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Bovine babesiosis is a tick-borne disease caused by intraerythrocytic protozoa and leads

to substantial economic losses for the livestock industry throughout the world. Babesia

bovis is considered the most pathogenic species, which causes bovine babesiosis in

Brazil. Genomic data could be used to evaluate the viability of improving resistance

against B. bovis infection level (IB) through genomic selection, and, for that, knowledge of

genetic parameters is needed. Furthermore, genome-wide association studies (GWAS)

could be conducted to provide a better understanding of the genetic basis of the host

response to B. bovis infection. No previous work in quantitative genetics of B. bovis

infection was found. Thus, the objective of this study was to estimate the genetic

correlation between IB and tick count (TC), evaluate predictive ability and applicability of

genomic selection, and perform GWAS in Hereford and Braford cattle. The single-step

genomic best linear unbiased prediction method was used, which allows the estimation

of both breeding values and marker effects. Standard phenotyping was conducted

for both traits. IB quantifications from the blood of 1,858 animals were carried using

quantitative PCR assays. For TC, one to three subsequent tick counts were performed

by manually counting adult female ticks on one side of each animal’s body that was

naturally exposed to ticks. Animals were genotyped using the Illumina BovineSNP50

panel. The posterior mean of IB heritability, estimated by the Bayesian animal model in

a bivariate analysis, was low (0.10), and the estimations of genetic correlation between

IB and TC were also low (0.15). The cross-validation genomic prediction accuracy for IB

ranged from 0.18 to 0.35 and from 0.29 to 0.32 using k-means and random clustering,

respectively, suggesting that genomic predictions could be used as a tool to improve

genetics for IB, especially if a larger training population is developed. The top 10 single

nucleotide polymorphisms from the GWAS explained 5.04% of total genetic variance

for IB, which were located on chromosomes 1, 2, 5, 6, 12, 17, 18, 16, 24, and 26.
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Some candidate genes participate in immunity system pathways indicating that those

genes are involved in resistance to B. bovis in cattle. Although the genetic correlation

between IB and TC was weak, some candidate genes for IB were also reported in

tick infestation studies, and they were also involved in biological resistance processes.

This study contributes to improving genetic knowledge regarding infection by B. bovis

in cattle.

Keywords: babesiosis, cross-validation, genetic parameters, genomic selection, genome-wide association

studies

INTRODUCTION

Bovine babesiosis is a tick-borne disease caused by
intraerythrocytic protozoa of the Babesia genus leading to
substantial economic losses for the livestock industry throughout
the world (1–3). In Brazil, bovine babesiosis is caused by Babesia
bovis and Babesia bigemina, which are exclusively transmitted
by the one-host tick Rhipicephalus microplus (4, 5). B. bovis
is the most pathogenic species (6). The infective forms, which
are in tick saliva, invade the host’s erythrocytes, multiply until
hemolysis, and invade new erythrocytes until the host dies
or develops immunity (7). Calves have an innate age-related
resistance to babesiosis. Thus, in regions where there is endemic
stability, calves are exposed to babesiosis and develop immunity
to the disease (6). On the other hand, in regions of endemic
instability, where climatic conditions prevent the survival of ticks
during a certain period of the year, calves may not be infected
when they are young, and outbreaks of babesiosis may occur
when ticks reinfest the pastures (8).

Bock et al. (9) and Jonsson et al. (10) observed that zebu
(Bos taurus indicus) were more resistant to B. bovis than
taurine (Bos taurus taurus) breeds. More recently, the levels of
B. bovis infection in bovine blood samples have been successfully
quantified through quantitative PCR (qPCR) assays (11–14).
Differences in these levels were observed between zebu (B. taurus
indicus) and taurine (B. taurus taurus) breeds (12), corroborating
previous findings. Phenotypic variation of the level of B. bovis
infection has been reported (12, 15). However, no quantitative
genetic studies have been found in the literature, and little is
known regarding its association with tick resistance.

