mRNA profile of Nellore calves after primary infection with *Haemonchus placei*

a Universidade Federal de São Carlos, 13565905, São Carlos, Estado de São Paulo, Brazil
b Instituto de Química, Universidade Estadual de Paulista, Unesp, Araraquara, Estado de São Paulo 14801970, Brazil
c Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Estado de São Paulo 13418-900, Brazil
d Embrapa Pecuária Sudeste, São Carlos, Estado de São Paulo 13560970, Brazil
e Departamento de Parasitologia, Universidade Estadual Paulista, Unesp, Botucatu, Estado de São Paulo 18618000, Brazil
f Embrapa Gado de Leite, Juiz de Fora, Estado de Minas Gerais 36038330, Brazil
g Universidade Federal do Rio Grande do Norte, Natal, Estado do Rio Grande do Norte 59072970, Brazil

Article info

Abstract

Haemonchus parasites are responsible for many losses in animal production. However, few studies are available, especially of zebu cattle. In this study, we investigated mRNA differences of immune response genes in naïve Nellore calves infected with *Haemonchus placei*, relating these differences to patterns of cellular infiltrate. Calves were infected with 15,000 *H. placei* L3 larvae and after 7 days lymph node and abomasum tissues were collected. IL-2, IL-4, IL-8, IL-12, IL-13, IFN-γ, MCP-1, lysozyme, pepsinogen and TNF-α genes were evaluated by qPCR. Mast cells, eosinophils and globular leukocytes were counted by abomasum histology. In the infected group, IL-4, IL-13 and TNF-α were up-regulated in the abomasal lymph node. In the abomasum, IL-13 increased and TNF-α was down-regulated (*p* < 0.05). No differences were detected for mast cells and eosinophil counts in abomasal tissue (*p* > 0.05). We conclude that for this infection time, there was Th2 polarization but that cellular infiltrate in abomasal tissue takes longer to develop.

© 2010 Published by Elsevier B.V.

1. Introduction

One of the major constraints of the animal production in the tropical regions is the presence of parasites. Losses in Brazil due to gastrointestinal nematodes are estimated to be about 68 million dollars a year (Honer and Bianchin, 1987; Soutello et al., 2002). In Brazil, *Haemonchus* spp. and *Cooperia* spp. are the most prevalent nematodes (Bianchin et al., 2007; Oliveira et al., 2009).

Brazilian Nellore is a beef breed generally considered resistant to many ectoparasites, but it is not clear if this is true in the specific case of gastrointestinal parasites (Holgado and Cruz, 1994; Oliveira et al., 2009). Although the mechanisms involved in host defense are better understood in *Bos taurus* (Sonstegard and Gasbarre, 2001), less information is available for *Bos indicus* (Bricarello et al., 2007, 2008; Zaros et al., 2010).

Genetic mechanisms underlying the variation of resistance can be related to the development of different profiles of Th1/Th2 cytokines (Meeusen et al., 2005; Huse et al., 2006). The identification of the cytokine genes involved in host response and the explanation of their function should be pursued to establish the different degrees of host resistance, allowing development of better methods of worm control (Gasbarre et al., 2001; Glass et al., 2005).
It has been shown that Th2 cytokines confer protection to infections caused by endoparasites such as *Trichuris muris*, *H. polyirius*, *Haemonchus* spp., *Nippostrongylus* spp., *Teladorsagia circumcincta* (Else and Finkelman, 1998; Claerebout et al., 2005; Craig et al., 2007; Zaros et al., 2010). Worm resistance in sheep and cattle have been associated with Th2 bias, where higher levels of interleukin 4 (IL-4), interleukin 5 (IL-5), interleukin 13 (IL-13) are increased in resistant animals (Gill et al., 2000; Zaros et al., 2010). Craig et al. (2007) found high levels of IL-4 mRNA expression in sheep infected with *T. circumcincta*. Claerebout et al. (2005) found similar results when comparing infected and uninfected cattle exposed to *Ostertagia ostertagi*. IL-4 and IL-13 can increase muscle contractility in the region of infection (Finkelman et al., 1998), and production of IL-5 causes the expulsion of parasites (Bancroft et al., 1998; Garside et al., 2000). Conversely, interferon gamma (IFN-γ) interferes with the recruitment, eosinophilia in the mucosa, increase of IgG1, IgG2, IgE, IgA and mucus secretion. Bricarello et al. (2007) studied cattle resistant and susceptible to gastrointestinal parasites, related high levels of IgE and eosinophils with low fecal egg counts. These changes are also related to cytokine polarization, which helps host response (Balic et al., 2002; Meeusen et al., 2005).

