FASES NÃO-CRISTALINAS ASSOCIADAS AOS SOLOS DA FORMAÇÃO SOLÍMÕES NO ACRE

Marcelo Metri Corrêa(1); José Coelho de Araújo Filho(2); Paulo Klinger Tito Jacomine(3)

(1) Professor da Universidade Federal Rural de Pernambuco, Unidade Acadêmica de Garanhuns, marcelometri@yahoo.com; (2) Pesquisador da Embrapa Solos UEP Nordeste, coelho@uep.cnps.embrapa.br; (3) Professor da Universidade Federal Rural de Pernambuco, Departamento de Agronomia, pauloklinger@hotmail.com

INTRODUÇÃO

Procurando verificar a existência de Andossolos (Andisols no Soil Taxonomy) no território brasileiro, foi realizada viagem de estudos de solos no Acre, na década de 1970, para exame de diversas classes de solos na região de Sena Madureira. A partir das observações de campo e outras informações, foram selecionados perfis, com morfologia semelhante aos atuais Argissolos Vermelhos-Amarelos, para dar suporte ao projeto de Tese do Pesquisador José Raimundo Gama. O projeto foi desenvolvido em seguida com o objetivo central de verificar se as características dos solos poderiam indicar a presença de Andossolos no Acre. Os resultados mostraram que não se tratavam de Andossolos, entretanto os solos apresentavam apreciáveis quantidades de materiais “amorfos” que estão entre as características dos Andossolos.

Segundo o Soil Taxonomy, os Andisols são solos que apresentam propriedades ândicas, ou seja, com presença significativa de alofana, imogolita, ferrihydrita ou complexos Al-húmicos. Esses compostos desenvolvidos, comumente, a partir de material de origem rico em vidros vulcânicos, em conjunto, eram reconhecidos como “amorfo”, porém sendo entendido que continham o mineral alofana, conforme consta na edição de 1975 do Soil Taxonomy. Solos com morfologia similar aos caracterizados no projeto de José Raimundo Gama foram constatados na viagem de descrição e coleta de perfis para a IX RCC no Estado do Acre. Desta forma, pela necessidade de aprofundar as investigações no contexto dos referidos solos, foi consenso desenvolver esta pesquisa com o objetivo de avaliar a presença de frações não-cristalinas em horizontes selecionados nos solos que fazem parte do roteiro da IX RCC no Estado do Acre. Estes resultados serão importantes, não só para os estudos de gênese e morfologia de solos, mas também para as interpretações de uso e manejo agrosilvopastoril.

MATERIAIS E MÉTODOS

Solos Amostrados

Foram utilizadas amostras selecionadas a partir do horizonte subsuperficial (B) de quatro perfis de solos do roteiro da IXRCC (Tabela 1) para avaliar as propriedades ândicas. Para fins comparativos, utilizou-se uma amostra de referência considerada isenta de materiais com estas propriedades, proveniente de horizonte Bw de Latossolo Amarelo da região da Chapada do Araripe.

Ferro, Alumínio e Silício Extraídos por DCB e Oxalato de Amônia

Os elementos ferro, alumínio e silício na fração TFSA foram determinados por espectroscopia de emissão de plasma (ICP-AES), após extrações seletivas por três métodos. As extrações com ditionito-citrato-bicarbonato de sódio (DCB) (Mehra & Jackson, 1960), foram realizadas em três etapas sucessivas, com aquecimento de 15 minutos a 60°C e relação solo:extrator de 1:10. Os mesmos elementos foram extraídos por uma única extração

Percentagem de Amorfo

Após extração com oxalato de amônio, o resíduo de TFSA (sobrenadado) foi lavado duas vezes com álcool a 85%, seco em estufa à 105°C e pesados. Por diferença, determinou-se o percentual de amorfo. Considerou-se como massa inicial para o cálculo, o valor de TFSA corrigido por meio de fator de umidade em base de solo seco em estufa a 105°C.

Superfície Específica

A superfície específica (SE) da TFSA foi determinada por meio do método de sorção de vapor de água (Quirk, 1955). Para tanto, foram utilizadas amostras de 1 g de TFSA, que permaneceram em dessecador com P2O5 até atingir peso constante (8 dias). Em seguida, essas amostras foram postas em outro dessecador com acetato de potássio, durante o mesmo intervalo de tempo. De acordo com o método, a superfície específica pode ser obtida pela diferença de peso entre estes dois tratamentos.

