Digita um e tempo de trânsito gastrointestinal de dietas contendo níveis crescentes de fibra bruta para pacu

Laurindo André Rodrigues¹, Thiago El Hadi Perez Fabregat², João Batista Kochenborger Fernandes², Thiago Matias Torres Nascimento² e Nilva Kasue Sakomura³

¹Centro de Pesquisa Agropecuária do Meio Norte, Empresa Brasileira de Pesquisa Agropecuária, BR 343, km 35, Cx. Postal 341, 64200-970, Parintins, Amazonas, Brasil. ²Centro de Aquicultura, Universidade Estadual Paulista “Julio de Mesquita Filho”, Jaboticabal, São Paulo, Brasil. ³Departamento de Zootecnia, Universidade Estadual Paulista “Julio de Mesquita Filho”, Jaboticabal, São Paulo, Brasil. “Autor para correspondência. E-mail: laurindo@cparanambrapa.br

RESUMO. O objetivo deste trabalho foi avaliar a digestibilidade e o tempo de trânsito gastrointestinal (TTGI) de dietas contendo níveis crescentes de fibra bruta (FB) para pacus. Para avaliar a digestibilidade foram utilizados 288 pacus, em delineamento inteiramente casualizado, alimentados em aquários e transferidos para coletores do tipo Guelf Modificado, utilizando-se o método de coleta parcial de fezes. As rações foram marcadas com 1% de óxido de crômio para a determinação da digestibilidade das dietas. No ensaio de TTGI, 288 pacus foram distribuídos em 24 aquários em delineamento inteiramente casualizado e alimentados com rações contendo 1% óxido de titânio ou crômio, que apresentam cores diferentes, verde ou branco, respectivamente. Por meio de massagem abdominal foi averiguada periodicamente a cor das fezes e o TTGI foi estabelecido quando as fezes de todos os peixes apresentaram cor verde. Os coeficientes de digestibilidade aparente das dietas e o TTGI foram reduzidos com aumento do nível de FB nas dietas. Conclui-se que em dietas para pacus pode-se empregar até 9% de FB sem efeito negativo na digestibilidade da energia, proteína, matéria seca e extrato etéreo e sem alterar o TTGI.

Palavras-chave: nutrição, peixes nativos, Piaractus mesopotamicus.

ABSTRACT. Digestibility and gastrointestinal transit time of diets with increasing dietary fiber levels to pacu. This work aimed to evaluate the effect of increasing dietary fiber levels on the digestibility and gastrointestinal transit time (GTT) for pacu. The digestibility trial used 288 pacu in a completely randomized design, fed in aquarium and transferred to a modified Guelf-type feces collector, using the partial sampling method. The inert marker on the diets was chronic oxide (1%) to establish the diet digestibility. In the GTT assay, 288 pacu were distributed in 24 aquarium in a completely randomized design. Fish were fed with two colored diets – green and white – and feces color was determined after abdominal pressure. The white and green diets used 1% of titanium and chronic oxides, respectively. Total GTT was determined when all fish showed green feces. The apparent digestibility coefficients and GTT of diets decreased as dietary fiber levels increased. These results indicated that 9% dietary fiber can be used in pacu diets without negative effects on energy, protein, crude fiber and ether extract digestibility and GTT.

Key words: nutrition, native fish, Piaractus mesopotamicus.

Introdução

A fibra dietária é uma complexa mistura de polímeros de carboidratos associados a outros componentes. A fibra não se constitui em um grupo químico definido, é combinação de substâncias quimicamente distintas como celulose, hemicelulose, pectina, lignina e polissacarídeos, constituintes da parede celular de plantas (THEBAUDIN et al., 1997). Os polissacarídeos não-amiláceos são os principais formadores da fibra, sendo divididos em solúveis e insolúveis (AMIRKOLAEI et al., 2005).

de trânsito pelo aumento na secreção de fluidos endógenos, aumentando a ação do peristaltismo (WENK, 2001), o que pode ocasionar redução na digestibilidade dos nutrientes (KRITCHEVSKY, 1988; CHOCT, 1997).

Em estudo com fibra dietária, Montagne et al. (2003) relataram que as fibras solúveis aumentam o tempo de trânsito, prejudicam a absorção de glicose e reduzem a velocidade de absorção, enquanto fibras insolúveis reduzem o tempo de trânsito e aumentam a capacidade de retenção de água em animais monogênicos. Estudos com dietas para peixes demonstram alterações no crescimento e no aproveitamento da dieta quando o nível de fibra é elevado. Dioundiek e Storm (1990) relataram que tilápias (Oreochromis mossambicus) alimentadas com 2,5 e 5% de celulose na dieta apresentaram crescimento melhor em relação àqueles alimentadas com dietas contendo 10% de celulose.

