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Abstract: Process-based models (PBM) are important tools for understanding the benefits of Inte-
grated Crop-Livestock Systems (ICLS), such as increasing land productivity and improving envi-
ronmental conditions. PBM can provide insights into the contribution of agricultural production to
climate change and help identify potential greenhouse gas (GHG) mitigation and carbon sequestra-
tion options. Rehabilitation of degraded lands is a key strategy for achieving food security goals
and can reduce the need for new agricultural land. This study focused on the calibration and vali-
dation of the DayCent PBM for a typical ICLS adopted in Brazil from 2018 to 2020. We also present
the DayCent parametrization for two forage species (ruzigrass and millet) grown simultaneously,
bringing some innovation in the modeling challenges. We used aboveground biomass to calibrate the
model, randomly selecting data from 70% of the paddocks in the study area. The calibration obtained
a coefficient of determination (R2) of 0.69 and a relative RMSE of 37.0%. During the validation, we
used other variables (CO2 flux, grain biomass, and soil water content) measured in the ICLS and
performed a double validation for plant growth to evaluate the robustness of the model in terms
of generalization. R2 validations ranged from 0.61 to 0.73, and relative RMSE from 11.3 to 48.3%.
Despite the complexity and diversity of ICLS results show that DayCent can be used to model ICLS,
which is an important step for future regional analyses and large-scale evaluations of the impacts
of ICLS.

Keywords: mixed-pasture; soybean; biogeochemical model; tropical pasture; sandy soil

1. Introduction

Integrated Crop-Livestock Systems (ICLS) are defined by the diversification, rotation,
consortium, and succession of agriculture and livestock inside the same area, allowing
benefits between these two activities and the economic use of soil over the year [1]. The
adoption of ICLS comprises 10–15 million ha (5% of total) of the area under agriculture
and livestock in Brazil [2], which represents a significant opportunity to improve the
sustainability of agricultural systems [3], especially in degraded areas and over sandy soils.

With the integration of soybean and mixed-pasture, ICLS impacts plant growth as
the nitrogen (N) supplied by legumes (for instance, soybean) is absorbed more efficiently
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than that applied through mineral fertilization, stimulating plant growth and biomass
quality, or both, through increased N uptake [4]. Lower dry matter production in grass
monoculture pastures tends to decrease soil moisture, organic carbon (C), and total N
compared to ICLS [5].

In this context, the applications of process-based ecosystem models are fundamental
to evaluate and improve the level of understanding of these systems and predict processes
such as plant growth, C dynamics, and carbon dioxide (CO2) flux. The advantages of using
process-based ecosystem models are the possibility of extrapolation of the simulations from
an experimental site to different sites and climate conditions [6], making it possible to have
a consistent evaluation of other production systems [7–10].

DayCent is an ecosystem process-based model, and when properly validated by
field observations is a powerful tool to investigate the effects of management practices
on greenhouse gases (GHG) emissions or soil organic carbon (SOC) changes in different
ecosystems, soil types, and climates [11]. Frolking et al. [12] demonstrated the ability of
the DayCent model [13,14] to simulate soil water content, mineral N levels, nitrous oxide
(N2O), and CO2 emissions for various systems, including a native shortgrass steppe in
Colorado, a ryegrass pasture in Scotland, and perennially cropped soils in Germany.

In tropical and subtropical agriculture, simulations aiming to test the performance
of DayCent in predicting SOC, biomass production, crop yield, and N2O fluxes were also
performed [15]. They evaluated the model for agroecosystems under succession/rotational
managements with crops such as wheat, soybean, sorghum, oat, and maize considering
different management and climate scenarios in southern Brazil, and the predictive accuracy
varied from poor (plant growth) to adequate (SOC and N2O fluxes) [15]. Damian et al. [16]
evaluated the effects of converting poorly managed pastures to more intensive and diver-
sified pasture management systems in Brazil, such as ICLS, on long-term soil C stocks
and microbial biomass C increased with the conversion of pastures to ICLS using the
DayCent model.

However, due to the diversity and complexity of ICLS, model predictions need to be
adjusted and validated considering the region and system adopted. For instance, com-
plex agroecosystem designs such as ICLS generally present the different combinations of
plant species, directly impacting the soil C fluxes [17]. Additionally, after implementation,
ICLS often have higher stocking rates and differences in animal trampling and excretion
patterns [18] and the additional inputs with fertilization and biological N fixation [17,19].
Furthermore, the CO2 assimilated by the photosynthetic process is the basis of crop pro-
duction [20]. Therefore, it is necessary to consider that the ICLS is the system that fixes the
most CO2, and emits the least GHG, throughout the year. This information is essential for
the current global scenario, mainly due to carbon trading, an environmental management
tool for controlling carbon emissions [21].

In this study, we focus on evaluating the DayCent performance in simulating plant
growth, soil moisture, and CO2 fluxes as this kind of system presents different patterns
of inputs, outputs, and, very likely, of model coefficients and rates related to the different
processes [13,14,22,23]. To our knowledge, despite the importance of ICLS, there are few
studies of the DayCent model in this type of agricultural system in Brazil and worldwide,
mainly for sandy soils. This study aids large-scale simulations of ICLS impacts on the
environment, mainly due to the importance of C trading, which may boost the use of ICLS
according to the requests of the Sustainable Development Goals (SDGs) [24], to increase
agroecosystem production (SDG2—Zero Hunger) [25], mitigate climate change (SDG13—
Climate Action) [26], and recover degraded pastures (SDG15—Life on Land) [27]. In this
context, the objective of this study was to calibrate and validate the DayCent model to
estimate an ICLS with a succession of soybean followed by mixed-pasture (ruzigrass and
millet) in tropical Brazil. To do that, we also addressed the implementation in DayCent of
two pastures grown simultaneously.
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2. Materials and Methods
2.1. Field Data

The data were obtained from a commercial area of 200 ha divided into four fields
of 50 ha, located at the municipality of Caiuá, in the western region of São Paulo state,
Brazil (21◦38′ S and 51◦54′ W; Figure 1). The climate is classified as tropical with a dry
winter season (Aw), according to Köppen’s classification [28]. The accumulated rainfall,
mean minimum and maximum daily air temperatures during the monitored period were,
respectively, 2021.8 mm, 20.4, and 32.4 ◦C, from October 2018 to April 2020 (Figure 2). The
meteorological data were obtained by prediction of worldwide energy resources (hereafter
called NASA/POWER; https://power.larc.nasa.gov/data-access-viewer/, accessed on
2 July 2021), which has shown to be a good source for model simulations under Brazilian
conditions [29–31].
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Figure 2. Meteorological data, mean historical of 1990–2020 (Temperature Historical—Temps.
Historical; Rainfall; Maximum Temperature—Tmax; Minimum Temperature—Tmin; and Rain-
fall Historical) in the study area, Caiuá, Brazil. Data obtained from NASA/POWER (https:
//power.larc.nasa.gov/data-access-viewer/, 21 February 2022).

