Editorial

Dear readers,

In this edition of e-ifc we bring an agricultural report from Sudan. This country, the largest in Africa, enjoys the flow of the Nile river as well as good precipitation in its southern part. Hence there are ample of opportunities for agri development, which can provide food for its hungry and neighboring countries.

IPI has started agricultural activities in sub-Saharan Africa in 2008 (in fact we did have activities in South Africa in the 80s) with much hope to assist in increasing and improving sustainable food production. Our joint project in Mozambique (see details on IPI website) does provide some very interesting entry points to what can be done in the continent.

We believe that agricultural development in Africa during the next decade will play a crucial role in the global food production.

And on another issue: “Agricultural extension services should be a key component of any strategy to ensure that science developments are appropriately developed and targeted. These services provide a mechanism for informing farmers about new technological developments, as well as providing a route for feedback from farmers to the research base. They also help inform the research community so that technological innovation is appropriately targeted. Extension services also help farmers work together for the benefits of food output and the environment.” This quote is from the report by The Royal Society, published in October 2009, titled “Reaping the Benefits: Science and Sustainable Intensification of Global Agriculture” (http://royalsociety.org/Reapingthebenefits/). The report describes the future role of biological science in the sustainable intensification in global food production. The report also dedicates room for Extension and Technology Transfer, yet, interestingly, the authors highlight the role of a two way connection between research and farmers. Often we say “disseminate”, or “deliver” (knowledge), which means a one way flow of knowledge, from “top” to “bottom”. But we tend to ignore the feedback from farmers to improve and adjust research - or from “bottom” to “top”. This is beyond being just politically correct. It is indeed a way of doing things right.

I wish you all an enjoyable read.

Hillel Magen
Director

Contents:

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editorial</td>
<td>1</td>
</tr>
<tr>
<td>Research Findings</td>
<td>2</td>
</tr>
<tr>
<td>• Status of Fertilization and Crop Nutrition in Irrigated Agriculture in Sudan 1: Fertilizer Use in Sudan</td>
<td>6</td>
</tr>
<tr>
<td>• Potassium Extracting Power: A Key Factor in Determining the Efficiency of the Sodium Tetraphenylboron Method in the Evaluation of Plant Available Soil K as Assessed by Sequential Ryegrass Cropping</td>
<td>10</td>
</tr>
<tr>
<td>• Profitability of Potassium Fertilization of Alfalfa Pasture</td>
<td>14</td>
</tr>
<tr>
<td>Events</td>
<td>16</td>
</tr>
<tr>
<td>New Publications</td>
<td>18</td>
</tr>
<tr>
<td>K in the Literature</td>
<td>23</td>
</tr>
</tbody>
</table>

Participants of the IPI-OUAT-IPNI symposium during a pre-symposium field trip to an integrated farming system project conducted in eight villages of Puri district near Konark, Orissa, India. The project involved 1,065 farm families involved in livestock raising, freshwater fish farming, and vermi-composting programs, amongst others. Photo by IPI.
Research Findings

Profitability of Potassium Fertilization of Alfalfa Pasture

Bernardi, A.C. de C., and F.C. Mendonça(1).

Methods

The results obtained from alfalfa dry matter yield due to potassium fertilizer treatment were used to simulate pasture stocking rate, milk production, production cost and resulting net profit. The methodology for costing was based on the cost sheet drawn up by Vinholis et al. (2008) for a Brazilian intensive dairy cattle production system, where the forage diet of the cows consisted of pasture alfalfa and Cynodon spp. cv Tifton 85, and sugarcane provided during the winter (dry season).

The following data was used in the simulation:

a. Average cow live weight (LW) = 550 kg;
b. Cow dry matter (DM) consumption = 3.05% of LW, corresponding to 16.8 kg day⁻¹ of DM;
c. The alfalfa pasture grazing represented 14% of the total of cow dietary consumption, and 20% of the forage consumption (Vinholis et al., 2008).