Por outro lado, Shau e Liang (1994) relataram depleção no crescimento e digestibilidade dos nutrientes em alevinos de tilápias alimentados com ração com altos níveis de fibra pela redução da digestibilidade. Lunn et al. (2004) observaram, em estudo com tilápias (Oreochromis niloticus), que níveis crescentes de fibra bruta (FB) interferem significativamente na digestibilidade aparente e no tempo de trânsito gastrintestinal. Segundo Amirkolaie et al. (2005), a adoção de até 8% de celulose em dietas de tilápias não apresenta efeitos adversos no crescimento e coeficiente de digestibilidade dos nutrientes da dieta. Hilton et al. (1983) relataram que as trutas arco-íris (Salmo gairdneri) se adaptam à elevação do nível de fibra, aumentando o consumo da dieta. Por outro lado, o coeficiente de digestibilidade da matéria seca é reduzido proporcionalmente de acordo com o aumento da fibra dietária.

Storebakken (1985) relatou que a inclusão de fibras solúveis, em dietas para trutas arco-íris, reduziu a digestibilidade da proteína e da gordura. Em contraste, Morita et al. (1982) observaram melhora no crescimento e na eficiência da alimentação com o aumento da fibra. Dias et al. (1998) indicaram que a adoção de 10 ou 20% de celulose em dietas de bagre europeu (Dicentrarchus labrax) não alterou os resultados de crescimento, digestibilidade da proteína e a eficiência alimentar.

O pacu, Piaractus mesopotamicus, é uma espécie amplamente cultivada no Brasil, possui ampla distribuição geográfica e pode ser encontrado desde a bacia dos rios Paraná-Paraguai até a bacia do rio do Prata. É espécie oportunista que varia a fonte de alimentamento de acordo com a sazonalidade. Em estudo sobre o regime alimentar do pacu foi encontrado no seu estômago folhas, resíduo vegetal e raramente restos e esqueletos de peixes e moluscos, constatando que se trata de espécie frugívora-herbívora do tipo podador, e que pode tolerar níveis mais elevados de fibra em sua dieta. Realizou-se esta pesquisa com o objetivo de avaliar a influência de níveis crescentes de fibra bruta na digestibilidade da proteína, energia, matéria seca e extrato etéreo da dieta assim como no tempo de trânsito gastrintestinal em juvenis de pacu.

Material e métodos

Os experimentos foram realizados na Universidade Estadual Paulista no Centro de Aquicultura (Caunesp), Campus de Jaboticabal, Estado de São Paulo.

O ensaio de digestibilidade das dietas foi realizado no Laboratório de Nutrição de Organismos Aquáticos, utilizando 24 aquários de 120 L e seis coletores de fezes cilíndricos-cônicos do tipo Guell Modificado de 120 L. Foram utilizados 288 juvenis de pacu (Piaractus mesopotamicus) com peso de 43,0 ± 2,2 g, em delineamento inteiramente casualizado, com seis tratamentos e quatro repetições.

Os peixes foram alimentados durante cinco dias, sendo então transferidos em grupos provenientes de cada seis aquários para os coletores de fezes, segundo metodologia de Abomaral e Carneiro (2004). A temperatura da água manteve-se em 28°C. As análises do oxigênio dissolvido e pH da água foram realizadas durante o experimento com equipamentos eletrônicos.

As dietas experimentais foram formuladas com base nas exigências propostas para o pacu (FERNANDES et al., 2001) e continham níveis crescentes de fibra bruta (FB) (Tabela 1).

<table>
<thead>
<tr>
<th>Tabela 1. Formulção e composição das dietas experimentais.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Fariolo de soja</td>
</tr>
<tr>
<td>Soja integral torrada</td>
</tr>
<tr>
<td>Farinha de peixe</td>
</tr>
<tr>
<td>Milho</td>
</tr>
<tr>
<td>Amido de milho</td>
</tr>
<tr>
<td>Farro de trigo</td>
</tr>
<tr>
<td>Óleo de soja</td>
</tr>
<tr>
<td>Suplementos</td>
</tr>
<tr>
<td>Cálculo</td>
</tr>
<tr>
<td>Celulose</td>
</tr>
<tr>
<td>Marcador</td>
</tr>
</tbody>
</table>

| Total | 100 | 100 | 100 | 100 | 100 | 100 |

Composição calculada:

Proteína Bruta (%) 25,72 25,74 25,74 25,73 25,72 25,72
Enegia Bruta (kcal kg⁻¹) 3,592 3,913 3,863 3,819 3,795 3,750
Enegia Digestível kcal kg⁻¹ 3,132 3,106 3,140 3,158 3,176 3,165
Extraído Etéreo (%) 6,53 6,60 6,55 6,53 6,55 6,65
Fibra Bruta % 5,04 7,07 9,20 11,26 13,27 15,37
Materia Mineral % 5,44 5,48 5,69 5,94 6,24 6,48
Calo (%) 1,57 1,57 1,58 1,58 1,58 1,58
Fosforo total (%) 0,66 0,67 0,73 0,79 0,88 0,91
Fosforo útil (%) 0,44 0,44 0,45 0,46 0,49 0,50

Suplementos vitamínico e mineral: Vitamin A: 500,000 UI; D3: 200,000 UI; E: 5,000 UI; K3: 1,000 mg; B1: 1,000 mg; B2: 1,000 mg; B6: 1,000 mg; B12: 1,000 mg; C: 15,000 mg; de folico: 500 mg; de biotina: 4,000 UI; de piridoxina: 4,000 mg; de nicotínico: 12,250 mg; de riboflavina: 50 mg; de nicotínico: 1,000 mg; de acetálica: 49,6 g; de cianocobalamina: 10 mg; de cobre: 500 mg; de ferro: 5,000 mg; de iodeto: 16 mg; de zinco: 10 mg; de selênio: 10 mg; de estrogênio: 5,000 mg; de iodo: 1,000 g; de cromato: 1,000 g; de estrogênio: 1,000 g; de cromato: 1,000 g.
A energia digestível das dietas foi calculada de acordo com os coeficientes de digestibilidade dos ingredientes apresentados por Abimorod e Carneiro (2004) e Fabregat et al. (2008). Foi adicionado 1% de óxido de crômio como marcador inerte e a principal fonte de fibra empregada nas rações foi a celulose (RHOSTER®, microfibra, com 98% de pureza e 78% de FB).

O crômio foi determinado pela metodologia de Furukawa e Tsukahara (1966) e a leitura em absorbância pelo espectrofotômetro de absorção atômica. Foram determinados os coeficientes de digestibilidade aparentes (CDA) da proteína, energia, matéria seca e extrato etéreo por meio da equação utilizada por Fabregat et al. (2008):

$$CDA = 100 - \left(\frac{100 \left(\frac{\% Cr_2O_3}{\% Cr_2O_3} \right)}{\left(\frac{\% N}{\% N} \right)} \right)$$

em que:
- \(\% Cr_2O_3\) = percentual de óxido de crômio na dieta;
- \(\% Cr_2O_3\) = percentual de óxido de crômio nas fezes;
- \(N\) = nutrientes na ração;
- \(N\) = nutrientes nas fezes.

O experimento de tempo de trânsito gastrintestinal foi realizado no Laboratório de Peixes Ornamentais com duração de dez dias. A temperatura da água dos aquários foi mantida a 28°C com utilização de aquecedor com termostato. As análises de oxigênio dissolvido e pH da água dos aquários foram realizadas no início e final do experimento.

Foram utilizados 288 juvenis de pacu, com peso de 48,25 ± 3,06 g, distribuídos em 24 aquários de 200 L, utilizando um delineamento inteiramente casualizado com seis tratamentos e quatro repetições. Para se determinar o momento em que o animal completou o tempo de trânsito gastrintestinal foram adicionados marcadores nas dietas (Tabela 1). Uma dieta foi acrescida de 1% de óxido de titânio, que lhe conferiu cor branca (dieta branca); e à outra foi adicionado 1% de óxido de crômio que lhe conferiu cor verde (dieta verde).

Durante cinco dias, os peixes foram alimentados com dieta branca antes de trocar para dieta verde. A partir do momento em que os peixes foram alimentados com a dieta verde foi marcado o horário inicial e, a partir daí, começou a contar o tempo de trânsito gastrintestinal. Oito horas após o início e a cada 2h foram coletadas as fezes.

Para a coleta das fezes, os peixes foram anestesiados com benzocaina (1 g 10 L\(^{-1}\) de água) e a coleta foi feita por massagem abdominal para averiguação da cor das fezes. A cada verificação eram dadas notas (0; 0,25; 0,5; 0,75 e 1,0), em função da tonalidade de cor verde das fezes. Quando todas as repetições apresentaram fezes totalmente verdes (média = 1,0) foi considerado completo o tempo de trânsito gastrintestinal (STOREBBKEN et al., 1998).