In tropical areas such as Brazil, there is great interest in understanding the mechanisms involved in host resistance and the adaptation of breeding stock, such as Nellore cattle, to learn what makes them more resistant to parasitic infections. However, the knowledge about this in cattle is restricted to *Bos taurus*. Therefore, the aim of this study was to evaluate mRNA levels of IL-2, IL-4, IL-8, IL-12, IL-13, IFN-γ, monocyte chemoattractant protein 1 (MCP-1), lysozyme, pepsinogen and tumor necrosis factor alpha (TNF-α) genes in the abomasum and abomasal lymph node, as well as to determine the defense cells present in the abomasum of naive Nellore calves 7 days after primary infection by *Haemonchus placei*.

2. Materials and methods

2.1. Animals

The experiment was carried out in Embrapa Southeast Cattle Station in São Paulo state, Brazil (22° 01’S and 47° 53’W). Ten Nellore calves descended from 10 cows and three bulls born in November and December of 2005 were used. To keep the animals free from parasite infections, the calves were taken from their mothers immediately after birth and received 2L of frozen colostrum. They were then kept in individual pens and received 4L of milk twice a day, along with hay and mineral salt *ad libidum*.

2.2. Calves infection

At 4–5 months of age, the calves were weaned and assigned to two groups of five animals: (1) Infected Group, which was orally infected with around 15,000 L3 *H. placei* larvae provided by the Embrapa Beef Cattle Station, following the technique described by Roberts and O’Sullivan (Unno and Gonçalves, 1998) and (2) Control Group, which was kept free from worms during the experimental period. One calf sired by each bull was assigned to each group.

Twice a week samples of feces were collected to determine the EPG (eggs per gram) counts (Unno and Gonçalves, 1998) to assure that animals had no contact with worms. After 7 days of infection, the calves were sedated with sodium pentobarbital (60 mg/kg of weight) and sacrificed with 2% xylasin cloridrate (1 mL/100 kg of weight).

2.3. Tissue collection

Immediately after slaughter, samples of the abomasum and abomasal lymph nodes were collected and split in two samples: one stored in formalin solution (10%) for histological analysis and the other submerged in liquid nitrogen and stored at −80 °C for gene expression analysis.

2.4. Histological analysis

Tissues were fixed in 10% formalin solution for 36 h, washed and stored in 70% ethanol solution and then dehydrated in a series of rising ethanol concentrations, diaphanized with xilol and embedded in paraffin. Histological sections were stained with hematoxylin–eosin (HE) for globule leukocyte and eosinophil counts. Toluidine blue stained sections were used for mast cell counts under an optical microscope. Leukocyte globules were counted under an ultraviolet light microscope.

Cells were counted in 30 random fields of the abomasum surface using a 10× eyepiece, with a 100-point grid and 100× objective. Cell counts were reported as arithmetic means of cell number/mm2 of mucosa.

2.5. RNA extraction and cDNA synthesis

Frozen tissues (−80 °C) were macerated in liquid nitrogen and total RNA was isolated using the Trizol® (Invitrogen) reagent, following the manufacturer’s protocol. RNA concentration and purity were determined by light absorption at 260 nm and OD260/OD280 ratio. Integrity was verified in 1% agarose gel electrophoresis stained with ethidium bromide (20 µg/mL).

Total RNA (5 µg) was used for first-strand cDNA synthesis with the SuperscriptTM First-Strand Synthesis System for RT-PCR (Invitrogen), using oligo dT priming, following the manufacturer’s protocol.

2.6. Primers information

Primers for IL-2, IL-4, IL-8, IL-12p35, IL-13, MCP-1, TNF-α, RPL-19, GAPDH, lysozyme and pepsinogen genes were described by Zaros et al. (2007), IFN-γ by Coussens and Nobis (2002) and HPRT-1 by Goossens et al. (2005). Amplification efficiencies were obtained by linear regression (efficiency = 10 $−$ 1/slope), following Pfaffl (2001). Specificities were confirmed in 1% agarose gel and by melting curve analysis (LightCycler, Roche Diagnostics, Mannheim.
Germany) using the program from 70 °C to 95 °C at 0.1 °C/s for all genes studied.

2.7. Real time RT-PCR (qPCR)

Each real time RT-PCR reaction was carried out in 20 µL of final volume containing 25 ng of cDNA, 0.2 mM of dNTP, 0.1–0.2 µM of each primer, 2–3.75 mM of MgCl₂, 1.5 units of Taq Platinum DNA polymerase (Invitrogen), 0.04 µL of Sybr Green 100 × , 2 µL of buffer 10 × 50 mM of KCl, 10 mM of Tris–HCl pH 9.0 (Invitrogen), and 0.5 µL of dimethyl sulfoxide (DMSO; Sigma). For each sample, the cycle threshold (Ct) mean was obtained and normalized to a reference gene.

