig. 6. Northern blot analysis of small interfering RNA isolated from intron-hairpin RNA-transformed common bean plants exposed to different temperatures. Noninoculated transgenic plants were maintained for a period of 5 days at 15°C (lanes 1 and 2), 25°C (lanes 4 and 5), and 35°C. nt = nucleotides; NT = nontransgenic plants; T = transgenic plants.

Fig. 7. Development of golden mosaic disease in transgenic bean lines challenged with \textit{Bean golden mosaic virus}. Plants from the transgenic line 5.1 (Δ\textit{AC1} intron-hairpin RNA line) (n = 28), transgenic line M1/4 (transdominant line) (n = 29), and control (nontransgenic) (n = 28) were germinated in the presence of a population of viruliferous whiteflies. Disease evaluation was done visually by recording the first date of vein clearing.
with a hairpin structure can induce PTGS with 90 to 100% efficiency when directed against RNA viruses or endogenous genes (Nunes et al. 2006; Smith et al. 2000; Wesley et al. 2001). The higher resistance frequency observed for RNA viruses could be due to the fact that both RNA transcripts and genomic RNA can be targeted by the silencing machinery. In addition, geminiviruses accumulate within nuclei. Blevins and associates (2006) showed that two nuclear DNA viruses (a geminivirus and a pararetrovirus) and a cytoplasmic RNA tobamovirus are differentially targeted by subsets of Dicer-like proteins. This distinction probably reflects the fundamentally different lifecycle of DNA viruses, which includes a nuclear phase. Moreover, the expression of a transgene located in active chromatin or heterochromatin is highly variable, even among lines independently transformed with the same construct. Many factors may be responsible for variable transgene expression, including the tendency for exogenous DNA to undergo inverted repeat rearrangement prior to transformation by using direct methods, effects related to integration position and DNA hypermethylation (Meyer 1998).

The derived progeny revealed a non-Mendelian segregation pattern. However, the R2 generation presented a 3:1 Mendelian segregation. Moreover, Southern blot analysis carried out with plants from the R3 generation revealed that the transgenes were integrated in a single locus, corroborating the observed segregation fashion. This result suggests that the primary transformant was a chimeric plant. Indeed, chimerism commonly has been observed in leguminous plants transformed by particle bombardment of meristematic tissues (Aragão et al. 1996; Christou et al. 2006).

Advanced generations of transgenic line 5.1 were analyzed for their resistance to BGMV. Most plants (>92.9%) remained without symptoms after exposure to a large number of viruliferous whiteflies for the period of the whole plant life cycle. In the field, a population of approximately 200 adult whiteflies per plant is considered an extremely severe infestation and 2 to 10 insects per plant generally leads to 90 to 100% disease incidence (F. Morales, personal communication). Approximately 7.1% of the transgenic plants presented mild symptoms in young leaves from the top 30 days after inoculation. Moreover, these plants presented similar growth when compared with uninfected plants and revealed no apparent reduction in the amount of seed produced. Further investigation is needed to determine the involvement of AC1 siRNAs in regulating plant development.

RNA analysis of line 5.1 revealed the presence of siRNA only in transgenic plants, implying that resistance is due to an RNA-mediated mechanism. Gene silencing could be due to PTGS or dsRNA-triggering viral genome methylation and transcriptional inactivation in trans (Mette et al. 2000). In infected bean plants, virus-derived siRNA was not observed at 12 days after inoculation, even though symptoms were observed at day 14 after inoculation. This suggests that BGMV was unable to induce PTGS in the early stages of infection, despite the fact that transcript corresponding to the AC1 gene probably is abundant early in the infection cycle. In contrast, it was observed that siRNA accumulation started 1 week after inoculation in plants of cassava and Nicotiana benthamiana infected with ACMV (Chellappan et al. 2004b). Because AC1, AC2, and AC3 transcription may be expressed from a polycistronic mRNA (Hanley-Bowdoin et al. 1999), the transgene ΔAC1 siRNA could serve as a primer for an RNA-dependent RNA polymerase, using the viral mRNA as a template (Brodersen and Voinnet 2006), to produce secondary siRNA molecules corresponding to other AL2 and AL3 genes. It would enlarge the probability of multiple virus species resistance. However, in bean transgenic plants infected with the BGMV, siRNAs were not observed outside the region homologous to the triggering siRNA and representing parts of the AC2 and AC3 genes present in the target viral mRNA. Vanitharani and associates (2003) report the use of siRNAs to target green fluorescent protein (gfp) gene expression and geminiviral DNA accumulation in cultured plant cells. siRNA representing parts outside the gfp gene was detected in the region homologous to the triggering siRNA. Similarly, siRNA designed to target the mRNA encoding the AC1 protein of the ACMV was specific only against the parent sequence (Vanitharani et al. 2003).