The soil of the area is formed from rocks of Bauru Group sandstone of the Cretaceous
period [32] and has the dominance of kaolinite in the clay fraction [33]. The soil of the
region is classified as Oxisol with a sandy loam texture [34]. The slope between 3 to 7%
is classified as “gently sloping” according to USDA classification [35]. Elevation range is
between 310 m and 370 m above mean sea level.

The pre-experiment started in the area defined by the Atlantic Forest biome (the
vegetation is constituted of a dense forest of medium and large trees with a large amount of
plant residue on the soil surface), which had extensive pasture without proper management
(estimated beginning of extensive pasture in 1984 by farm data), either with fertilizers
or conventional management practices, such as recovery/renewal pastures or animal

https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
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management. In August 2007, 0.5 Mg ha−1 of dolomitic limestone was applied, followed
by conventional practices of ploughing and harrowing (Figure 3). Furthermore, 400 and
200 kg ha−1 were applied of reactive rock phosphate (35% P2O5 total and 12.5% P2O5 in
citric acid solution) and soluble fertilizer NPK (4-21-15), respectively.

Single forage (Urochloa brizantha cv. Marandu) was sown in October 2007. Fertiliza-
tion was carried out annually, consisting of the application of 300 kg ha−1 of the NPK
formulation 20-10-10, and this fertilization was occasionally applied only to maintain
the grazing.

Heifers aged 2 to 3 years (450 kg animal−1) were kept in extensive pasture in the
experimental area throughout the period (2007–2018), with an average stocking rate around
1.6 to 1.8 animal unit (AU) ha−1. All these land-use data were used to schedule the
pre-experiment for the study area.

This pre-experiment simulation covers 1984 to 2017 with extensive pasture and man-
agement, shown in Figure 3. Soil cover reported by the farm was made of crops in previous
periods through local information and confirmation via the SATVEG platform [36]. We
modified the fertilization, crop, and grazing defaults for the pre-experiment to represent
the land-use change and management. At the end of the pre-experiment simulation, total
SOC (in the soil layer from 0–0.2 m) simulated was compared with those observed in the
field from the initial soil analyses made before implementing the ICLS.
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During the ICLS—experiment period from 2018 to 2020, the ICLS consisted of two
phases: summer season (soybean) and winter season (mixed-pasture) (Figure 3, Table A1).
Preparation for the ICLS began in mid-August 2018, with the application of 1.5 Mg ha−1 of
gypsum plus limestone. Then, approximately 5 Mg ha−1 of organic compost was applied
to the terrace channel of the area in early September. The herbicide application was carried
out to enter the new crop, following common practices in the other farms of the group.

The area was divided into four fields of about 50 ha each (Figure 1), in which soybean
was sown under no-tillage. Different varieties were sown in each field (Table A1), with
dates ranging from 18 to 22 November 2018, for the first soybean cycle. Monoammonium
phosphate (MAP) and potassium chloride (KCl) were applied in 250 and 150 kg ha−1 in the
soybean planting furrow under no-tillage. The soybean harvest took place from 30 March
to 5 April 2019.

For the implantation of the pasture, the fields were divided into paddocks each
to obtain a rotating grazing system, totaling 13 paddocks (Figure 1). Winter season
cultivation and pasture intercropping began simultaneously after the soybean harvest
(2 to 6 April 2019). The pasture was composed of a consortium of millet (Pennisetum glau-
cum) and ruzigrass (Urochloa ruziziensis) with a seeding rate in the proportion of 15 kg ha−1

and 5 kg ha−1 of seeds, respectively. The rotational system consisted of two or three grazing
events in each paddock depending on each field of pasture development, the first of which
was of greater intensity (paddock average ≈ 156 cattle paddock−1), the second of lesser
intensity (paddock average ≈ 84 cattle paddock−1), and the third of medium intensity
(paddock average ≈ 109 cattle paddock−1), which was not performed for field 4 (Table A1).
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In November, the herbicide was applied in the total area, and the preparation for planting
the second soybean in the area was carried out.

The second soybean cycle started between 11 and 15 December 2019, with the harvest
being carried out from 4 to 9 April 2020. The same soybean varieties from the last cultivation
were sown, but varied among the fields (Table A1). Like the first soybean cycle, the second
was fertilized during the sowing with the previously mentioned fertilizer method.

Soil samples were taken in October 2018 for the chemical and physical characterization
of each paddock (Table 1 and Figure 1). Sampling field collections were performed to obtain
soil physical and chemical characteristics, aboveground biomass and grain at harvest,
and volumetric soil water content (VWC) (Table A2). The initial measurements of the
experimental area were performed before the ICLS implementation by stratified systematic
unaligned sampling within each paddock and with a variation of 0–1.0 m for soil and
surface for plant data at the end of the extensive pasture period (Tables 1 and A2).

Table 1. Soil and land data of each field (F)/paddock (P) previous to the ICLS implementation in 2018.

Field Paddock Clay 1

(%)
Sand 1

(%)
Total C 1

(g kg−1) pH 2 TSWA 3

(mm mm−1)

1
1 8.3 81.1 6.2 5.1 0.16
2 10.1 79.2 5.8 5.1 0.16
3 10.3 78.0 5.4 5.1 0.16

2
1 7.3 84.4 4.7 5.0 0.15
2 7.9 82.1 5.2 5.1 0.16
3 9.9 79.9 4.8 5.1 0.16

3

1 4.6 86.6 4.9 5.1 0.15
2 4.8 82.6 4.4 5.0 0.16
3 6.2 82.8 4.0 5.0 0.16
4 7.9 81.1 4.3 5.1 0.16

4
1 9.7 81.4 6.0 4.9 0.16
2 9.1 79.1 4.7 4.9 0.16
3 6.9 81.9 4.0 4.9 0.16

1 Averages results of soil analysis [37] from samplings collected on 28 October 2018, of the 0–0.2 m depth; 2 pH in
CaCl2; 3 Soil water availability (TSWA = (FC −WP)/100 * Ds), where FC, WP, and Ds are field capacity, wilting
point and bulk density, respectively.