Advances in molecular genetic techniques have allowed the

incorporation of genetic markers such as single nucleotide
polymorphisms (SNPs) into the breeding analysis, enabling

earlier accurate predictions (16). Genomic selection is a powerful
strategy to increase the rate of genetic gain, especially in
traits where selection based on phenotypic records is difficult,

such as disease resistance traits and low heritability traits
(17, 18). Cardoso et al. (19) showed that it is possible to
control tick infestation through the genomic selection of tick-
resistant animals. Therefore, the genetic improvement could

be an important tool for B. bovis infection control. Moreover,
using SNP information allows the detection of genomic regions
associated with B. bovis infection level through genome-wide
association studies (GWAS) (20) and, thus, contributes to a
better understanding of the genetic basis of this economically

important and complex trait. Regarding a tick resistance trait
in cattle, many studies have identified genomic regions through
association studies (21–26).

The objective of this study was to estimate the genetic
correlation between B. bovis infection level (IB) and tick count
(TC), evaluate predictive ability and application of genomic
selection, and perform GWAS for IB in Hereford and Braford
cattle to better understand the biological mechanisms underlying
IB and its association with tick resistance.

MATERIALS AND METHODS

Phenotype Data
The data set was provided by the Delta G Connection breeding
program (Gensys Associated Consultants, Porto Alegre, RS,
Brazil), which included Hereford and Braford cattle raised on
pastures in southern Brazil. The Braford breed is a combination
of 3/8 indicine breeds and 5/8 Hereford; however, in Brazil,
the breeders are allowed to vary the relative proportion of the
component breeds. In addition to phenotypic records on IB
and TC, pedigree information for the last three generations and
genotype data were included. A total of 5,867 (1,915Hereford and
3,952 Braford) animals provided TC records, and 1,858 animals
(225 Hereford and 1,633 Braford) provided IB records, between
the years 2010–2013. The average age of the animals during the
evaluation period was 17.5 months (10.9–23.1 months).

Babesia bovis Infection Level
The IB was assessed by determining the number of copies
of B. bovis target DNA sequence (cytochrome b gene). For
that, DNA was extracted from blood samples of each animal
collected on FTA cards using the Gensolve DNA recovery kit
(Gentegra, Pleasanton, CA, USA). The concentration and quality
of this DNA were determined in a NanoDrop spectrophotometer
(NanoDrop Technologies Inc., Wilmington, Delaware, USA).
The DNA samples were kept at −80◦C until further analysis.
After that, the qPCR was performed using the CFXTM Real-
Time PCR Detection System (BioRad, Hercules, CA, USA),
according to Giglioti et al. (14). The primers cbosg 1 (F):
5′ -TGTTCCTGGAAGCGTTGATTC-3′ and cbosg 2 (R): 5′-
AGCGTGAAAATAACGCATTGC-3′ amplify an 88-bp fragment
from the cytochrome b gene of B. bovis (11, 27). The standard
curves were plotted using 10-fold dilutions of synthetic DNA
gBlocks R© Gene Fragments (IDT, Coralville, IA, USA), which
contain known concentrations of the B. bovis target sequence. To
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estimate the number of copies of the target DNA sequence (NC),
the samples and controls were submitted to qPCR tests together
with dilutions of synthetic DNA gBlocks R©. Then, using software
native to the CFX96 system, NC values for dilutions were utilized
as a reference for the estimation of NC in the samples. Default
settings were used for all parameters, except for the threshold
line that was set to the same value, at 200 relative fluorescence
unit, for all qPCR tests. All samples and controls were tested
in duplicate, and samples with a standard deviation >0.5 were
retested. Samples presenting NC > 0 and specific temperature
melting (Tm) (77.5± 0.5◦C) were considered positive.