Plant–virus interactions are affected by environmental factors, especially by temperature. The appearance of virus diseases commonly is associated with low temperature. At high temperature, viral symptoms frequently are attenuated and plants rapidly recover from virus diseases. Chellappan and associates (2005) showed that cassava geminivirus-derived siRNA increased by raising the temperature from 25 to 30°C, with appearance of less symptomatic leaves. Szittya and associates (2003) demonstrated that RNA silencing-mediated plant defense is temperature dependent. At low temperature, both virus- and transgene-induced RNA silencing was inhibited, leading to enhanced virus susceptibility and loss of silencing-mediated transgenic phenotypes. Moreover, it was consistent with the reduction of transgene-derived siRNAs at low temperatures and increase with higher temperatures (Szittya et al. 2003). Our results demonstrated that the level of AC1 siRNA was reduced when transgenic bean plants were cultivated at low temperature (15°C), which could provoke a resistance decrease. However, it is important to note that common bean plants generally are cultivated in temperatures above 20°C, because it is not unusual to have a decrease in temperature during commercial bean cultivation, especially in mid-altitude areas.

It has been suggested that a broad-spectrum geminivirus resistance could be achieved by using RNAi AC1-mediated resistance. The expression of the full-length AC1 gene from ACMV in transgenic cassava conferred enhanced resistance to the homologous virus and cross-protection against the East African cassava mosaic Cameroon virus (EACMCV) and Sri Lanka cassava mosaic virus (SLCMV) (Chellappan et al. 2003b). siRNA designed to target the mRNA transcript encoding the glycoprotein G, from a rhadvirus in fish cell cultures, were effective against two other rhadvirus species, even using siRNA molecules with four cases of mismatch compared with specific target sequence (Schyth et al. 2006). Besides BGMV, several other Phaseolus-infecting geminiviruses have been reported: Bean dwarf mosaic virus, Bean golden yellow mosaic virus, Euphorbia mosaic virus, and TYLCV (Jones 2003). Consequently, the development of broad resistance is desirable. In this work, we were able to test the transgenic bean lines only against BGMV because of bio-safety and quarantine restrictions. In silico analyses suggested that, theoretically, plants expressing the ΔAC1 have a possibility to present some resistance to other geminiviruses. However, recent studies have suggested that, overall, Watson-Crick base pairing complementarity could not determine whether the expression of a particular gene will be affected by a given siRNA (Birmingham et al. 2006), and further experimental testing should be conducted to corroborate or refute in silico analysis.

Geminiviruses cause severe disease problems on several other crops throughout the world, such as cassava, cowpea, mungbean, pepper, melon, tomato, cotton blackgram, lima bean, soybean, potato, eggplant, pepper, chili pepper, watermelon, squash, and papaya (Morales and Anderson 2001). The strategy presented here could be extended to achieve resistance against geminiviruses from other plant species. This work is an example of a public-sector effort to develop useful
traits, such as resistance to a devastating disease, in an “orphan crop” cultivated by poor farmers throughout Latin America. It has the potential to become a milestone as one of the first “homemade” biotechnology crop improvement strategies performed in Brazil as a result of the interaction between bench and field scientists. Efforts are being made to test the BGMV-resistant line in other countries, such as Argentina, Costa Rica, and the United States.

MATERIALS AND METHODS

RNAi construct.