Subsequently, physical (clay, sand, and bulk density) and chemical (total C and pH)
analyses were performed following protocols from the Manual of soil analysis methods [38].
The bulk density (volumetric ring method) was determined by differentiating the sampling
by depth with three repetitions for 0–0.20 m spaced by 0.05 m depth in each sample,
one of 0.25–0.30 m, one sample of 0.35–0.40 m, a 0.65–0.70 m sample, and a 0.95–1.00 m
sample. For the total C content, samples were collected at the same points and depth as
the bulk density of the soil. These were air-dried, sieved with a 2.0 mm diameter sieve,
then manually ground in a mortar and pistil, and a new 0.177 mm sieving [38]. Then,
the samples were sent to the laboratory, which performed the analysis by dry oxidation
by the elemental analyzer CHNS-O. This method is based on the oxidation of samples
at high temperatures (approximately 1000 ◦C). The samples were placed in a tin capsule,
which does not contain C. After total combustion, the gases containing each element were
separated and the concentrations measured by different infrared detectors.

Regular collections of the aboveground biomass were performed after the ICLS phase
started, varying from two to three repetitions for each paddock. For soybeans, one linear
meter was considered, according to the sowing row, and for mixed-pasture, an area of 1 m2,
in both cases cutting the biomass close to the ground (≈0.01 m) (Figure 1, Table A2). The
aboveground biomass material was dried in an oven with forced air circulation (65–70 ◦C)
until reaching constant mass. Biomass C content was calculated considering the factor of
0.475 [39], with all the results expressed in g C m−2.

Furthermore, VWC was determined by gravimetric water content measurements
multiplied by soil density (0–0.05 m depth, drying in forced air circulation oven) using
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the same sampling scheme in which biomass measurements were taken. CO2 flux was
determined using a gas flow quantification chamber (LI 8100A, LI-COR Environmental,
Lincoln, NE, USA), with nine samples per paddock on three different dates different
from the aboveground biomass collection dates for the mixed-pasture, four for the second
soybean, and two for the transition between seasons (Table A2). The measurement was
carried out with a duration of 1.5 min for each collection point and carried out around 7 a.m.
to avoid soil temperature instability. For the standardization of the CO2 flux values, it was
assumed that for the DayCent output, the CO2 flux is constant throughout the day, that is
((CO2) total = 24 (CO2) hours) to compare with that measured and have a simplification of
the soil respiration processes.

2.2. SOC Reference Data from the Literature

To start the equilibrium modeling, it was necessary to use literature data on SOC
from native vegetation close to the study area in Caiuá, São Paulo (SP). Published data
from Rigolin et al. [40], compared the C stocks (0–0.2 m) and the different managements
in an area in Presidente Prudente, SP (22◦07′ S and 51◦27′ W), and used data from native
vegetation, without human intervention for 50 years; C stocks were compared with the one
simulated by DayCent because it was from the same biome and with similar climatic and
soil conditions (Figure A1 detail d). For the extensive pasture, we used data collected on
28 October 2018, which collected soil bulk density and total soil C content up to 1 m depth
to estimate C stocks and aboveground biomass for all paddock points in the study area in
Caiuá, SP.

To increase confidence that the model is applicable for different areas of ICLS after
the calibration, we employed data of the aboveground biomass from the literature called
other regions (OR) using [41,42] datasets, both with an ICLS with mixed-pastures and
soybean. The same calibrated parameters were used without any change, changing only
the input data and the management adopted in the model. Souza’s [41] study was carried
out in Rondonópolis, Mato Grosso state (MT), Brazil (16◦27′ S and 54◦34′ W), located in the
Cerrado biome.

The simulations for equilibrium were set to represent such a biome. The experiment
was carried out in a succession of the soybean crop and had a mixture of ruzigrass with
millet. The mixed-pasture aboveground biomass was collected during the experiment, and
the soybean yields. The experimental design was a randomized block design, with seven
treatments with three replications per treatment (can be found on the GitHub platform
(https://github.com/yanefsilva/DayCent_ICLS.git, 21 February 2022)).

For the experiments published by Machado [42], ICLSs were evaluated in two loca-
tions, São Gabriel do Oeste (19◦24′ S and 54◦34′ W) and Dourados (22◦14′ S and 54◦49′ W),
both in Mato Grosso do Sul state (MS), Brazil. Both sites are in the Cerrado biome (can
be found on the GitHub platform (https://github.com/yanefsilva/DayCent_ICLS.git,
21 February 2022)). Thus, the same equilibrium file built for [41] was used, changing only
the soil and climate inputs. In this study, the mixed-pasture in rotation with the soybean
crop were also grown in the ICLS. The study used an experimental design which was a
9 × 2 × 2 factorial, in which the A factor is forages and their mixtures, factor B is the two lo-
cations (São Gabriel do Oeste and Dourados), and factor C is the two times of evaluation
(2007 and 2008), with four replications; the aboveground biomass and soybean grain yield
data were measured and used in the modeling study.

The soil and management data presented in the above-mentioned studies were
adopted, and the climate data were acquired from NASA/POWER (Figure A1 details
a, b and c).

2.3. Model Description and Simulation Settings

The software version of the DayCent model (DD15centEVI.exe) (Colorado State Uni-
versity, Natural Resources Ecology Laboratory) [14,43] was used to perform the simulations.
Briefly, the DayCent model includes sub-models to estimate plant growth, soil temperature,

https://github.com/yanefsilva/DayCent_ICLS.git
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VWC, and the biogeochemical cycle of nutrients, including C and N fluxes between soils
and plants [23]. DayCent is the daily version of the Century model [44,45], differing from
its predecessor. It provides results on a daily time scale and dynamically represents the
emission processes of GHGs, as the release of CO2 and N2O in the soil [14,23].

The plant growth sub-model simulates the potential biomass production and yield
using solar radiation and plant photosynthetic efficiency determined by species, variety,
or clone. Potential yield is then corrected by multipliers related to air temperature, soil
water, nutrient availability (N, P, and S), shading, phenological stage, and atmospheric
CO2 concentration [23]. The achievable yield is less than or equal to the potential yield
depending on the factors mentioned above and their interaction with the management
practices applied in the area, which include different crops (no-till, conventional tillage,
and mowing), mineral and organic fertilization, irrigation, pasture, and fire [23]. N2O and
CH4 were not evaluated for the study because of the lack of data to generate results.

