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1 �Introduction
One of the biggest accomplishments in human history has been the 
domestication of plants, providing a more continuous food supply and 
promoting the conformation of sedentary agricultural groups (Pérez-Jaramillo 
et al., 2016). However, since the early days of crop domestication, growers 
have been plagued by multitudes of pests and diseases causing hunger and 
social upheaval. Zadoks (2017) discussed selected historical pest and disease 
outbreaks in the Old World in view of their social and political consequences. 
The challenge persists up to present. It is estimated that crop pests and 
diseases are responsible for direct yield losses ranging between 20% and 40% 
of global agricultural productivity and regularly menace global food security 
(Savary et al., 2019). However, crop losses remain poorly recognized as an 
important driver in matters of food security, whereas plant diseases have had 
an enormous impact on livelihoods throughout human history (Zadocks, 2017). 
Crop pests and diseases impact individual farms, local commerce, national and 
international trade, and the global economy.
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Dissemination of pests and diseases occurs through both natural and 
anthropogenic processes, facilitated by the increasing interconnectedness of 
the global food chain. More than half of all emerging diseases of plants are 
spread by an introduction (Bebber et al., 2013). Weather is the second most 
crucial factor (Bebber et al., 2014). Although pests are spread by human activities 
and aerial dispersal, prevailing climatic conditions are likely to determine their 
subsequent establishment and growth.

Food security depends on our ability to manage crop pests and diseases 
effectively. The potentially increased production and environmental risks from 
a changing climate are expected to make the challenge of providing sufficient 
food for a global population that is supposed to top 9.5 billion by 2050 which 
is even more difficult. Increases in human populations and demand for food, 
energy, and water combined with an uncertain future climate that is very likely 
to have higher temperatures and increased frequencies of extreme events, are 
sure to lead to increased food shortages unless cropping systems become 
more resilient to those changes (Godfray and Garnett, 2014).

Tools and techniques are needed to assist in developing strategies that 
can lead to higher food production and prevent crop production losses due to 
pest and diseases while maintaining the social, economic, and environmental 
sustainability. The global impacts of pests and diseases can be assessed by 
integrating life cycles models to crop growth models that includes damage 
mechanisms to simulate yield losses. Scenario development and analysis 
form a robust framework of such studies since the inputs of these models 
can be forced by global change scenarios, which include climate change 
scenarios. Examining the impacts of pest and disease outbreaks has a range 
of applications, including the design of research strategies, the evaluation, and 
guidance of policies, and improved plant protection management.

While the crop modeling components are continually evolving in many 
cases, the insect pests and pathogens are neglected or treated in a simplified 
fashion using conceptual models. Several groups are addressing this gap, but 
there are only a few instances in the literature where numerical solutions of 
the pests are coupled to crop models (Tonnang et al., 2017). Crop simulation 
models have great significance in transferring new technologies to the farmers 
and decision-makers, and Decision Support Systems for Agrotechnology 
Transfer (DSSAT) (Jones et al., 2003) has been one of the most important of 
them. Years of research and collaboration has turned DSSAT as a handy tool 
for researchers and policy-makers for decision-making and to answer what – if 
questions related to a cropping system (Sarkar, 2009). While the application 
domain has broadened, and modeling networks have expanded, DSSAT model 
implementations have largely remained as it was a decade ago and Fortran is 
still used as the programming language.
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DSSAT’s models are typically large constructions each containing their 
own implementations of very common approaches to modeling crop and 
soil processes. Fortran remains dominant primarily due to its legacy as the 
predominant language used by scientists and crop modelers (Jones et al., 
2017). This reliance comes from significant past efforts spent to build those 
model components, which to date are still performing and functioning well, 
and are heavily used by many scientists as critical parts of ongoing research 
delivery.

The improvement and application of pest and disease models to analyze 
and predict yield losses including those due to climate change is still a challenge 
for the scientific community. Applied modeling of crop diseases and pests has 
mostly targeted the development of support capabilities to schedule scouting 
or pesticide applications. There is a need for research to both broaden the 
scope and evaluate the skills of pest and disease models (Donatelli et al., 2017). 
On the other hand, some scientific communities have the necessary knowledge 
to develop models that simulate the cycle of plant diseases. Therefore, there 
is the challenge of coupling independently developed models for different 
problems.