Os dados foram analisados utilizando o programa estatístico SAS para Windows versão 9.1, sendo os resultados submetidos à análise de variância (ANOVA) pelo teste de F. Quando foram observadas diferenças estatísticas entre os tratamentos, as médias foram comparadas pelo teste de Duncan (α = 0,05).

Resultados e discussão

Nos dois experimentos, a média de temperatura da água dos aquários se manteve próxima de 28°C, o teor de oxigênio dissolvido médio foi de 7,56 mg L\(^{-1}\) e a média de pH foi 7,40. Nas duas situações, os parâmetros de qualidade da água permaneceram dentro dos padrões estabelecidos para peixes tropicais (BOYD, 1990).

Os resultados de digestibilidade aparente da proteína, energia, matéria seca e extrato etéreo das dietas contendo níveis crescentes de fibra bruta na alimentação de juvenis de pacu estão apresentados na Tabela 2.

Tabela 2. Coeficientes de digestibilidade aparente da proteína bruta (CDAPB), energia bruta (CDAEB), matéria seca (CDAMS) e extrato etéreo (CDAEE) de dietas contendo níveis crescentes de fibra na alimentação de juvenis de pacu.

<table>
<thead>
<tr>
<th>% fibra bruta</th>
<th>CDAPB (%)</th>
<th>CDAEB (%)</th>
<th>CDAMS (%)</th>
<th>CDAEE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>90,03a</td>
<td>81,77a</td>
<td>77,31a</td>
<td>91,09a</td>
</tr>
<tr>
<td>7</td>
<td>89,83a</td>
<td>79,41a</td>
<td>74,29a</td>
<td>94,95a</td>
</tr>
<tr>
<td>9</td>
<td>88,87a</td>
<td>72,09ab</td>
<td>66,35ab</td>
<td>94,97a</td>
</tr>
<tr>
<td>11</td>
<td>83,89b</td>
<td>59,77bc</td>
<td>51,57bc</td>
<td>91,64b</td>
</tr>
<tr>
<td>13</td>
<td>82,78bc</td>
<td>46,07c</td>
<td>36,04c</td>
<td>88,35c</td>
</tr>
<tr>
<td>15</td>
<td>78,87c</td>
<td>46,36c</td>
<td>40,61c</td>
<td>89,50bc</td>
</tr>
</tbody>
</table>

CV: 3,45

1 Médias seguidas de mesma letra na coluna não diferem entre si pelo teste de Duncan (p < 0,05).

Os coeficientes de digestibilidade aparente da proteína, da energia, da matéria seca e extrato etéreo da dieta apresentaram redução significativa em função dos níveis de inclusão da fibra (p < 0,05). Até 9% de fibra bruta na dieta, não houve alteração significativa na digestibilidade das dietas. Ao ultrapassar este nível de inclusão de fibra na dieta, ocorreu redução nos valores de digestibilidade da proteína, energia, matéria seca e extrato etéreo.

Segundo Kritchevsky (1988), o uso de fibras insolúveis reduz a atividade de enzimas digestivas como amilase, lipase, tripsina e quimiotripsina; o
que pode ter proporcionado a redução na digestibilidade apresentada pelos pacus.

Os resultados apresentados pelo pacu (Tabela 2) diferem dos encontrados por Hansen e Storebakken (2007), em estudo com trutas arco-íris (Oncorhynchus mykiss). Esses autores observaram que com a inclusão de até 15% de celulose como fonte de fibra, não houve alteração dos coeficientes de digestibilidade dos nutrientes da dieta.

Dias et al. (1998) não verificaram efeito na digestibilidade da proteína em “European sea bass” (Dicentrarchus labrax) alimentados com 10 e 20% de celulose na dieta. Hilton et al. (1983) relatam que a elevação do nível fibra bruta, com inclusão de celulose, reduz o coeficiente de digestibilidade aparente da matéria seca da dieta indicando que a digestibilidade da fibra não é significativamente diferente de zero.

Amirkolaei et al. (2005), em trabalho com tilápias, verificaram que 8% de celulose, como fonte de fibra, não alterou o coeficiente de digestibilidade dos nutrientes, entretanto o emprego da goma guar, como fonte de fibra, proporcionou efeito negativo na digestibilidade.