Three reference genes were evaluated: GAPDH (glyceraldehyde-3-phosphate dehydrogenase), HPRT-1 (hypoxanthine phosphoribosyltransferase 1) and RPL-19 (ribosomal protein L19).

2.8. Statistical analysis

The relative quantification was evaluated by mathematic modeling based on the PCR efficiencies (E) of the target and endogenous genes and on Ct variation of samples from the experimental groups, according to Pfaffl et al. (2002). For this analysis, the Relative Expression Software Tool (REST®) was used, which applies a nonparametric significance test called the Pair Wise Fixed Reallocation Randomisation Test®.

Histological data (eosinophils, mast cells and globule leukocytes) were analyzed by the GLM procedure using the SAS program (SAS, 2002/2003).

3. Results

3.1. Histological analysis

The average eosinophil and mast cell counts were 30.96 (±S.D. 5.55) and 10.31 (±S.D. 9) in the non-infected group and 28.41 (±S.D. 2.35) and 17.12 (±S.D. 1.95) in the infected group, respectively. No significant differences were found between groups for the eosinophil counts (p = 0.30) and mast cell counts (p = 0.32) in the mucous membrane of the abomasum (Fig. 1). No globular leukocyte was observed in the slides in any group.

3.2. Relative quantification

Among the three reference genes tested to be used in the relative quantification, the RPL-19 gene was chosen because it presented more constant Ct values (19 ±S.D. 2.3 in the abomasum and 20.7 ±S.D. 1.2 in lymph node) than the other two genes analyzed.

Relative quantification of target genes showed that IL-4 (14 × ; p = 0.002), IL-13 (26 × ; p = 0.003) and TNF-α (10 × ; p = 0.03) were up-regulated in the abomasal lymph nodes of the infected group in comparison with control group (Fig. 2). In the abomasum tissue, IL-13 was up-regulated (4.8 × ; p = 0.03) in the infected group and TNF-α was down-regulated (4.0 × ; p = 0.032) in the same group (Fig. 3). The mRNA levels of the other genes were not influenced by H. placei larval exposure in the abomasal lymph node, as well as in the abomasum tissue (p > 0.05).

4. Discussion

In this study, we compared cytokine gene expression of Nellore calves in primary infection with H. placei infections caused by helminths have been studied in many species and have usually been associated with Th2 response in infected animals. In cattle, these infections are not characterized by a severe immune response and most become chronic. Reduction in the number of adult parasites begins after exposure to the parasite and at the same time there is a significant increase in eosinophil, globular leukocyte and mast cell counts in the sites of the infection (Grencis, 2001; Bricarello et al., 2004). Cytokine polarization is indispensable for the correct immune response activation and TCD4+...
cells are effectors in *Haemonchus contortus* infections (Gill et al., 1993).

IL-4 and IL-13 are frequently studied because they may be the first genes to have increased levels in response to extracellular parasites, leading to Th2 polarization (Else and Finkelman, 1998) and resistance to animals (Zaros et al., 2010). In this study, the IL-4 mRNA levels in the abomasal lymph node of the infected group were up-regulated 14-fold in comparison to the control group (Fig. 2). Similar results were obtained by (Canals et al., 1997), who observed a significant up-regulation of IL-4 abomasal lymph node of *Bos taurus* cattle infected with *O. ostertagi* on the fourth day post primary infection, increasing gradually until the 28th day of infection. Claerebout et al. (2005) observed an increase in the expression of IL-4 and IL-10 in lymph nodes of immunized calves also infected with *O. ostertagi*, after 3 weeks of infection. In contrast, in the present study we found no difference in this interleukin in the abomasal mucosa, corroborating the results obtained by (Li et al., 2007) and contrasting with those of Lacroux et al. (2006), studying sheep (which are more sensitive to this nematode infection).