RESULTADOS E DISCUSSÃO

Fe, Si e Al Extraídos por DCB, Oxalato de Amônio e Pirofosfato de Sódio

Os resultados de ferro, alumínio e silício extraídos por DCB, por oxalato de amônio e pirofosfato de sódio são apresentados na Tabela 1. Em geral, os solos apresentam baixos teores de ferro extraído por DCB (Fed), variando de 0,80 a 3,13 dag kg⁻¹, sugerindo pobreza desse elemento no material de origem (sedimentos da Formação Solimões, para solos do Acre, e arenitos para o Latossolo Amarelo (LA) da Chapada do Araripe). Mesmo considerando o somatório de todas as extrações pelo DCB, são baixos os teores de óxidos de Fe nos solos estudados, sendo o maior valor observado para o perfil AC-P04 (PV), de 3,13 dag kg⁻¹.

Os teores de ferro extraídos por oxalato de amônio (Feo) variaram entre 0,04 a 0,49 dag kg⁻¹, sendo o valor mais baixo encontrado na amostra de referência (Chapada do Araripe). Para os solos do Acre, os conteúdos variaram entre 0,19 a 0,49 dag kg⁻¹, de modo que a relação Feo/Fed variou de 0,11 a 0,45. Tais valores indicam presença marcante de formas de ferro de baixa cristalinidade, conferidas pelo ambiente mais úmido em que se encontram os solos da região Amazônica. Para o Latossolo Amarleol da Chapada do Araripe, a relação muito baixa (0,05) sugere domínio de formas de ferro de melhor cristalinaidade.

Foram verificados teores de alumínio extraído por DCB (Ald) entre 0,21 e 0,65 dag kg⁻¹, superiores aos extraídos por oxalato (Alo). Comportamento inverso foi observado para o silício. Os valores de Ald e Alo foram semelhantes àqueles descritos por Johas et al. (1997) para solos do Acre. Nos solos estudados, os altos valores de Alo (0,36 a 0,66 dag kg⁻¹) sugerem a ocorrência de formas de óxidos e hidróxidos de alumínio de baixa cristalinaidade. Contudo, a ocorrência de alofâna e imogolita não pode ser inferida em razão dos baixos valores da relação (Alo-Alp)/Sío, entre 0,36 e 1,32, e ausência de significância entre os valores de Sío e Alo. Comparativamente o conteúdo de Alo e Ald dos solos da IX RCC Acre foi, em média, 2,5 vezes superior ao Latossolo da Chapada do Araripe.

A correlação significativa (p<0,05) entre os valores de Ald e Fed deve-se, provavelmente, a presença marcante do alumínio na estrutura dos óxidos de ferro cristalinos dos solos estudados, sendo reflexo da condição pedoecológica reinante. Em geral, altos valores de substituição isomórfica (SI) sugerem ambiente de acentuada intemperização, não hidromó-
fico, e sob condição ácida (alta atividade de alumínio) (Fitzpatrick e Schuwerthmann, 1982),
coerente com as atuais condições ambientais da região de coleta dos solos.

Foi observada pouca diferenciação entre os teores de SiO para os solos estudados. Contudo, nítida diferenciação foi identificada para os valores de Sid. Comparativamente os teores de Sid dos solos da IX RCC foram cerca de cinco vezes maiores do que no Latossolo da Chapada do Araripe.

Nos solos estudados não foi detectado Fe extraído por pirofosfato de sódio (Fep). Para Al e Si (Alp e Sip) foram identificados baixos conteúdos, indicando pouca participação de complexos organo-metálicos no conteúdo total desses elementos nos horizontes susbsuperficiais dos solos estudados.

Os percentuais de “amorfos” variaram entre 3,6 e 6,8 dag kg-1 na TFSA nos solos da IX RCC, sendo, portanto, inferiores aos valores encontrados por Gama (1986). Os valores mais baixos (2,3 dag kg-1) foram constatados no solo de referência (Latossolo Amarelo) da região da Chapada do Araripe.

Identificação de Propriedades Ândicas

De acordo com o Soil Taxonomy (Soil Survey Staff, 2010), as propriedades ândicas podem ser conferidas pelo intemperismo de materiais de origem que apresentam quantidades significativas de vidro vulcânico. Tais propriedades representam uma etapa de transição, em que o intemperismo e a transformação de aluminossilicatos primários no solo (por exemplo, vidro vulcânico) formam quantidades significativas de matérias de “vida curta”, tais como alofanas, imogolitas, ferridrita e complexos organo-metálicos. Os critérios utilizados para sua identificação incluem determinações analíticas por meio do oxalato de amônia pH 3,0, retenção de fosfatos e percentagem de vidro vulcânico na fração areia, além de determinações físicas como a densidade do solo.

No solos estudados, não foram identificados teores de Alo e Sio que possibilitassem sugerir a presença dos referidos aluminossilicatos amorfos. Os valores das relações (Alo-Alp)/Sio mostraram-se bem abaixo dos valores exigidos para essa inferência (menores que 2,0).