A digestibilidade da proteína é mais afetada quando se utiliza fibra solúvel (pectina, goma guar) como fonte de fibra do que fibra insolúvel (celulose) que apresenta, na maioria dos casos, efeitos marginais (BACH KNUDSEN, 2001). Entretanto, níveis elevados de fibras insolúveis na dieta podem reduzir a digestibilidade dos nutrientes da dieta (CHOCT, 1997).

A redução da digestibilidade da energia e do EE nos maiores níveis de fibra pode ser atribuída ao fato da fibra agir na captação de micelas de gordura no intestino reduzindo a disponibilidade da energia (MADAR; THORNE, 1987).

Neste estudo, os níveis acima de 9% de fibra provocaram efeito negativo na digestibilidade, o que pode ser atribuído à característica da fibra insolúvel de reter maior quantidade de água no bolo alimentar dificultando a ação dos sais biliares e enzimas digestivas (THEBAUDIM et al., 1997; MONTAGNE et al., 2003).

O tempo de trânsito gastrintestinal foi alterado com a elevação dos níveis de fibra bruta na dieta acima de 9% (Tabela 3). Os resultados apresentaram duas modas para dois grupos de animais. Os animais alimentados com dietas contendo 5, 7 e 9% de fibra bruta tiveram o tempo de trânsito completo em 20h após a alimentação, enquanto os animais alimentados com níveis mais elevados (11, 13 e 15%) demonstraram redução no tempo de trânsito (p < 0,05), completando-o em 18h.

Tabela 3. Média das notas atribuídas às tonalidades de verde das fêmeas de juvenis de pacu alimentados com dietas contendo níveis crescentes de fibra bruta, em experimento para determinação do tempo de trânsito gastrintestinal.

<table>
<thead>
<tr>
<th>Fibra bruta na dieta (%)</th>
<th>16h</th>
<th>18h</th>
<th>20h</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0,70A</td>
<td>0,89A</td>
<td>1,00B</td>
</tr>
<tr>
<td>7</td>
<td>0,70A</td>
<td>0,90A</td>
<td>1,00B</td>
</tr>
<tr>
<td>9</td>
<td>0,75A</td>
<td>0,89A</td>
<td>1,00B</td>
</tr>
<tr>
<td>11</td>
<td>0,78A</td>
<td>1,00B</td>
<td>1,00B</td>
</tr>
<tr>
<td>13</td>
<td>0,82A</td>
<td>1,00B</td>
<td>1,00B</td>
</tr>
<tr>
<td>15</td>
<td>0,75A</td>
<td>1,00B</td>
<td>1,00B</td>
</tr>
</tbody>
</table>

Medias seguidas de mesma letra não diferem entre si pelo teste de Duncan (p < 0,05). Letras maiúsculas na linha representam os tempos de coleta e minúsculas na coluna os tratamentos.

Segundo Montagne et al. (2003), a elevação da fibra na dieta provoca aceleração do fluxo gastrintestinal causando perdas endógenas, com consequente redução do tempo de trânsito e da digestibilidade da proteína e extrato etéreo. Quando matérias indigestíveis são adicionadas à dieta, o alimento passa mais rapidamente pelo tubo digestório pelo aumento de volume (CHOCT, 1997). O alto nível de fibra insolúvel, como celulose, aumenta os movimentos peristálticos e com isso reduz o tempo de trânsito (WENK, 2001).

A redução no tempo de retenção do bolo alimentar foi determinada para os maiores níveis de inclusão de fibra bruta. Sugere-se que a capacidade das dietas com altos níveis de fibra de reter mais água possa ter contribuído com a redução do tempo de trânsito.

A retenção do bolo alimentar pelo trato digestório do animal é responsável pelo tempo que o alimento fica exposto aos processos digestivos e absorvivos do organismo e a redução do tempo de retenção influencia a eficiência desses processos (NRC, 1993).

Os resultados verificados na determinação do tempo de trânsito gastrintestinal das dietas corroboram os menores coeficientes de digestibilidade aparente observados pela adição de altos níveis de fibra bruta na dieta, resultado provável de menor digestão e absorção dos nutrientes e, consequentemente, redução na digestibilidade da dieta.

Conclusão

A inclusão de fibra bruta em dietas para juvenis de pacu pode ser de até 9%, sem efeito negativo na digestibilidade dos nutrientes da dieta e no tempo de trânsito gastrintestinal.

Agradecimentos

Agradeço à Coordenação Aperfeiçoamento de Pessoal de Nível Superior (Capes), pela concessão de bolsa de estudo que viabilizou a realização deste trabalho de pesquisa.
Referências

Received on October 30, 2009. Accepted on March 24, 2010.

License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.