In each paddock, simulations for ICLS were carried out at two to three points, and
the points were averaged to represent each paddock studied, simulating the impacts of
the ICLS implementation in the initial integration period between mixed-pasture and
soybean (Figure 4). The grazing intensity was considered to impact the aboveground
biomass production, evaluated in the model. All files used in equilibrium, pre-experiment
and experiment can be found on the GitHub platform (https://github.com/yanefsilva/
DayCent_ICLS.git, 21 February 2022).
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To simulate the status of the C pools for the ICLS fully detailed in Section 2.2, an
equilibrium simulation with the historical land cover and land-use changes is necessary.
Usually, it is considered a first run with the original natural vegetation (Atlantic Forest in
the present case) for ~6000 years, time to reach the C equilibrium between the different C
pools solved by the model. During this equilibrium simulation, the C is gained through
litter decomposition and senesced roots and lost by heterotrophic respiration. The C
fluxes between the active, slow, and passive SOC pools tend to reach equilibrium [46].
To generate the model file corresponding to the Atlantic Forest equilibrium, we chose
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to modify the default values, such as the PRDX (2) parameter (Table A3), inside the
tree.100 file, which indicates the potential C production by the aerial part of the vegetation,
to approximate the average values corresponding to the literature’s reported values for the
Atlantic Forest (Figure 4).

Afterwards, we ran the model considering this equilibrium, in the total SOC from
the Atlantic Forest simulation, as the initial condition for an extended simulation covering
the period from the deforestation to the present, considering the land cover changes and
typical crop management practices in the period, i.e., the history of land cover before the
beginning of the ICLS.

2.4. Calibration and Validation Procedures

The main input variables of DayCent are minimum and maximum air temperature
(◦C), precipitation (cm), soil texture, pH, bulk density (g cm−3), and management practices.
These variables were collected from fields, and the missing information was estimated from
the use of DayCent in the previous literature calibrations, considering the soil physical,
water flow and soil temperature, crop growth, and soil organic matter sub-models. In
addition, historical information on soil (pedological map from São Paulo state), climate
(NASA/POWER), and general information on the biome and the history of land use (<map-
biomas.org/>) were collected for use as input data in DayCent. Soil profile water retention
characteristics were derived from field texture samples and the pedotransfer functions of
Saxton (<https://hrsl.ba.ars.usda.gov/soilwater/Index.htm>, 21 February 2022 [47]).

As the dataset collected was only in one farm, we separated the dataset into two
parts, for calibration and validation, following Garrison et al. [48]. For the calibration, we
used 70% of the data sets collected in the field (9 paddocks from the study area, randomly
chosen), and 30% of the data were used for model validation (4 paddocks, one from each
field) and also general model evaluation.

Calibrations were made through systematic variations in key model parameters until
the best fit (details of statistical metrics provided later) was obtained between the Day-
Cent output and the corresponding observed data, within the acceptable range for each
parameter [11,23]. We performed the model calibration by adjusting parameters (details
in the Results section, Table 2), as proposed by Del Grosso et al. [22], which considers the
submodel of plant growth, with aboveground biomass C (Aglivc) as the main output pa-
rameter to be considered in the calibration, as it is a complex integrated system, with cattle
in and out, thus making it impossible to collect different data. As we have a satisfactory
amount of Aglivc data, we focus on Aglivc as the main parameter for calibration. As the
pasture was submitted to a variable cattle stocking rate, rotational management system, we
also changed the grazing file (FLGREM and FDGREM, Table A3) to adjust the number of
animals in the paddocks.

The parameters calibrated for the harvest were the fraction of aboveground live which
will not be affected by harvest operations (AGLREM) and the fraction of belowground
live which will not be affected by harvest operations (BGLREM) (Table A3); as the use of
clearing was not standardized to reduce the height of the canopy and thus achieve leveling
of the pasture, we used pasture cut-off values similar to clearing done for new management
in the area [49,50] (Tables 2 and A1). For fertilization, the calibrated took into account
the MAP and the fertilizers used during the pre-experiment, and the amount of N left
by the fertilizer [51–53] (Tables 2 and A1). For the crop model, we added the default for
millet with ruzigrass to represent different growth rates for the mixed-pastures according
to the literature [54–57]. As in the experiment ICLS, for each field, there were stocking rates
of different animals between the paddocks, we made the necessary changes for grazing,
considering the low, medium, and intermediate grazing (Tables 2 and A1). The calibrated
parameters considered available information from the literature on ICLS and data collected
in the field to estimate the parameters as best as possible.

https://hrsl.ba.ars.usda.gov/soilwater/Index.htm
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Table 2. DayCent model parameters calibrated for simulations and their limiting values. The
description of each parameter is defined in Table A3 of the Appendix A.