Two fragments containing a partial sequence from AC1 gene, both from position 1,836 to 2,247 (GenBank accession number M88686) were amplified by PCR. Primer pair HPXBA (5'GTCTAGATGATGCGTCCGAAC-3') and HPCLA (5’-GATCGATGCGCATCCGAAGC-3') (including the sites for XbaI and Clal, underlined, respectively) was used to amplify a 421-bp fragment from the BGMV genome. Primer pair HPXHO (5'-CCTCGAGATGCGTCCGAAC-3') and HPKPN (5’-AGGTACCATGGCATTCCGAAGC-3') (including the sites for XhoI and KpnI, underlined, respectively) was used to amplify a 424-bp fragment from the BGMV genome. The size and sequence within the AC1 viral gene were chosen on the basis of in silico analysis carried out using Mfold (Zucker 2003) and ILM (Ruan et al. 2004) algorithms, using the negative viral strand. PCR reactions were carried out in a thermocycler (PTC-100; MJ Research, Watertown, MA, U.S.A.) in a 50-μl solution containing 40 ng of DNA, 60 mM Tris-So4 (pH 8.9), 18 mM (NH4)2SO4, 2 mM MgSO4, 250 nM each dNTP, 200 nM each primer, and 5 U of platinum Taq DNA polymerase high fidelity (Invitrogen, Carlsbad, CA, U.S.A.). The mixture was treated at 95°C (5 min) and subjected to 35 cycles of amplification (95°C for 1 min, 55°C for 1 min, and 72°C for 1 min), with a final elongation cycle of 5 min at 72°C. The 411-bp fragments were cloned into the pGEMT-Easy vector for PCR products (Promega Corp., Madison, WI, U.S.A.) and sequenced by using universal M13 and T7 primers on automatic sequencer (ABI Prism 3700). The BGMV fragments were excised from pGEMT-Easy with XbaI/ClaI and XhoI/KpnI, respectively, and inserted into the vector pKan91 (Wesley et al. 2001) to generate the plasmid pKBGMVXCK. The interfering cassette was removed with NotI from the vector pKBGMVXCK and cloned into the site for NotI in the vector pAC32, which contains the gene ahas (that confers tolerance for the herbicide imazapyr) from Arabidopsis thaliana (Aragão et al. 2000), generating the vector pBGVMRNAiAHAS. The cassette containing the BGMV sequence hairpin will be mentioned hereafter as ΔAC1 (Fig. 1).

Common bean transformation.

The plasmid vector pBGVMRNAiAHAS was used to transform common bean (cv. Olathie Pinto) according to Aragão and associates (1996), except that the herbicide imazapyr was used as a selective agent. Briefly, mature seed were surface sterilized and soaked in distilled water for 16 to 18 h. Then, the embryonic axes were excised from the seed and the apical meristems were exposed by removing the primary leaves. The embryonic axes were placed with the apical region directed upward in petri dishes containing basal Murashige-Skoog (MS) medium immediately before bombardment. For transformation, the vector pBGVMRNAiAHAS was digested with FspI to disrupt the ampicillin resistance gene (bla) present in the vector backbone. Bombardment was conducted using a high-pressure, helium-driven particle acceleration device built in our laboratory. Immediately after bombardment, embryonic axes were transferred to MS medium containing 44.3 μM benzylaminopurine and 80 mM imazapyr. The concentration of the herbicide imazapyr previously was optimized to adequately select transgenic cells. After 3 weeks in culture, the bombarded apical meristems produced elongated shoots, which were allowed to reach 2 to 4 cm in length. The shoots (T0, generation) were rooted and transferred to a plastic pot containing autoclaved soil:vermiculite (1:1) and covered with a plastic bag for a week to acclimatize. To detect the presence of foreign genes, plants were screened by PCR.

Screening of transgenic plants by PCR analysis.

DNA was isolated from seed or leaf disks according to Edwards and associates (1991). PCR reactions were carried out as described above, except that MgCl2 was replaced by MgCl2, and the platinum Taq DNA polymerase high fidelity was replaced by Taq polymerase (Invitrogen). The primers HPBGMVXHO and HPBGMVKPN were used to amplify a 421-bp fragment from the ΔAC1 sequence. Primers 5'-ACTTAGAGATTCCACGTCAC-3' (AHAS124P) and 5’-GTTGCTATACGATACCTGG-3' (AHASS500C) were used to amplify a 685-bp sequence from the ahas gene. Reaction mixtures then were loaded directly onto a 1% agarose gel stained with ethidium bromide and visualized with UV light.

RNAi analysis.