IL-13 acts in parasitic infections to promote allergic response, mast cell increase and IgE production, among other reactions. In the present work, severe induction of IL-13 mRNA in abomasal lymph node was observed, about 30 times higher in the infected than in the control group (Fig. 2). In the abomasal mucosa, IL-13 expressed the same pattern, with a fivefold increase in the infected group compared with the control group (Fig. 3). Bancroft et al. (1998), studying knockout mice for IL-13, observed a significant up-regulation of IL-13 in the abomasal lymph node of the infected animals compared to the uninfected ones. A contrasting pattern was observed in both tissues studied. The presence of TNF-α was characterized to potentiate the expulsion of parasites by IL-13, conferring protection in the host (Artis et al., 1999), as well as, it was correlated to induction of host resistance in sheep (Pernthaner et al., 2005) and cattle (Li et al., 2007). In our work, TNF-α was about eight times higher in the lymph node (Fig. 2) and fourfold less expressed in the abomasal mucosa (Fig. 3) of the infected animals compared to the uninfected ones. A contrasting pattern was observed in both tissues studied. The presence of TNF-α was characterized to potentiate the expulsion of parasites by IL-13, conferring protection in the host (Artis et al., 1999), as well as, it was correlated to induction of host resistance in early larval stages (Babu and Nutman, 2004). So, differences of TNF-α found in the two tissues studied could be a result of tissue collection when the immune response started to be established and when changes in larval stages were still ongoing. Then, although, at this time, this cytokine could be helping the Th2 polarization in the lymph nodes, the presence of parasitic secretions in the abomasum could exert some local immunomodulation. It is known that the *Haemonchus* spp. L4 larvae stage is capable of inducing changes in the host immune profile to evade host response (Allen and MacDonald, 1998). As in early infection stages, TNF-α has been reported to promote parasite expulsion, this molecule could be a target for immunomodulation by the parasite (Maizels and Yazdanbakhsh, 2003). TNF-α down-regulation may be caused by mast cell inhibition and may turn resistant animals in susceptible (Behnke et al., 2003; Pernthaner et al., 2005). Therefore, maintaining low TNF-α level in the host would be beneficial for completion of parasitic life cycle. Artis et al. (1999) found that low TNF-α level delays the expulsion of parasites from the host and that IL-4 and IL-13 levels remain up-regulated, as observed in this work.

During gastrointestinal infections, increases of mast cells and eosinophils are usually observed (Gasbarre, 1997; Else, 2005). In sheep, these cells are involved in rejection of *H. contortus*. Eosinophils are recruited to the abomasum of sheep during primary infection (Balic et al., 2000, 2002).
and are related to death of the parasite (Balic et al., 2006). In cattle, higher numbers of mast cells and eosinophils were observed in resistant compared to susceptible Bos indicus (Zaros et al., 2010). However, no differences between infected and control groups were observed for these cells in the present trial (Fig. 1). This might be due to the short period of infection, only 7 days. In cattle infected with O. ostertagi it is known that cells accumulate after adult worms are present for 1 or 2 days in the abomasum (Scott et al., 1998; Simpson, 2000). In the present work, infection was caused by larvae and abomasums were obtained 7 days after infection, a period when most of the larvae should be in L4 stage, which marks the beginning of the hematophagous phase and is expected to stimulate host protective response. From our results, it was demonstrated that, in animals that had not been exposed to H. placei beforehand, this period of time was not enough to deplete local response in the mucosa.

For the other genes evaluated (IL-2, IL-8, IL-12, IFN-γ and MCP-1), as well as for pepsinogen and lysozyme no difference in mRNA profile was observed in any of the tissues studied. As in this work, infections with H. placei, Cooperia spp. and Ostertagia spp. were found not to be associated with changes in the levels of IL-8 (Li et al., 2007; Bricarello et al., 2008; Zaros et al., 2010). Nevertheless, variations were reported for some of these genes, as in the work by Li et al. (2007), which concluded that IL-2, IFN-γ and IL-12 were responsible for conferring resistance to Angus heifers infected with O. ostertagi. Other evidence for the involvement of these genes in response to parasite has been found in Nellore cattle infected with H. placei, where a strong Th2 profile was detected in resistant animals (Zaros et al., 2010).

In conclusion, we suggest that IL-4 and IL-13 initiate the immune response in the abomasal lymph nodes and abomasal mucosa in the first infection of naïve Nellore calves with H. placei, evidencing a possible initial Th2 polarization. It may be possible that TNF-α helps in this polarization and that this cytokine is modulated by the parasite. In contrast, no significant increase in eosinophils and mast cells was detected, indicating that the local inflammatory response to H. placei occurs later during the infection of Bos indicus Nellore calves.

Acknowledgments

We thank Dr. Ivo Bianchin, of the Embrapa Beef Cattle Research Center, for providing the larvae and Dr. Rogério Taveira Barbosa and Dr. Rui Machado for taking care of Research Center, for providing the larvae and Dr. Rogério Nellore calves.

References

Coussens, P.M., Nobis, W., 2002. Bioinformatics and high throughput approach to create genomic resources for the study of bovine immunobiology. Veterinary Immunology and Immunopathology 86, 229–244.

Please cite this article in press as: Ibelli, A.M.G., et al., mRNA profile of Nellore calves after primary infection with *Haemonchus placei*. *Vet. Parasitol.* (2010), doi:10.1016/j.vetpar.2010.11.013