Tick Count
The animals were naturally exposed to ticks, and after weaning,
when the visual estimate of the average infestation across
all animals in a management group (animals raised together,
receiving the same feeding and sanitary management) exceeded
about 20 engorged female ticks, counts were performed by
manual counting adult female ticks (4.5–8mm in length) on
the right side of each animal (28). This process was carried
out one to three times in each management group. Tick counts
were performed in late spring, summer, and early fall, and the
minimum period between counts was 30 days.

For the analyses, the IB and TC records were transformed in
log10(x+ 1) due to normality assumptions of the models used in
this study. The descriptive statistics are shown in Table 1.

Genotype Data
A total of 4,496 animals were genotyped with the Illumina
BovineSNP50 BeadChip (50K; Illumina, San Diego, CA).
Genotype quality control was performed using the R snpStats
package (29) to remove samples with a call rate < 0.90,
heterozygosity 3.0 SD above or below the observed mean,
mismatching sex, and duplicated records. Only SNPs mapped to
the autosomes, with call rates > 0.98, minor allele frequencies >

0.03, and not in a highly significant deviation from the Hardy–
Weinberg equilibrium (P > 10−7), were considered for the
analyses. Additionally, only the SNP with the highest minor allele
frequency was retained when two SNPs were highly correlated
(r > 0.98). After quality control, 39,919 SNP markers and 4,388
samples remained for the statistical analysis.

Statistical Models
The genetic parameter estimations for IB and TCwere performed
by Bayesian inference in a bivariate analysis using an animal
model. The Bayesian approach was chosen because the sample
size was not large, and, to our knowledge, this is the first
quantitative genetic study for IB, which is a new phenotype. The

advantage of Bayesian methods, in this case, is that interpretation
of the results and uncertainties about the estimates are facilitated,
as all results are presented in terms of probabilities (30).

The model can be represented as follows:

y=Xβ+Z1a+Z2p+e

with the joint distribution of vectors a, p, and e as:
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p
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where y is a vector of observations; β is a vector of systematic
(fixed) effects; a is a vector of random additive genetic direct
effects; p is the vector of random permanent environmental
effects; e is a vector of random residuals;X, Z1, and Z2 are known
incidence matrices; G0 and P0 are the additive genetic direct
and environmental permanent effects (co)variance matrices,
respectively; H is the additive genetic relationship matrix; R0 is
the residual (co)variance matrix; and I is an identity matrix with
suitable dimensions. Only the permanent environmental effects
were included in the model for TC; therefore, p, Z2, and P0 were
not considered for IB.

The H matrix combines genotype and pedigree information
(31, 32), and its inverse (H−1) can be described in matrix
notation as:

H−1 = A−1 +





0 0

0 G−1 − A−1
22



 ,

where G is a genomic relationship matrix constructed as in
VanRaden (33) using current allele frequencies, and A22 is a
numerator relationship matrix only for genotyped animals.

Concerning the systematic effects, contemporary groups
(CGs) were included for IB and TC, as well as the effect
of racial composition (zebu proportion, heterozygosity, and
recombination loss computed from pedigree information).
Linear and quadratic effects of animal age were considered only
for TC. For IB, the linear effect of total DNA concentration
available for qPCR assays was considered. The CG was composed
of the animal from the same farm, sex, year and season of birth,
and management group. For TC, the date of the phenotypic
evaluations was also included in the CG. CGs with less than three
observations were excluded from the data set. The total numbers
of CGs for IB and TC were 15 and 227, respectively.

TABLE 1 | Descriptive statistics for Babesia bovis infection level (IB) and tick counts (TC) in Braford and Hereford cattle.