Estimation of the stocking rate and the milk production was made using the following equations:

i) Stocking rate

\[\text{SR} = \frac{\text{DM} \times \text{GE}}{\text{AGN} \times \text{GI} \times \text{DIFC}} \]

Where:

- **SR** = stocking rate in the alfalfa pasture, animal ha⁻¹
- **DM** = dry matter yield, kg (according to Bernardi and Rassini, 2009)
- **GE** = grazing efficiency \(\text{GE} = 0.7 \)
- **AGN** = annual number of grazing events
- **GI** = grazing interval, days (30 days)
- **DIFC** = daily individual forage consumption, kg of dry matter/cow/day

ii) Milk production

\[\text{MP} = \frac{\text{SR} \times \text{MY} \times 365}{1 + (\text{TPIA} + \text{SCI}) \times \text{SR}} \]

Where:

- **MP** = annual milk production, liters ha⁻¹ year⁻¹
- **MY** = daily milk yield, liters cow⁻¹ day⁻¹ (20 liter cow⁻¹, 4% fat content)
- **TPIA** = tropical pasture individual area,
Research Findings

ha cow⁻¹ (TPIA = 0.125 ha cow⁻¹)

SCIA = sugarcane individual area, ha cow⁻¹ (SCIA = 0.043 ha cow⁻¹)

Note: TPIA and SCIA are the areas of tropical pasture and sugarcane used for feeding the cows that also graze in 1 ha of alfalfa.

iii) Milk cost production

\[MCP = \frac{TPC}{MP} \]

Where:

MCP = milk cost production, US$ L⁻¹
TPC = total production cost of milk, US$ L⁻¹
MP = annual milk production, liter ha⁻¹ year⁻¹

iv) Net profit

\[NP = GR - MCP \]

Where:

NP = net profit, US$ L⁻¹
GR = gross revenue, US$ L⁻¹
MCP = milk cost production, US$ L⁻¹

The net profit estimation was obtained by profit functions, considering four scenarios, provided by using a combination of two cost levels for milk and potash, representing a realistic fluctuation in prices (Table 1).

The currency exchange rate used was US$ 1.00 = BRL 1.80. The data was submitted to the statistical analysis of variance for detecting differences among treatments, and crop response functions to the potassium fertilizer were adjusted.

Results

Previous results of Bernardi and Rassini (2009) show an increase in alfalfa DM yield as potassium fertilization increased. Considering two alfalfa seasons, the use of 1,420 kg ha⁻¹ per year of K₂O applied after every two cuttings (6 applications per year) increased alfalfa dry matter yield up to 30,500 kg ha⁻¹. These results also indicate that adequate potassium supply increases the stand longevity, since a yield reduction from first year to second was greater with lower levels of potassium fertilization.

Stocking rate is a key management variable in determining productivity and profitability of grazing systems, since this index determines quality and use efficiency of forage, animal performance and milk production per area (Fales et al., 1995).

Planting the estimated stocking rate of alfalfa pasture (Fig. 1A) and milk production (Fig. 1B) against rate of potassium fertilization show, in both cases a quadratic relationship with maximum values at around 1,500 and 1,380 kg ha⁻¹ per year of K₂O, respectively. Potassium application increased the average stocking rate by approximately 30 percent from 15 (zero K) to more than 20 animals ha⁻¹, and milk production from 30,000 to 34,000 kg ha⁻¹ yr⁻¹. Under good alfalfa pasture growth conditions, as with balanced nutrient supply, higher stocking rates were improved due to increased DM yield production as previously observed by Bernardi and Rassini (2009). Results of this simulation study show that alfalfa pasture, adequately fertilized with potassium fertilizer, is capable of supporting high stocking rates and high milk production per hectare. Therefore, as shown by Fales et al. (1995), the optimal stocking rate for a given dairy farm depends on individual farm resources (e.g., land, buildings, cows, etc.), and can be adjusted to meet the constraints of those resources without fear of significant adverse economic impact.