The dynamic linkage between disease and pest injuries and the host crop 
is created by coupling points between the pest and disease models and crop 
models. Coupling points are places where the values of state variables – the 
variables that represent the state of the physical quantities being modeled – 
can be exchanged with other models. The framework presented by Rabbinge 
and Rijsdijk (1981) and Boote et  al. (1983) describes seven mechanisms of 
pest and disease damage on crops – that is, light stealer, leaf senescence 
accelerator, tissue consumer, stand reducer, photosynthetic rate reducer, 
turgor reducer, and assimilate sappers. The translation of these injuries into 
mathematical expressions offers the possibility to incorporate them into the 
biophysical processes simulated by crop models (Bregaglio and Donatelli, 
2015).

Donatelli et al. (2017) listed three main crucial elements to be faced when a 
coupling point is realized: (1) suitable identification of the damage mechanisms 
and respective crop model outputs to be affected by the pest and disease 
injuries via coupling points; (2) pest and disease model outputs must be linked 
to crop model variables, either directly or via additional functions; and (3) 
synchronization of time step of the communication between the pest/disease 
and the crop model. In addition, other critical aspects should be addressed 
in integration between models. These include, for example, identifying 
appropriate models, specifying interactions (data conversions, variable types, 
etc.), and verifying the possibility of integration of source codes. Once this step 
is over, there is a need to choose the most appropriate integration approach 
and then implement the coupling between the models.
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The chapter is organized as: (1) a brief overview of approaches for model 
coupling; (2) explaining the PEST subroutine present in the CROPGRO family of 
models within DSSAT; (3) using a strategy of keeping the crop model separate 
from disease/pest models, and coupling through Message Passing Interface 
(MPI) functionality; and (4) presenting a proof of concept to demonstrate the 
communication approach for model coupling that examines the integrations 
performed in crop and pest/disease simulation models.

2 �Approaches to model coupling
The methodological aspects in choosing a coupling approach are extremely 
important for the implementation of an appropriate integration. This is due 
to the degree of complexity in the processes involved. The most basic way to 
integrate multiple model codes, called the monolithic approach, is to merge 
them into a single program. Some coupling-like techniques allow for limited 
interaction between models, and are collectively referred to as the scheduled 
approach. More sophisticated approaches involve frameworks designed to 
support model coupling. We use the term frameworks to refer to software 
systems that assist in designing software by providing a foundation upon 
which more complex and customized software can be built. With respect to 
model coupling, frameworks provide the building blocks to create coupled 
models. Some frameworks focus on enabling models to communicate, called 
communication frameworks, while others focus on creating models from 
software components, called component frameworks.

2.1 �Monolithic approach

The monolithic approach is defined as the formulation of a computer program 
through a single source code, where it implements fragments of the source 
code of two or more models, creating a new customized model. When 
using this approach, a certain degree of smoothness is attained during code 
integration and execution, since it works with a single programming language. 
The monolithic approach had the advantage of being familiar to scientists, as it 
is not much different from the normal model writing process, that is, composing 
subroutines and writing source code. Another critical point is the control over all 
details of the model source code such as structure, data input, output formats, 
data types, memory allocation, among others (Bulatewicz, 2006).

2.2 �Scheduled approach

Some applications are scheduled coupled when one model uses output data 
from another model at the given time intervals. The overlapped region(s) 
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between the two models define the coupling interface. In some cases, there 
is a need for data transformation to standardize the units of measurements 
in both models. An application of this approach uses CSM-CROPSIM, a 
wheat simulation model existing in DSSAT, which simulates the growth and 
development of wheat in combination with a Fusarium Head Blight simulation 
model (Del Ponte et al., 2009). In brief, the second model uses the output from 
the first model as input.

2.3 �Component-oriented approach

The component approach to model coupling is similar to the monolithic 
approach in that the result of the coupling is a single model code. However, 
rather than decomposing the constituent model codes into blocks of source 
code designed for integration into another specific model code, the scientist 
decomposes the model codes into software components, which are modular 
and reusable subroutines. With the use of components, it is possible to easily 
apply software engineering techniques such as testing, upgrades, comparisons, 
and verifications. Components are easily aggregated and regrouped into 
new constructions and can be reused in future compositions. An example is 
presented by Bregaglio and Donatelli (2015). Even using this approach, with 
legacy codes, there is still a need to know the codes of the models in detail. 
Besides, it is necessary to know the order of execution of the model in a possible 
conversion to components which requires a great effort of reprogramming.