Traits Na Meanb SDb Minimum Medianb Maximumb

IB 1,858 719.9 (1.6) 5,920.68 (1.14) 0 79.2 (1.9) 154,199.5 (5.2)

TC 13,874 38.9 (1.4) 48.46 (0.47) 0 25 (1.4) 600 (2.8)

aNumber of records.
bLog-transformed scale data is shown in parentheses.
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The GIBBS2F90 program (34) was used to obtain samples
from the posterior distributions of genetic, permanent
environmental, and residual (co)variances. A Gibbs sampling
chain with 500,000 samples was generated, with the initial 50,000
samples discarded as burn-in based on visual inspection of trace
plots and the convergence tests of Gelman and Rubin (35) and
Geweke (36) as well as of Heidelberg and Welch (37) using
the coda package (38) of the R software (39). The posterior
distributions of the variance and covariance components were
approximated based on the remaining 450,000 samples.

Genomic selection and GWAS were performed just for
IB using the single-step genomic best linear unbiased
prediction (ssGBLUP) approach, and the effects considered
in the model were the same as previously described for
the IB trait. The ssGBLUP method allows estimation of
both breeding values and marker effects and combines
genomic and pedigree relationships using the H matrix, as
described earlier.

To estimate the genomic selection accuracy, cross-
validation was applied. Furthermore, two animal grouping
methods were used: k-means and random. More details are
described later.

The predictive ability of genomic selection for IB was assessed
by cross-validation, where 1,855 animals (1,631 Braford and
224 Hereford) with genotypes and IB phenotypes were divided
into three groups by two strategies using R software (39).
The strategies to divide the groups were k-means clustering
of marker relationship distances and replicated 10 times at
random. Average genomic relationships of each animal with
all others within and between groups were calculated to
characterize relatedness between training and validation sets
(40). For each grouping strategy, 3-fold cross-validations were
performed by alternately using records of two groups as training
sets to derive genomic predictions for the third (validation)
group, whose data were omitted in the analyses for marker
effect estimation. Prediction accuracies, within a cluster c,
were estimated as the correlation between predicted (â) and
estimated true (a) breeding values (r̂aâc), as proposed by Legarra
et al. (41):

r̂aâc = PA /
√
h2

in which PA is the predictive ability defined as the correlation
between IB of animals from group c adjusted for the fixed
effects and predicted values from cross-validation, represented
by direct genomic value. Moreover, h2 is the heritability
for IB.

The GWAS for IB were performed using themethod proposed
by Wang et al. (42), which is based on the ssGBLUP. The effects
of the SNPs (û) were obtained using the equation described as:

û =λDZ′G∗−1âg

where û is the vector of estimated SNP effects; λ is the variance
ratio calculated according to VanRaden et al. (43); âg is the
animal effect of genotyped animals; Z′ is a transpose matrix that
relates the genotypes of each locus; G∗ is the weighted genomic

relationship matrix; D is a diagonal matrix of the weights of SNP
variances obtained by the algorithm with the following steps,
where t is an iteration number, p is the allele frequency of the
second allele, and i is the i-th SNP:

1. t= 0;D(t) = I; G(t) = ZD (t)Z
′λ

2. Compute âg by ssGBLUP;

3. Calculate û(t) = λD(t)Z
′G−1

(t) âg ;

4. Calculate the weight for each SNP: d∗i(t+1)
= û2i(t)2pi(1 – pi) (44);

5. NormalizeD(t+1) = (tr(D(0))/tr(D
∗

(t+1)))D
∗

(t+1);
6. Calculate G(t+1) = ZD (t+1)Z

′λ;
7. Loop to step 3 for 3 times.

The analyses were carried out using the BLUPF90 family of
programs (34). The results of GWAS are reported as the
proportion of variance explained by a single SNP. A Manhattan
plot was created using the R package “ggplot2” (45). Once the
SNPs that explain the largest amount of IB genetic variance
were identified, they were assigned to the candidate genes. The
candidate genes were identified through the Ensembl genome
database project, available at https://useast.ensembl.org/index.
html, based on the Bos taurus ARS.120 reference assembly.
For that, the genomic coordinates were expanded by 500 kb
upstream and downstream; in this sense, an SNP was assigned to
a candidate gene if it was located within or near to the gene. Gene
ontology and biological pathway annotations of the genes were
retrieved using the biomaRt package (46) and Reactome Pathway
Knowledgebase (47), respectively.