Pela relação Alo + ½Feo, utilizada como critério na avaliação de propriedades ândicas, tem-se as seguintes condições a se observar. O material para ter propriedades ândicas (Soil Survey Staff, 2010) deve ter menos de 25% de carbono orgânico (CO) e atender uma das condições a seguir: (a) densidade de 0,90 g cm-3 ou menor; retenção de fosfatos de 85% ou maior; e (Alo + ½Feo) > 2%; ou (b) silte + areia soma mais de 30% na TFSA; retenção de fosfatos de 25% ou maior; (Alo + ½Feo) >0,4%; conteúdo de vidro vulcânico mínimo de 5%. Conforme conteúdo de argila dos solos estudados, eles devem ser observados pela condição (a). Porem, sendo os valores (Alo + ½Feo) menores que 2% (Tabela 1), esses solos não apresentariam propriedades ândicas por esse critério.

CONCLUSÕES

Os valores da relação Feo/Fed sugerem presença marcante de formas de óxidos de ferro de baixa cristalinidade; Os valores de Si, Al e Fe extraídos por pirofosfatos, oxalato e DCB, além das relações calculadas de (Alo-Alp)/Sio e Alo + ½Feo, são indicativos que os solos da região do Acre não apresentam propriedades ândicas.

AGRADECIMENTOS

Agradecemos aos discentes do curso de Agronomia da UAG, Danilo de Lima Camê-lo e Karlos Henrique V. Santos, pelo auxílio na realização das análises.
REFERÊNCIAS BIBLIOGRÁFICAS

Tabela 1. Teores de Fe, Si e Al extraídos por pirofosfato de sódio, ditonito-citrato-bicarbonato (DCB) e por oxalato de amônio pH 3,0, substituição isomórfica de ferro por alumínio, percentagem de amorfos e superfície específica dos solos estudados.

<table>
<thead>
<tr>
<th>Perfil</th>
<th>Hor.</th>
<th>Prof.</th>
<th>Oxalato de amônio</th>
<th>DCB (1/1)</th>
<th>Fe(\text{Al}+\text{Fe}_{\text{Al}})</th>
<th>Al(\text{Al}_{\text{Al}})</th>
<th>Amorfo</th>
<th>S.E. (2/1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Solo)</td>
<td></td>
<td></td>
<td>F(\text{Fe}_2\text{O}_3)</td>
<td>Si(\text{O}_2)</td>
<td>Al(\text{Al}_2\text{O}_3)</td>
<td>Fe(\text{O}_2\text{O}_3)</td>
<td>SiO(\text{O}_2)</td>
<td>Al(\text{Al}_2\text{O}_3)</td>
</tr>
<tr>
<td>AC-P04</td>
<td>BC(_1)</td>
<td>64-109</td>
<td>0,00</td>
<td>0,01</td>
<td>0,07</td>
<td>0,34</td>
<td>1,14</td>
<td>0,43</td>
</tr>
<tr>
<td>AC-P05</td>
<td>BC(_2)</td>
<td>67-87</td>
<td>0,00</td>
<td>0,03</td>
<td>0,14</td>
<td>0,38</td>
<td>1,11</td>
<td>0,54</td>
</tr>
<tr>
<td>AC-P06</td>
<td>BC(_2)</td>
<td>38-59</td>
<td>0,00</td>
<td>0,03</td>
<td>0,06</td>
<td>0,49</td>
<td>0,63</td>
<td>0,37</td>
</tr>
<tr>
<td>AC-P08</td>
<td>Bt</td>
<td>100-138</td>
<td>0,00</td>
<td>0,03</td>
<td>0,15</td>
<td>0,32</td>
<td>0,63</td>
<td>0,66</td>
</tr>
<tr>
<td>AC-P09</td>
<td>Bt</td>
<td>60-81</td>
<td>0,00</td>
<td>0,07</td>
<td>0,12</td>
<td>0,19</td>
<td>0,61</td>
<td>0,45</td>
</tr>
<tr>
<td>AC-P09</td>
<td>Bt</td>
<td>60-102</td>
<td>0,00</td>
<td>0,10</td>
<td>0,07</td>
<td>0,24</td>
<td>0,63</td>
<td>0,36</td>
</tr>
<tr>
<td>Refer. LA</td>
<td>Bw</td>
<td>150-200</td>
<td>0,00</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0,04</td>
<td>0,59</td>
<td>0,15</td>
</tr>
</tbody>
</table>

1/ Ditonito-citrato-bicarbonato.
2/ relação molar Al/Si calculada pela equação [(Al\(\text{Alp}\)/SiO\(\text{O}_2\)] 1,037 (Partfitt e Kimble, 1989), dados iniciais em ppm.
3/ Superfície específica em m\(^2\) por grama de TFSA.
n.d. = não determinado.

Ref. LA = solo de referência, Latossolo Amarelo, Chapada do Araripe