2.4 �Communication approach

The communication approach presents itself as the most complex, but at the 
same time the most used, as it provides the integration of legacy codes with 
more current technologies, thus increasing the life of the model (Valckle et al., 
2012). The codes of the models inserted in this approach remain independent 
but interact through the exchange of data via messages during the execution 
process. The primary functions of a data exchange interface, which follows 
the communication-oriented approach, are the constitution of flows, the 
transformation of data, and sometimes can control the initialization of the 
model or track the overall state of the integration. The models that follow this 
approach can be classified by the use or not of independent applications that 
are intermediate between the execution and the communication models. 
Without the use of coupling interfaces (dependent applications) they are 
considered data transfer libraries, that is, custom routines for data conversion 
and definition of the communication mode used by the models. With the use of 
independent applications (with coupling interface), they have communication 
libraries that directly support the model-to-model interface as well as support 
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the interface model to the coupling interface. Rodrigues et  al. (2012) built 
interfaces in the C programming language to bridge the communication 
between a disease simulation model written in Java and a crop model written 
in Fortran. Integration takes place through the exchange of data between the 
Fortran–C interface with the C–Java interface. Lazaretti et al. (2016) reported a 
communication-based approach of a crop model and a plant disease model 
running concurrently while exchanging data through an intermediate relational 
database management system (Fig. 1).

We presented a number of different frameworks that can be used for 
model coupling, organized into four different approaches. Clearly, the 
component approach is an ideal way to construct new models if components 
are available, but the approach is impractical for coupling existing models. The 
communication approach though, allows existing models to be coupled with 
minimal changes to the model source codes, but still makes use of existing 
coupling points. Since we are interested in model reuse, we will focus on the 
communication approach in this chapter, and refine our use of the term model 
coupling to refer specifically to this approach.

3 �The pest and disease damage module (PEST)
Pest and disease-induced yield losses, a world-wide issue, are not addressed 
in most crop models. Early attempts like generic pest coupling subroutines in 
DSSAT-CROPGRO models allow entry of time series pest-scouting data, which 
in turn is used during simulation to interpolate the damage between scouting 

Figure 1 General coupling schema through a database management system (DBMS).
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dates to predict yield loss to pest. Unlike the statistical models which cannot 
capture non-linearity in responses outside the boundary of data used to fit 
model, process-based models can efficiently achieve the underlying biological 
process, including process-based quantification of implications of climate 
change for the crop losses due to pest and diseases.

Several efforts have been done to model pest and disease reduction 
effects in crop growth and yield (Boote et al., 1983; Teng et al., 1998; Batchelor 
et al., 2000). Commonly pest damage is represented by percent difference 
loss in leaf mass and/or area, or disruption of plant process between treatment 
and control being more useful if expressed in a daily base. Boote et al. (1983) 
showed plant physiology aspects that can be affected by pests and how crop 
models can simulate it with reduction in growth and yield. Several aspects such 
as reduction in the stand, photosynthetic rates, light interception, cell turgor, 
increase in leaf senescence and respiration, and so on are caused by pests. 
Teng et al. (1998) presented a conceptual framework for linking pest effects 
on crop models belonging to the CERES and CROPGRO families using many 
approaches and examples with field data for many crops. The DSSAT pest and 
disease damage module (PEST), initially developed for the CROPGRO models 
(Batchelor et al., 1993), can model damage on different plant parts and tissues 
including leaf area reduction, assimilate loss, loss of leaves, fruits, stems, and 
roots (Jones et al., 2003). The module PEST of DSSAT, described in detailed by 
Batchelor et al. (2000), is called by the Plant module in a daily step to calculate 
pest damage. It has distinct rate and integration sections separated by plant 
growth routines, being called within the calculation section of plant growth. 
The PEST module of CROPGRO is structured in 11 subroutines (Table 1). In the 
DSSAT models observed damage from field experiments are read from input 

Table 1 Subroutines of the PEST module of CROPGRO

Module Description

PEST The main subroutine
IPPEST Reads simulation input information (FILEIO)
IPPARM Reads pest data (FILEP)
IPPROG Reads time series data (FILET)
LINDM Interpolates pest damage linearly using observations
PESTCP Calculates daily damage rates at each coupling point
ASMDM Calculates assimilate damage
SEEDDM Calculates seed and shell damage
VEGDM Calculates leaf and stem damage
ROOTDM Calculates root damage
OPPEST Prepare pest damage outputs (PEST.OUT file)
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files (FILET) and used in the simulations. Up to 40 pests can be simulated using a 
crop specific file, called the pest coefficient file (FILEP or *.PST), to apply damage 
to the appropriate coupling point. Up to six coupling points can be defined 
for each pest, in cases when the pests can damage more than one coupling 
point. The coupling points in the DSSAT PEST module associated with plant 
damage are state variables expressed in four ways: (1) daily absolute damage 
rate, (2) percent observed damage, (3) daily percent damage rate, and (4) daily 
absolute damage rate with pest competition and food preference effects. Some 
examples of coupling points in DSSAT are leaf area index (LAI), leaf, stem, root, 
and seed mass, seed and shell number, plant density, assimilates, necrotic LAI, 
vegetative nodes, and so on which are crop and pathogen specific (Batchelor 
et al., 2000).