RESULTS AND DISCUSSION

Genetic Parameters
Estimates of heritability and repeatability for TCwere low (0.127)
and moderate (0.267), respectively (Table 2). The proportion
of phenotypic variance explained by genetic variance of TC
evaluated in the population of Hereford and Braford cattle was
lower than other studies in Brazil with the same breeds that
reported a heritability of 0.19 (19, 48). These differences between
estimated heritability can be explained by population sample
differences and by the model. The main model difference is the
matrix relationships; in this study, we used genomic information
(SNPs) to build the matrix relationships (H matrix). Lower

TABLE 2 | Posterior mean and 95% highest posterior density intervals (within

parentheses) of (co)variance components for Babesia bovis infection level (IB) tick

counts (TC), and genetic correlation between IB and TC in Braford and Hereford

cattle performed by Bayesian animal model in bivariate analysis.

Parameter IB TC

Additive genetic variance, σ²a 0.088 (0.040, 0.141) 0.012 (0.009, 0.016)

Permanent environmental

variance, σ²p

– 0.014 (0.010, 0.071)

Residual variance, σ²e 1.048 (0.168, 0.890) 0.072 (0.070, 0.074)

Heritability, h² 0.077 (0.037, 0.124) 0.127 (0.093, 0.160)

Repeatability, r² – 0.267 (0.245, 0.289)

Genetic correlation, rIB,TC 0.152 (−0.147, 0.445)
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estimates of genetic variance based on genomic relationships
compared with those using pedigree relationships may occur;
however, the estimates based on genomic relationships are
frequently more accurate (49). Further, higher heritabilities
would be expected in experimental stations’ environmental
conditions, as shown by Burrow (50), who reported a heritability
of 0.42 for TC in a composite breed, as the conditions of the
collection are more controlled. In the present study, the tick
counts were carried out through collection by several technicians,
and although all were trained for collection, this can be a factor in
increasing experimental error. From this perspective, Ayres et al.
(51) estimated heritabilities of 0.12 and 0.11 for TC in Brazilian
Nellore × Hereford crossbred cattle, and Budeli et al. (52), in
South African Bonsmara breed cattle, found heritabilities ranging
from 0.03 to 0.17 in groups of animals divided according to mean
tick count.

Despite the low posterior mean for IB heritability (0.077),
there is additive genetic variability for this trait, and therefore,
selection responses may be obtained. No previous information
on quantitative genetics for IB was found in the literature;
however, low to moderate values for repeatability of IB in
Angus (13) and Canchim (14) have been reported. Usually, the
heritability estimates for disease traits are low mainly because of
the complexity behind these phenotypes (53, 54). Moreover, the
genetic correlation between IB and TC was weak (0.152). This
suggests that selection for TC would not change IB considerably
in the population of this study. Although no quantitative genetic
studies were found for levels of babesiosis infection in cattle,
Giglioti et al. (14) found the phenotypic correlation between tick
count and B. bovis levels ranging from 0.02 to 0.17, in different
ages. It is important to note that the number of records for IB is
much lower than for TC; besides, IB is a new phenotype related
to a disease.

Genomic Selection for Babesia bovis
Infection Level
The k-means clustering yielded three unbalanced groups with
830, 770, and 255 animals in groups 1, 2, and 3, respectively
(Table 3). A multidimensional scaling bidimensional scatter plot
according to the k-means groups is presented in Figure 1. Groups
1 and 2 were composed mainly by Braford breed with an
average of 35% zebu contribution, whereas group 3 contained

primarily Hereford breed (11% zebu contribution). As expected,
the average genomic relationship was larger within than between
groups. The average number of animals for the groups divided
at random replicated 10 times was 618.33 animals (74.67 ± 6.18
Hereford, 12.33 ± 3.36 1/2 Braford, 496.67 ± 6.51 3/8 Braford,
and 34.67 ± 3.51 1/4 Braford). Random groups had a similar
average genomic relationship within groups (0.011± 0.045), and
between groups, with the average close to zero.