Steps Submodel Modified Parameters
Value

Default Calibrated

Equilibrium Tree MT PRDX(2) 0.1–5.0 1.50

Pre-Experiment

Fert

NPI3
FERAMT(1) 0–9999 0.80

FERAMT(2) 0–9999 1.83 a

NPI4
FERAMT(1) 0–9999 6.00

FERAMT(2) 0–9999 1.31 b

RRPNL FERAMT(2) 0–9999 0.0356 c

RRPL FERAMT(2) 0–9999 1.96 d

Crop

TKNBM PRDX(1) 0.1–5.0 1.60

TKNBM/TKNZ1

PPDF(3) 0–1.0 1.00

PPDF(4) 0–10.0 2.50

BIOMAX 0–1000 400

PRAMN(1,1) 1–100.0 30.00

TKNZ1 PRDX(1) 0.1–5.0 1.20

Graz GH
FLGREM 0–1.0 0.35

FDGREM 0–1.0 0.15

ICLS

Fert MAP
FERAMT(1) 0–9999 2.75

FERAMT(2) 0–9999 5.67

Crop

MMBR

PRDX(1) 0.1–5.0 1.60

PRAMN(1,1) 1–100.0 30.00

PRAMN(1,2) 1–200.0 90.00

PRAMX(1,1) 1–200.0 35.00

PRAMX(1,2) 1–400.0 95.00

SNFXMX 0–1.0 0.05

MMBR/SYBRS/SYAS/SYNS BIOMAX 0–1000 400

MMBR CLAYPG 1–9.0 6.00

SYBRS PRDX(1) 0.1–5.0 1.15

SYAS/SYNS/SYBRS

FULCAN 50–200 200

EFRGRN(1) 0–1.0 0.70

PRAMN(1,1) 1–100.0 5.00

PRAMN(1,2) 1–200.0 15.00

PRAMX(1,1) 1–200.0 15.00

PRAMX(1,2) 1–400.0 30.00

SNFXMX 0–1.0 0.065

SYAS PRDX(1) 0.1–5.0 1.10

SYNS PRDX(1) 0.1–5.0 1.20

Harv

MOWTD
AGLREM 0–1.0 0.05

BGLREM 0–1.0 0.50

MOWC
AGLREM 0–1.0 0.82

BGLREM 0–1.0 0.80

a—200 kg 4-21-15 = 0.8 g N m−2, 1.83 g P m−2; b—300 kg 20-10-10 = 6 g N m−2, 1.31 g P m−2; c—400 kg RP—0.089%
P from per month by 10 years = 0.0356 g P m−2; d—4.89% P from 400 kg RP in the first month = 1.96 g P m−2.
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We performed a double validation for the ICLSs described in Section 2.1. First, we
used 30% of the study area paddocks (4 paddocks) for analysis, with the same input data
for each paddock variable and keeping the same climate file as the calibration simulations,
as well as changing the soils and soil management practices of each of the four paddocks;
all calibrated parameters were kept unchanged for the validation runs. Grain (for soybean)
and aboveground biomass for the paddocks not used in the calibration were used for a set
of validation. At this stage, we also compared model simulations with measured CO2 fluxes
and VWC for all paddocks to test the model capability to predict other agroecosystem
variables besides the plant ones.

Additionally, we tested the model with biometric data from three different sites de-
scribed in Section 2.1, from now on called ‘OR’, to evaluate the possibility of applying the
model in different environments in which farmers adopt similar ICLS. In this second valida-
tion, the same parameters were used without any change, changing only the input data in
the model, which covers data from two studies published by Souza [41] and Machado [42].
Details about the equilibrium simulations for these other ICLS can be found on the GitHub
platform https://github.com/yanefsilva/DayCent_ICLS.git, 21 February 2022.

We used the Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Coeffi-
cient of determination (R2), and Nash–Sutcliffe model Efficiency (NSE) as statistical metrics
for evaluating the model calibration, as we did not have repetitions of observations of the
data collected in each paddock. It was found that the RMSE could not be used for intercom-
parisons for many state variables with different units [58], such as aboveground biomass,
water content, and CO2 flux. In these cases, the relative RMSE (in percentage) was used as
a relative measure for intercomparisons of different variables or different models [59].

For the optimal calibration adjustment, we considered the lowest mean absolute error
(MAE) and NSE values close to 1. NSE equal to 1 represents a perfect agreement, and NSE
above 0 indicates that the simulated values describe a trend for the observed data better
than the average of the observations as the predictor. The performance of the model was
based on NSE [60], for which a performance rating of ‘very good’ is equivalent to NSE
0.75–1.00, ‘good’ NSE 0.65–0.75, ‘satisfactory’ NSE 0.50–0.65, and the NSE is ‘unsatisfactory’
if <0.50. Although these classifications were proposed by Moriasi et al. [60] for hydrological
studies, we assumed they are also applicable to agricultural or forestry ones. Statistical
analyses were carried out in the free R environment [61], using caret package [62].

3. Results
3.1. Equilibrium Modeling

The total simulated SOM was around 39.0 Mg C ha−1, where the major fraction was
stored in Slow SOM, followed by the Passive SOM and a relatively small fraction in the
Active SOM (Figure 5). The model suggested that SOM may take millennials to reach an
equilibrium between the C addition and loss for the Atlantic Forest biome. The C stocks
found for a native forest near the farm was reported as 36.4 Mg C ha−1, a difference of 6.7%
compared to that simulated by DayCent (Figure 6).

For the simulations with the extensive pasture, in all paddocks in the study area
in Caiuá, SP, the model calibration achieved good results because the values of total
SOC measured in the literature compared their averages with a difference of 17.3% by
DayCent (Figure 6).

3.2. Model Calibration

We considered the PRDX parameter in the mixed-pasture and soybean crop to achieve
a refined calibration based on the observed values (Figure 7 and Table 2). For the first
soybean cycle, the model responded well, while for the second soybean cycle and mixed-
pasture, there were some paddocks (namely F3P4, F4P1, and F4P3) in which the model had
a reasonable to poor response (Figure 7).

https://github.com/yanefsilva/DayCent_ICLS.git
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soil depth.
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Figure 7. Temporal evolution of the simulated biomass by the DayCent calibration through the PRDX
parameter for ICLS in the nine paddocks using aboveground biomass carbon (Aglivc).

The parameters modified during equilibrium calibration, pre-experiment, and ICLS
were considered using the range suggested by the DayCent manual (Tables 2 and A3). The
values of the parameters were estimated according to the literature; in the case of the C/N
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ratio, we used the changes in the PRAMX and PRAMN parameters (Table 2), following [63].
Plants with high N levels in their biomass, such as legumes, provide residues with a low
C/N ratio, which means faster decomposition and, consequently, a higher N mineralization
rate than other vegetables [63].

In the model calibration, the R2 for Aglivc was 0.69, which was statistically strong
considering the observed data, with relative RMSE of 37.0%, MAE of 24.2%, and an NSE of
0.66 classified as satisfactory according to Moriasi [60] (Figure 8).
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3.3. Model Validation

The model presented a consistent growth pattern along the seasons for the extensive
pasture, before installing the ICLS, to the second soybean cycle and when the mixed-
pasture was established (Figure 9). The mixed-pasture with values below 150 g C m−2,
the vegetative peak of the first soybean cycle values above 300 g C m−2, and the second
soybean, perhaps due to climatic factors, Aglivc was lower than the values of the first
planting in the four paddocks.
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Figure 9. DayCent validation for four paddocks of the study area using aboveground biomass
C (Aglivc).

The model captured the monthly variations in VWC and the variations between
paddocks related to the soil sandy fraction variability and the crop management (cattle
management between paddocks) after calibration, shown in Figure 10. Except for the F4P2
paddock (Figure 10d), all the others had similar behavior between simulated and observed
during the study period yielding an R2 of 0.73, relative RMSE of 37.0%, MAE of 27.1%, and
NSE of 0.51, indicating a good agreement (Figure 10b).
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Figure 10. Monthly variation of soil volumetric water content (cm3 cm−3) observed and predicted by
DayCent during the period of ICLS. Paddock codes are F1P2 (a); F2P2 (b); F3P2 (c), and F4P2 (d).

Regarding soil CO2 flux, the model overestimated three of the four paddocks used
to validate such an agroecosystem variable. However, their average data were within the
range of observed data during the ICLS (Figure 11). The lower NSE concerning the other
analyzed parameters was 0.44, and relative RMSE was considered high at 48.3%, MAE of
31.9% and R2 of 0.61. By Tukey’s test, two of the four paddocks were considered to have
equal means between simulated and observed (Figure 11).
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Figure 11. Soil CO2 flux observed and simulated by the DayCent model. Black bars indicate standard
deviation for simulated and measured values within each paddock. Tukey’s test (p < 0.05) was
performed to compare the average between the observed and the estimated. The letters indicate the
similarity between the paddocks and the simulated by DayCent.