Eight-day-old seedlings were inoculated with the virus using 200 to 300 whiteflies/plant for a period of 6 days. After this period, whiteflies were removed. Total RNA was isolated from leaves, 6 and 12 days after initiation of virus inoculation, by extraction with Trizol (Invitrogen) as recommended by the manufacturer. Total RNA (50 μg) was separated by 20% PAGE with 7 M urea and 1x Tris-borate-EDTA (TBE). The gel was stained with a 1× TBE containing ethidium bromide (0.5 μg/ml), and photographed to verify normalization by visualization of tRNAs and 5S rRNA. RNAs were electroblotted to a Hybond-N+ membrane (Amersham Pharmacia Biotech, Buckinghamshire, U.K.), UV fixed, and hybridized with a DNA probe corresponding to the PCR fragment amplified using the primer pair HPXHO/HPKPN (within the AC1 gene, from 1,838 to 2,232 in the BGMV DNA-A genome), primer pair AC2F (5'-TGATCCTATATTGCAAGC-3')/AC2R (5’-AGGTTGGA ATCCCCATCAATCCTG-3') (within the AC2 gene, position 1,526 to 1,751 in the BGMV DNA-A genome), and primer pair AC3F (5’-TGTTGCGGAAACGACTCAGC-3')/AC3R (5’- CACACGACCAGGATATCCAC-3') (within the AC3 gene, from 1,700 to 1,392 in the BGMV DNA-A genome). Probes were labeled with α-32P dCTP using a random primer DNA labeling kit (Amersham Pharmacia Biotech) according to the manufacturer’s instructions. Hybridization and posthybridization washes were conducted as described (Yoo et al. 2004). Three oligomers (18, 24, and 44 nucleotides) were used as molecular size markers. AC1-, AC2-, and AC3-sequence-related 21-nucleotide oligomers were used as positive controls.

For temperature treatment, plants at 1 week after germination were maintained in a growth chamber (Conviron, Winnipeg, Canada) at 15, 25, and 35°C, 85% relative humidity, under light intensity of 200 μmol m-2 s-1 (16 h of light and 8 h of dark) for a period of 1 week. Leaves were collected for total RNA extraction as described.

Southern blot analysis.

Genomic DNA was isolated using the DNeasy Plant Mini Kit (Qiagen, Valencia, CA, U.S.A.). Southern blotting was carried out as described (Sambrook and Russell 2001). Genomic DNA (15 μg) was digested with XhoI, separated on a 1% agarose gel, and transferred to a nylon membrane (Hybond-N+; Amersham Pharmacia Biotech). Hybridizations were carried
out using the intron from pdk gene (Wesley et al. 2001) present in the vector pBGMVpRNAiAHAS, labeled with ^{32}P dCTP (3000 Ci mol$^{-1}$) using a random primer DNA-labeling kit (Amersham Pharmacia Biotech) according to the manufacturer’s instructions.

Plant inoculation with BGMV and symptom evaluation.

Transgenic plants (T_0 generation) were inoculated with BGMV by exposure for 2 to 3 days to 70 viruliferous whiteflies. Transgenic advanced generations were analyzed for their resistance to BGMV by a very high inoculation pressure, using 110 to 357 viruliferous whiteflies per plant for a period of up to 13 days, using 8-day-old seedlings. A viruliferous whitefly colony was maintained on *P. lunatus* L. and *Glycine max* Merrill, with the periodic replacement of older plants by young ones. After the inoculation period, the insects were removed and the plants transferred to an insect-free greenhouse for symptom development and evaluation. Evaluations were carried out by recording the first date of vein clearing, and then daily until full disease symptoms had developed. In all, 20 to 25 plants of each transgenic or nontransgenic bean cultivar were used for each experiment.

To compare the resistance observed in line 5.1 with a tolerant transgenic transdominant line (Faria et al. 2006), homozygous plants (R_3 generation) were germinated in the presence of the viruliferous whitefly colony. Plants were maintained in contact with viruliferous whiteflies during a period of 38 days. Whiteflies were not eliminated during the evaluation period. Evaluations were done by recording the first date of vein clearing and then daily until full disease symptoms had developed on control plants.

PCR analysis for virus detection.

PCR analyses were carried out to detect BGMV in bean leaves using the protocol described above. Primers 5′-TTGTGCAGAAGCTCACGCCTC-3′ (AC3F) and 5′-CACAACGACAGTATACCAC-3′ (AC3R) were used to amplify a 223-bp sequence from the BGMV genome (DNA-A).

For semiquantitative analyses, PCR reactions were carried out as described above, except that 30 cycles of amplification were used. The number of amplification cycles previously was optimized to stop the reaction at the exponential stage, ensuring that amplification was semiquantitative. As an internal control, primers rRNA1 (5′-AAAGCCTCACCATCAAGG-3′) and rRNA2C (5′-TCATTACTCGATCCGAAG-3′) were used to amplify a sequence of 458 bp within the *P. vulgaris* 185 RNA gene (TIGR *P. vulgaris* Gene Index, TC238). Experiments were repeated twice.

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support of FINEP (Financiadora de Estudos e Projetos). K. Bonfim was supported by a fellowship from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

LITERATURE CITED

low leaf curl virus infection in transgenic tomato plants. Transgenic Res. 15:291-304.