The accuracy of prediction for groups divided at random was
higher than k-means clustering for groups 1 and 2 (Table 4). The
groups generated by the k-means method had a larger number
of crossbred animals, mainly in group 1 (800 animals of Braford
breed, Table 3). For group 3, the accuracy of the predictions
for k-means clustering and random methods was almost the
same (0.3). Although, to our knowledge, there is no published
genomic predictive study for B. bovis in cattle, the superiority of
prediction accuracy using random clustering compared with k-
means was also observed by Bock et al. (19) for tick resistance in

FIGURE 1 | Multidimensional scaling bidimensional scatter plot of k-means

clustering cross-validation groups.

TABLE 3 | Number of individuals (N) and averages (±SD) of genomic relationship (Gij) within and between-group of Hereford breed and Braford composition breed for

k-means clustering groups.

Groups; N Hereford Braford Gij within

group

Gij between

group

1/2a 3/8a 1/4a

1; 830 30 18 734 48 0.009 ± 0.035 0.000 ± 0.030

2; 770 30 18 696 26 0.054 ± 0.042 −0.008 ± 0.049

3; 255 164 1 60 30 0.070 ± 0.054 −0.003 ± 0.056

aZebu proportion.
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TABLE 4 | Prediction accuracy of direct genomic value predictions for each

k-means clustering and random cross-validation group using the ssGBLUP

method for Babesia bovis infection level.

Prediction accuracy

Group 1 Group 2 Group 3

k-means 0.180 0.225 0.346

Random 0.293 0.317 0.316

Braford and Hereford cattle. Based on these results, the number
of animals used for training the model is more important to
achieve better prediction accuracy than the difference between
the breed composition of group 3 and the other two groups.
This is in agreement with a previous study that reported that
a large number of animals in the training population is an
important factor that improves the accuracy of genomic selection
(18). The lower number of animals could explain the low
accuracy for group 1 under k-means clustering in the training
population and also the larger genetic relationship distance of
groups 2 and 3. Accuracies of genomic predictions are related to
the training data size and genetic relatedness between training
and validation individuals (55, 56). Furthermore, the low IB
heritability (Table 2) could be a determinant to the low prediction
accuracies found in this study, as genomic selection reliability
also depends on trait heritability (57). In this same population,
Sollero et al. (58) found much higher accuracy for tick resistance
(0.27 to 0.44), even when a specific SNP panel for TC with
very low density was used. In dairy cattle, some traits related to
resistance to infectious diseases have already been included in
genetic evaluations and selection programs using genomic data
(59), for example, the overall immune response (60, 61) that has
higher heritability and prediction accuracy than results in the
present study and the incidence of clinical mastitis (62) showing
accuracies and heritability values for the predicted breeding
values comparable with those found here. Other traits such
as Mycobacterium avium subspecies paratuberculosis infection
(63) or bovine respiratory disease in Holstein (64) also present
low heritability and predictive accuracy. Despite low accuracy,
genomic predictions could still be used as a viable tool to
obtain a selection response for IB for replacement candidates.
However, the expected genetic progress for this trait would
be slow.