In Figure 12, we brought together all Aglivc values from the validated paddocks
and the two other regions (three ICLSs) to analyze how well the model responded to the
observed values. For this generalized validation, model performance for Aglivc yielded R2

of 0.67, RMSE of 41.6%, and NSE of 0.63, indicating a good model fit.
We are considering a system with an output of two soybean cycles, one mixed-pasture

cycle and the other data from farms that also used ICLS as a basis for mixed-pasture
(Figure 12). The relative RMSE at 41.6%, MAE with 28.5%, and NSE with 0.63, we can
consider as indicative of a low bias in the model, which was reinforced by visual analyzing
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of the convergence between the confidence interval line (gold) (95%) and the standard
deviation (gray) with the regression line (observed vs. simulated) (Figure 12), with the
majority of the simulated points falling within this confidence interval.
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Figure 12. Observed vs. simulated plot for the validation dataset with errors and metrics of precision
for aboveground biomass C. Data referring to the present study and the other regions (OR).

In the validation set, simulations of grain biomass (cgrain) presented similar average
and quantiles’ values (Figure 13). The model was able to capture the variability among
paddocks. Moreover, for the OR that the modeling was performed to prove the robustness
of the model in ICLS, the model slightly overestimated the cgrain but represented well the
variability. Tukey’s test indicated equal means for the four validated paddocks and OR,
showing no significant difference between simulated and observed.
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performed to compare the average between the observed and the simulated. The letters indicate the
similarity between the validation sites and the simulated by DayCent.

4. Discussion
4.1. Equilibrium

The replacement of natural ecosystems by agroecosystems with crops usually provides
the decline in soil C content due to the reduction in the microbial C and the increase of
SOM decomposition [64]. With the removal of the native vegetation and the beginning
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of the extensive pasture, the C stocks dropped in the soil (Figure 6). This may have been
caused by the soil preparation (disturbing), breaking the aggregates offering protection to
SOM and stimulating the biological activity [65].

In tropical ecosystems, the losses of C observed after the land clearing and cultivation
of soils are more accelerated than in temperate regions [66]. Thus, the decrease of nutrients
in an extensive pasture in native vegetation is due to soil revolving, even if minimal, since
there is a negative effect on SOM [67–69]. Climatic conditions, especially temperature, also
affect the decomposition rate of plant residues and the stabilization of SOM [44]. The occur-
rence of higher temperatures tends to accelerate the decomposition rate of SOM [70]. One
alternative to increase the total C stock in the agriculture systems is by applying sustainable
management practices and adopting crop systems that increase primary production and
reduce C removal and soil degradation. Therefore, improved management practices affect
the factors that regulate the synthesis and decomposition of SOM, contributing to the
sustainable productivity of the ecosystem [71].

4.2. Calibrated Model

The DayCent model adequately simulated aboveground biomass (Figure 7), mainly
for the beginning of the soybean crop and the mixed-pasture growth phases, periods that
had no direct grazing effect on the simulations; even though it was an area with intensive
pasture management, there were periods just after the mixed-pasture implementation
where the animals were not present in some paddocks. All nine paddocks had the same
altered parameters, and the behavior throughout the experiment was similar. Thus, minor
model failures in predicting aboveground biomass did not influence each paddock’s overall
behavior. Due to the study area being a commercial farm, minor problems with pests,
diseases, and weeds may also have influenced the biomass production to some extent, all
of which are not currently captured by the DayCent model unless we force the model to
reproduce the reductions of potential plant growth.

Del Grosso et al. [22] reported that most of the errors in DayCent model outputs were
associated with imperfections in model algorithms and parameters instead of uncertainty
in model drivers. Therefore, efforts to improve the model should compare model outputs
using numerous observations for various C and N components from field experiments to
identify weaknesses and rectify model shortcomings [72].

There was no under- or overestimation tendency of the aboveground biomass simula-
tions (Figure 8). The model explained 0.69 of the mixed-pasture, soybean, and extensive
pasture measured data (Figure 8), which many authors found a 0.25–0.69 variation over
aboveground biomass during the calibration stage [73].

In ICLS, there is a differentiated contribution of plant residues regarding conventional
grain production systems, both in the surface and soil subsurface [74]. In intensive ICLS, the
often succession of crop and pasture planting contributes to the root growth of both plants
and potentially increases the SOM in the deeper soil layers [75]. SOM can be investigated
by detailing its behavior over time in the future. Not only the inclusion of crops in pasture
areas can contribute to improving the system, but also planting pastures in crop areas can
increase crop yield by improving edaphic properties, the presence of straw and pasture
roots, increasing C levels and significantly ameliorating the conditions of aeration and
water infiltration capacity in the soil [76]. In future, we need to investigate the GHG mitiga-
tion which ICLS can potentially offer, which farmers can use to understand their carbon
footprint, encouraging management strategies to improve agricultural sustainability [77].

4.3. Validated Model

In the validation stage, the DayCent model performed well in representing the
ICLS, with the model results reflecting the dynamic phases of such a system (e.g., soy-
bean replaced by mixed-pasture with a rotational and intensive grazing system) and
management operations (e.g., sowing, harvesting, mowing, fertilization, grazing events)
(Figures 7 and 9). Even though three different soybean varieties were sowing in the area in
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both seasons, the model presented consistent aboveground biomass and yield simulation
results. Perhaps the difference between the rainfall distribution and the difference in the av-
erage air temperature among cycles have not influenced the differentiation of aboveground
biomass production.

For the four paddocks independently evaluated, the behavior of aboveground biomass
shows that even with some differences, it was still possible to represent the ICLS (Figure 9).
The model did not overestimate or underestimate aboveground biomass for the study
period; previous studies have reported a DayCent tendency to underestimate grain yield
and aboveground biomass [11,78,79]. Generally, significant errors may occur because the
model does not consider several processes that depend on crop management, such as
those associated with biotic stresses from weeds, diseases, or insects [80]. Additionally,
improvements in the solving processes, such as replacing the generic phenology and
partitioning rules by implementing traditional crop models such as the CROPGRO [81],
could potentially overcome some of these challenges in predicting soybean development
and growth and yields.

The DayCent model adequately simulated VWC (Figure 10) after adjustments during
the calibration simulations. We highlight that the DayCent presents consistent results for
these sand soils, similar to reported performance for other soil types in Brazil [82,83]. We
had a median accuracy not only for the rainy season (December and January) but also for
the driest months (July and August), unlike some studies that reported DayCent difficulties
in simulating VWC in very dry periods [84], based on the reference described in Section 2.4.