Fig. 2 (A to D) describe the polynomial regression curves of the net profit

![Fig 1. Estimate of stocking rate (A) for alfalfa pasture and milk production (B) according to levels of potassium fertilizer for 1st and 2nd crop seasons, and averages for the two growing seasons.](image)

Table 1. Scenarios for simulations with two price levels for milk and potash.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Milk price (US$ L⁻¹)</th>
<th>Potash price (K₂O) (US$ kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.278</td>
<td>0.833</td>
</tr>
<tr>
<td>B</td>
<td>0.278</td>
<td>1.167</td>
</tr>
<tr>
<td>C</td>
<td>0.444</td>
<td>0.833</td>
</tr>
<tr>
<td>D</td>
<td>0.444</td>
<td>1.167</td>
</tr>
</tbody>
</table>

![Table 1](image)
Research Findings

functions of dairy production according to levels of potassium fertilizer for 1st and 2nd cropping seasons, and the averages of the two growing seasons in the four studied scenarios of milk and potassium fertilizer prices. Profit was estimated as a function of income and expenses associated with maintenance and production of dairy cows during one year in a system described by Vinholis et al. (2008).

Income and expenses were calculated by multiplying the actual requirements of various commodities with the low and high price scenarios. Estimated profit functions serve as a useful aid in economic decisions for alfalfa fertilization other than dry matter yield curves alone.

Net profit was in the range of $US 0.05 to 0.5 per liter of milk. At the low milk price (US$ 0.278 L⁻¹), profitability was low at less than US$ 0.2 per liter of milk (Fig. 2A and 2B). Higher potash prices significantly reduced the net profit. In both scenarios (A and B), the maximum profit for K₂O doses was obtained with 1,212 kg/ha for the lower price of potash (US$ 0.833) and 1,045 kg/ha for the higher price of potash (US$ 1.667).

Under high milk prices (US$ 0.444 L⁻¹), profitability improved to between US$ 0.4 to 0.5 per liter of milk and was not affected by any change in potash price (Fig. 2C and D). The reason for this is the high agronomic response of alfalfa to potash supply so that, even with the additional cost of heavier potash applications, profitability of milk production was maintained; profitability being more sensitive to the price of milk than price of potash fertilizer.

Net profit was in the range of $US 0.05 to 0.5 per liter of milk. At the low milk price (US$ 0.278 L⁻¹), profitability was low at less than US$ 0.2 per liter of milk (Fig. 2A and 2B). Higher potash prices significantly reduced the net profit. In both scenarios (A and B), the maximum profit for K₂O doses was obtained with 1,212 kg/ha for the lower price of potash (US$ 0.833) and 1,045 kg/ha for the higher price of potash (US$ 1.667).

The results indicate that the variation in total net profit accounted for by milk price was much greater than that accounted for by potassium fertilizer price. This is because the fertilizer represents 27 percent of the total cost of milk production (Vinholis et al., 2008). Furthermore, the results show that even with a scenario of high prices of potassium fertilizer (Fig. 2B and D) this nutrient should not be neglected, due to the clear positive effects on production of alfalfa (Bernardi and Rassini, 2009). The price of input has little influence on production costs since the income associated with milk production is much more associated with yields produced than potash fertilizer price.

These results encourage further investigations toward estimating economic returns of alfalfa pasture grown in tropical acid low fertility soils.

The results indicate that the variation in total net profit accounted for by milk price was much greater than that accounted for by potassium fertilizer price. This is because the fertilizer represents 27 percent of the total cost of milk production (Vinholis et al., 2008). Furthermore, the results show that even with a scenario of high prices of potassium fertilizer (Fig. 2B and D) this nutrient should not be neglected, due to the clear positive effects on production of alfalfa (Bernardi and Rassini, 2009). The price of input has little influence on production costs since the income associated with milk production is much more associated with yields produced than potash fertilizer price.

These results encourage further investigations toward estimating economic returns of alfalfa pasture grown in tropical acid low fertility soils.
Research Findings

Conclusion

Estimated profit functions are a useful aid in economic decisions for alfalfa fertilization than dry matter yield curves alone. The maximum profit for K2O doses were obtained at 1,212 kg ha\(^{-1}\) for the lower prices of potash and 1,045 kg ha\(^{-1}\) for the higher prices of potash. The net profit is more sensitive to price fluctuations of milk than to that of potash and, even after the costs of the high level of potash required for alfalfa fertilization, milk production can still be highly profitable.

Under the price relationship scenarios studied, a profitable strategy for increasing productivity is the maintenance of balanced fertilized pasture for more intensive grazing to produce more milk. More intensive dairy production by judicious fertilization of legume pastures and greater stocking density is a valuable strategy for producers to improve net economic returns under current conditions.

References