Genome-Wide Association Studies for
Babesia bovis Infection Level
Figure 2 shows the Manhattan plot with the percentages of
additive genetic variance explained by each SNP for the IB
trait. The top 10 SNPs (Table 5) explained 5.05% of IB additive
genetic variance and identified 42 candidate genes involved in
biological mechanisms that may underlie B. bovis resistance in
cattle. Defense against parasites is mediated by sequential and
coordinated immune responses called innate and adaptative (65),
and several of the candidate genes participate in immune system
pathways (ATP8A1, LCP1, LRCH1, QSOX1, FGF2, DSC1, DSC3,
FGFR2, and CEBPG), which include adaptive and innate immune

systems, and cytokine signaling pathways, indicating that genetic
variations in these genes can alter the immune response and
consequently, influence susceptibility and outcome of babesiosis
in cattle. An essential aspect of B. bovis infection is that young
calves have strong innate immunity, which lasts until about 6
months of age (66). Animals that survive infection with B. bovis
become persistently infected and resistant to the clinical form
of the disease, a phenomenon known as concomitant immunity
(67). Adaptative immunity mechanisms are responsible for the
absence of clinical signs in persistently infected animals.

LCP1 is a protein of the plastin family. This family
is composed of actin-binding proteins that are conserved
evolutionarily and expressed in different types of plants and
animals (68). In mammals, three isoforms have been identified: T,
I, and L-plastin. This latter group includes LCP1 that is expressed
in hematopoietic cell lines, with essential functions in the
activation of macrophages (69), lymphocytes, and granulocytes
(70). According to Brown (71), the immune response against
babesiosis depends on the activation of CD4+ T lymphocytes in
the development of acquired protein antigen-specific responses.
CD4+ T cells are essential for coordinating high-affinity IgG
production and activating macrophages through the production
of IFN-È.

LRCH1 also encodes proteins that influence the migration
of CD4+ T cells (72). These cells play a regulatory role in the
immune response and result in higher resistance to R. microplus
in cattle, although other genes have been reported as mediators
for T cell regulation (73, 74). Piper et al. (75) reported that
Brahman animals (B. indicus) had higher percentages of T cells
than did the Holstein–Friesians (B. taurus). Constantinoiu et al.
(76) observed an increase of T cells in the skin around the site of
R. microplus larvae attachment in both B. indicus and B. taurus
cattle. Moré et al. (23) observed the participation of CD4+ T cell
subtypes in Braford animals classified as tick-resistant. Another
type of cell that influences the immune system is the B cell,
which plays a role in the humoral immunity component of the
adaptive immune system by secreting antibodies (77). The B cells
are activated by the proteins encoded by FGF2 and FGFR2 genes
through the signaling process, and CEBPG genes are involved in
B cell differentiation. An increase of B lymphocytes in the dermis
of tick-resistant cattle breeds was also observed, and differential
B-lymphocyte regulation in lymph node tissue was associated
with tick susceptibility (78).

The FGF2 and FGFR2 genes are involved in interleukins,
fibroblast growth factor receptor, cytokine, and MAPK signaling
pathways. The SPRY1 gene also participates in fibroblast growth
factor receptor and MAPK signaling pathways. Inflammatory
interleukins, growth factors, and cytokines activate the MAPK
signaling pathway, which regulates the immune response against
intracellular parasites (79, 80). Moreover, cytokines stimulate
natural killer cells to produce interferon-gamma (IFN-γ) during
the chronic phase of B. bovis infection. The IFN-γ activates
macrophages that synthesize and release nitric oxide, which
inhibits B. bovis replication (81–84). The CEBPG gene also
influences the natural killer cell process.

DSC1, DSC2, and DSC3 are involved in the keratinization
pathway and have been reported in tick resistance studies.
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FIGURE 2 | Manhattan plot of additive genetic variance explained by single SNP for Babesia bovis infection level.

TABLE 5 | Description of the SNPs with the largest effects on Babesia bovis infection level in Hereford breed and Braford composition breed.