The VWC and its dynamics are of utmost importance since it affects plant growth,
SOM mineralization, and, therefore, the C fluxes in the model. Moreover, in crops such as
soybean, water stress impacts not only direct the plant growth but also triggers morpho-
physiological responses mainly in the reproductive phase, demonstrated by premature
senescence of leaves and flowers, death of pods and, consequently, grain yield reduc-
tion [85]. Water stress effects on aboveground biomass (Figures 7 and 9) and grain biomass
(Figure 13) were noticed at some stages within the paddocks. In the DayCent modeling
approach, these different species responses may be corrected by inserting different soil root
distributions as model inputs, for example, adjusting the soil.in file (model input) to better
represent the growth and distribution and add a water response factor in the crop.100 file
to better represent crop response sensitivity to drought events. However, it is important
to emphasize that these properties must be kept relatively constant for the same species.
Their alteration must be based on quantifiable aspects of the production environments.

DayCent captured the highest observed values of CO2 emission linked to management
events (Figure 11). The soil CO2 release occurs soon after the no-till practices. A few weeks
later, when more C is incorporated into the soil, the broking of structures protecting C,
make it available for the soil microorganisms. Consequently, more C is decomposed and
released to the atmosphere, resulting, in the short term, in a reduction of the total SOC, and,
if frequent, in the SOC content in the medium and longterm [86,87]. The flow of CO2 in the
soil is very complex and incorporates both autotrophic and heterotrophic respiration and
the passive diffusion of CO2, encompassing biological and physicochemical processes that
control the CO2 fluxes into and out the soil, and between different C compartments of the
soil system [88].

DayCent has received little assessment of CO2 predicted in tropical and ICLS con-
ditions. As mentioned, this model was previously tested in Brazil in its capabilities to
predict SOC changes [89], crop yield for common succession/rotation systems, N2O [15],
and flows of CH4 [79], but not yet for CO2 fluxes, despite its importance in accurately
simulating the conditions of a more intensive and complex system. DayCent overestimates
the GHG over different environments [11,79,90], including our study. With an R2 of 0.61,
and relative RMSE of 48.3%, when comparing the means, we only had differences in the
F2P2 paddock, which can be explained by the plant residues having a higher C/N ratio
and having a slower decomposition, thus staying longer in the ground, and the CO2 flux
becomes lower than the others [91]. The results presented here show that CO2 flux can
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vary with the implementation of different ICLS, and depends on the management practices.
Therefore, results support the importance of measuring and validating ecosystem models,
such as DayCent, to predict the SOC and CO2 fluxes.

The validation for applications in OR showed consistent results (Figure 13). The
simulated values were similar to those observed considering the two soybean crops. With a
minimum precision error about the other parameters (relative RMSE = 11.3 %, MAE = 8.0 %
and NSE = 0.52), we had a good result for DayCent within the ICLS for the soybean crop
considering the adjusted model also for different sites. Study [92] found R2 = 0.32 for
soybean, and in our validation, it was found at 0.61. Despite the dispersion, DayCent
can estimate the productivity of various crops in different places in the world. This result
suggests the model potential in estimating plant growth for monoculture systems, such
as soybeans, and more complex systems, such as ICLS. The DayCent model considers
abiotic influences on plant growth and development, such as solar incidence, temperature,
and precipitation [86]. Thus, we expected that perfect coupling of the grain production
estimated by the model would not occur (Figure 13).

A long-term ICLS implemented on sandy soil in a farm of western São Paulo state
(SP) in Brazil, using a scheme of two years of soybean in the rainy season followed by
pasture (dry season) and two years of only pasture, showed soybean yields ranging from
2.9 to 4.3 Mg ha−1, with the lowest values obtained under severe dry spells conditions [90].
These were considerably higher soybean yields than other farms in the same region in
the conventional system (average of 1.8 Mg ha−1) [93], indicating that the increment in
agricultural outputs may benefit from ICLSs.

We found similar performance for the ICLS in our area and for the other three regions
(Figure 12) as previously reported for other pasture species (R2 = 0.67) [94]. Although the
results suggest that the model can predict an ICLS, additional validations are needed due
to the diversity of ICLS and its adoption over different production environments, such
as cultivated species, animals raised, soil textures and classes, climates, and management
practises. This is a fundamental step for any model application beyond the environmental
conditions that the model was evaluated, to check how stable the calibration is and to what
extent the model can be extrapolated.

The study area benefited from the adoption of the ICLS by deciding to replace a
degraded pasture and adopt this system. The system creates a synergy between soybean-
pasture-soybean, being beneficial for both monoculture and mixed-pasture, and helps
increase soil nutrients, improving land-use diversification based on the spatial and temporal
integration of crop and livestock components. The result can reduce pressure to open new
areas for production, proving to be an excellent option for sustainable food production.
However, gaps in knowledge about the long-term effects of ICLS can make it difficult for
farmers to evaluate the benefits that ICLS may provide to their farm production and impose
a barrier to payments for environmental services, such as carbon credits [95]. By properly
modeling ICLS, the long-term effect can be accounted for contributing with positive credits
in the C trading or even participating in traceability regarding the sustainability within the
beef cattle market.

5. Conclusions

In this study, we calibrated and validated the DayCent model in ICLS farms in tropical
Brazil, particularly over sandy soils. With the simulation of two pastures grown simul-
taneously, it was possible to fill in a gap that had not yet been addressed with DayCent,
especially when using a system as complex and intense as the ICLS which we analyzed
in our study. By using the aboveground biomass data to calibrate DayCent parameters,
it was demonstrated that the model could be simplified according to the amount of data
available, and it was possible to simulate plant growth, grain biomass, soil VWC, total
SOC and CO2 fluxes, considering spatio-temporal evaluation and precision and accuracy
metrics. Consistent simulations of grain biomass and plant growth data for other ICLSs
were also found. Our study is an important step towards understanding the benefits of
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ICLSs and future regional analyses of the large-scale impacts of new agricultural practices,
particularly over tropical environments.
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Appendix A

Table A1. Management information of each paddock (pad.) within-season and off-season phases
for ICLS.