BTA SNP position Genesa Var (%)

24 26,698,515 DSC1, DSC2, DSC3 0.853

16 62,734,784 CEP350, QSOX1, LHX4, ACBD6, TOR1AIP1, TOR1AIP2, FAM163A 0.640

1 32,883,377 CADM2 0.548

12 16,641,931 LRCH1, ESD, HTR2A, RUBCNL, LRRC63, LCP1 0.508

18 44,019,061 PEPD, CEBPG, CHST8, KCTD15, SLC7A10, LRP3, WDR88,

GPATCH1, FAAP24

0.487

26 42,178,883 ATE1, NSMCE4A, TACC2, BTBD16, FGFR2 0.479

6 62,979,121 ATP8A1, SHISA3, BEND4, SLC30A9, TMEM33, GRXCR1 0.408

2 109,327,881 Intergenic region 0.377

17 34,752,485 SPRY1, SPATA5, NUDT6, FGF2 0.377

5 53,704,130 SLC16A7 0.367

aGenomic coordinates for each gene based on the Bos taurus ARS.120 reference assembly were expanded by 500 kb upstream and downstream.

BTA, Bos taurus autosome; Var, proportion of additive genetic variance explained by the single SNP.

Terminal differentiation of keratinocytes is important for the
renewal of the stratum corneum, which plays an essential role
in defense against the pathogen (85). According to the authors,
tick bite lesions led to an increase of keratinocyte differentiation
and the promotion of stratum corneum formation. Wang
et al. (86) suggested that a dramatic reduction in keratin
transcripts may occur in response to tick infestation. Also,
DSC1, DSC2, DSC3, and CADM2 genes participate in the
cell adhesion process, which plays a critical role in initiating
and sustaining the immune response against foreign pathogens
(87). Piper et al. (88) reported that DSC2 was detected as
differentially expressed between tick-infested Holstein–Friesian
and Brahman animals at the tick-attachment site. Moreover, a
gene with an important biological function in controlling cellular
adhesion and migration was associated with tick burden in
cattle (89).

Genes involved in the hemostasis pathway, such as SLC7A10
and QSOX1, were also found to harbor the regions identified as
influencing IB. Sustained heavy R. microplus infestation has been
shown to alter host hemostatic mechanisms by inhibiting platelet
aggregation and coagulation functions (90). Several putative
genes (SPRY1, NUDT6, FGF2, FGFR2, and TACC2) influencing
IB participate in the cell proliferation process. In response to a
heavy tick burden, many different types of cells proliferate to
present exogenously derived antigens to the immune system (75).
The authors identified genes differentially expressed between
tick-infested Holstein–Friesian and Brahman animals that were
involved in the cell proliferation process.

HTR2A is involved in inflammatory mediator regulation
of transient receptor potential (TRP) channels and calcium
signaling pathways. Modifications in intracellular calcium
concentrations represent a fundamental mechanism in the
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control of inflammatory and immune cell functions (91).
Intracellular calcium influx is a key process for lymphocyte
activation and proliferation and cytokine synthesis (92, 93).
Cytokine is involved in the immune process against B. bovis
infection and replication, as discussed previously. As TRP
channels favor intracellular calcium permeability, it is
conceivable that, in association with other prominent molecular
pathways, TRP channels could contribute to immune and
inflammatory responses (91). Bagnall et al. (85) demonstrated
that genes involved in the intracellular calcium regulation
pathway are upregulated in response to cattle tick infestation
in bovine skin. Also, the HTR2A gene participates in the ERK1
and ERK2 cascade process, which has control over inflammatory
mediator synthesis and survival of innate immune cells (94).

CONCLUSIONS

Predictive accuracies are related to the size of training
populations, and despite its low heritability, genomic predictions
could be used as a tool to improve genetics for B. bovis
infection level in Hereford and Braford cattle. The effectiveness
of this process would rely on generating a larger reference
population than that used in the present study. Moreover, some
candidate genes that participate in immunity system pathways
were identified and could contribute to improving the genetic
knowledge regarding B. bovis infection in cattle. Although the
genetic correlation between B. bovis infection level and tick count
was weak, some candidate genes for IB were also reported in
tick infestation studies, and they were also involved in biological
resistance processes.
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