Season Managements (Crop Phase)
Soybean Cycle 2018/2019 Soybean Cycle 2019/2020

Field Pad. Cultivar Sowing date Harvest date Cultivar Sowing date Harvest date

1 1, 2, 3 BRS7380 RR 18 November 2018 02 April 2019 NS6700 12 December 2019 07 April 2020

2 1, 2, 3 AS3730 IPRO 20 November 2018 30 March 2019 NS6700 11 December 2019 04 April 2020

3 1, 2, 3, 4 NS6700 21 November 2018 04 April 2019 AS3730 IPRO 13 December 2019 08 April 2020

4 1, 2, 3 NS6700 22 November 2018 05 April 2019 BRS7380 RR 15 December 2019 09 April 2020
Off-season managements in 2019 (mixed-pasture phase)

Field Pad.
Mixed-
pasture Sowing date

1◦ Grazing 2◦ Grazing 3◦ Grazing Events

Period Stocking
rate Period Stocking

rate Period Stocking
rate Mowing

1

1
Millet +

ruzigrass 02/04

17/05–26/05

152

14/07–21/07

59

17/08–28/08

103 15/062 26/05–04/06 21/07–28/07 28/08–08/09

3 04/06–12/06 28/07–03/08 08/09–20/09

2

1
Millet +

ruzigrass 04/04

17/05–25/05

205

14/07–21/07

57

17/08–28/08

103 14/062 25/05–02/06 21/07–28/07 28/08–08/09

3 02/06–09/06 28/07–03/08 08/09–20/09

3

1

Millet +
ruzigrass 05/04

27/05–07/06

146

17/08–26/08

143

09/10–14/10

121 -
2 07/06–18/06 26/08–05/09 14/10–19/10

3 18/06–29/06 05/09–14/09 19/10–24/10

4 29/06–11/07 14/09–22/09 24/10–31/10

4

1
Millet +

ruzigrass 06/04

31/05–14/06

163

17/08–29/08

78 - - -2 14/06–28/06 29/08–10/09

3 28/06–11/07 10/09–22/09

https://github.com/yanefsilva/DayCent_ICLS.git
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Table A2. Sampling fields collects periods and data from ICLS on study area.

Sampling Fields
Collects Period Land Use System Phase Collected Data Sampled Fields

28 October 2018 Extensive pasture Before ICLS

Soil samplings for
determination of soil organic
carbon and pH, aboveground
biomass, volumetric soil water

content, bulk density, total
soil carbon

1, 2, 3, 4

5 February 2019 Soybean ICLS Aboveground biomass,
volumetric soil water content 1, 2, 3, 4

21 March 2019 Soybean ICLS
Aboveground biomass,

volumetric soil water content,
grain biomass

1, 2, 3, 4

18 April 2019 Mixed-pasture ICLS Soil respiration 1, 2, 3, 4

01 May 2019 Mixed-pasture ICLS Soil respiration 1, 2, 3, 4

11 May 2019 Mixed-pasture ICLS Soil respiration 1, 2, 3, 4

17 May 2019 Mixed-pasture ICLS Aboveground biomass,
volumetric soil water content 1 and 2

25 May 2019 Mixed-pasture ICLS Aboveground biomass,
volumetric soil water content 3 and 4

16 June 2019 Mixed-pasture ICLS Aboveground biomass,
volumetric soil water content 1 and 2

17 July 2019 Mixed-pasture ICLS Aboveground biomass,
volumetric soil water content 1, 2, 3, 4

10 August 2019 Mixed-pasture ICLS Aboveground biomass,
volumetric soil water content 1, 2, 3, 4

2 November 2019 Mixed-pasture ICLS Aboveground biomass,
volumetric soil water content 1, 2, 3, 4

8 November 2019 Mixed-pasture ICLS Soil respiration 1, 2, 3

15 November 2019 Mixed-pasture ICLS Soil respiration 1, 2, 3, 4

6 January 2020 Soybean ICLS Aboveground biomass,
volumetric soil water content 1, 2, 3, 4

8 January 2020 Soybean ICLS Soil respiration 1, 2, 3, 4

9 February 2020 Soybean ICLS Aboveground biomass,
volumetric soil water content 1, 2, 3, 4

14 February 2020 Soybean ICLS Soil respiration 1, 2, 3, 4

1 March 2020 Soybean ICLS Aboveground biomass,
volumetric soil water content 1, 2, 3, 4

1 March 2020 Soybean ICLS Soil respiration 1, 2, 3

23 March 2020 Soybean ICLS
Aboveground biomass,

volumetric soil water content,
grain biomass

1, 2, 3, 4

23 March 2020 Soybean ICLS Soil respiration 1, 2, 3, 4
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Table A3. The description about the modified parameters used in the DayCent model.

Initials Descriptions

AGLREM Fraction of aboveground live which will not be affected by harvest operations

BGLREM Fraction of belowground live which will not be affected by harvest operations

BIOMAX Aboveground biomass level above which the minimum and maximum C/E ratios of new shoot increments equal
pramn(*,2) and pramx(*,2), respectively

CLAYPG Number of soil layers that crop roots can occupy. The value used as CLAYPG for annual plants will vary from 1 on the
day that plant growth starts to CLAYPG as read from the CROP option on day FRTC(3) of plant growth

EFRGRN(1) Fraction of aboveground N which goes to grain

FDGREM Fraction of standing dead (stdedc) removed by a grazing event over a one-month period. The daily removal rate is
approximately fdgrem/30

FERAMT(1) Amount of N to be added

FERAMT(2) Amount of P to be added

FLGREM Fraction of live shoots (aglivc) removed by a grazing event over a one-month period. The daily removal rate is
approximately flgrem/30

FULCAN Value of aboveground live C (aglivc) at full canopy cover, above which potential production is not reduced (above
which there is no restriction on seedling growth)

PPDF(3) Left curve shape for parameterization of a Poisson Density Function curve to simulate temperature effect on growth

PPDF(4) Right curve shape for parameterization of a Poisson Density Function curve to simulate temperature effect on growth

PRAMN(1,1) Minimum aboveground C/N ratio with zero biomass

PRAMN(1,2) Minimum aboveground C/N ratio with biomass > biomax

PRAMX(1,1) Maximum aboveground C/N ratio with zero biomass

PRAMX(1,2) Maximum aboveground C/N ratio with biomass > biomax

PRDX(1)
Coefficient for calculating total monthly potential production as a function of solar radiation outside the atmosphere. It
functions as a radiation use efficiency scalar on potential production. It reflects the relative genetic potential of the plant;

larger PRDX(1) values indicate greater growth potential

PRDX(2)
Coefficient for calculating total monthly potential production as a function of solar radiation outside the atmosphere. It
functions as a radiation use efficiency scalar on potential production. It reflects the relative genetic potential of the plant;

larger PRDX(2) values indicate greater growth potential

SNFXMX Maximum symbiotic N fixation for forest (actual symbiotic N fixation will be less if available mineral N is sufficient for
growth)
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