After all growth rates, C and N rates, vegetative and reproductive 
senescence rates, and pest and damage rates are computed for, they are passed 
to a subroutine called GROW which integrates all processes and updates the 
values of the state variables at the end of the day.

4 �Integrating a crop model and pest/disease models 
using Message Passing Interface (MPI)

4.1 �Overview of MPI

MPI is a standardized set of libraries for parallel and high-performance 
computing (HPC), consisting in exchanging messages between processes. MPI 
has a protocol with specifications and definitions for resources optimization, 
defining an abstract application programming interface (API) that allows 
independent and compatible implementations. Due to the portability and 
availability of libraries for different languages such as C/C++, Fortran, and Java, 
MPI was quickly adopted as the standard for executing numerical software in 
HPC architectures (Gropp et al., 1999). Several implementations of the MPI 
standard are available as MPICH,1 Intel MPI,2 and OpenMPI.3

Usually, MPI has two implementation criteria: single program multiple data 
(SPMD) and multiple program multiple data (MIMD). In the SPMD, the same 
program, at independent points, runs in multiple autonomous processors 
simultaneously. In this criterion, tasks are split up, at runtime, and simultaneously 
executed on multiple processors. In MIMD, different programs can be run 
with different inputs in multiple autonomous processors simultaneously. It 
is frequently used as communication switches where applications can be 
written in different programming languages and easily communicated with 

1 �https://www.mpich.org/
2 �https​://so​ftwar​e.int​el.co​m/en-​us/in​tel-m​pi-li​brary​
3 �https://www.open-mpi.org/

https://www.mpich.org/
http://https​://so​ftwar​e.int​el.co​m/en-​us/in​tel-m​pi-li​brary
https://www.open-mpi.org/
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each other, sharing information through a communicator/interface. In this 
way, MPI shows up as an architecture independent and efficient strategy to 
exchange information (Browne and Wilson, 2015). A MPI parallel technique was 
developed for an agroecosystem model, EPIC on global food and bioenergy 
studies (Kang et al., 2015).

4.2 �MPI communicator for model processes

The execution using the MIMD implementation criterion allows the same 
approach to be used for coupling simulation models in parallel. The coupling 
of different simulation models requires time control, data communication, and 
synchronization. In this case, the development of a coupling interface allows 
simplifying the use and the implementation in the simulation model (Peckham 
et al., 2013).

The coupling interface manages the data communication and 
synchronization of the coupled simulation models. The purpose of the 
interface is to provide a set of reusable, portable standard features between 
different programming languages and to simplify communication of the 
simulation models (Peckham et al., 2013). The implementation should include 
methods that abstract the communication layer with MPI, so the coupling 
interface works as an independent module. These functions are used at the 
coupling point of the simulation model, enabling access to the initialization, 
communication, and finalization routines (Browne and Wilson, 2015; Dunlap 
et al., 2013).

Table 2, summarizes the main functions of the coupling interface. The init_
coupling function initializes the MPI, enables message exchange, and check 
that the coupled simulation model has been started and can receive data. 
The send_data and receive_data functions are for data exchange between 
the coupled simulation models. To finalize the coupling between the models, 
the finalize_coupling function disconnects the coupled models, allowing the 
sequence of the execution flow. The ‘getters’ and ‘setters’ functions are to 
access data exchanged between models during execution. Figure 2 shows a 
diagrammatic representation of the models and functions.

Algorithm 1 shows pseudocode of the communication interface where the 
appropriate communication occurs. Pseudocode 1 represents the coupling 
interface operation. It is organized in three steps: initialization, model cycle, 
and finalization. The first step consists of initializing the simulation and coupling 
the models. The second step comprises the model’s loop (rate, integration, and 
output). In this step, the logic of the model is updated and its state variables 
are updated. The communication functions are used to exchange information 
between the coupled simulation models. Finally, the termination function is 
called to close the connection and finalize the simulation.
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Table 2 Main functions of the coupling interface

Functiona Description

void init_coupling() MPI initialization and coupling verification.
void send_data(int destination) Sends the stored data to the destination.
void receive_data(int source) Receives the data from the source.
void finalize_coupling() Finalize the coupling and close the connection 

with the attached models.
int get_int(string var_name) Returns an integer value.
float get_float(string var_name) Returns a float value.
string get_string(string var_name) Returns a string value.
void set_int(string var_name, int value) Store an integer value.
void set_float(string var_name, float 
value)

Store a float value.

void set_string(string var_name, string 
value)

Store a string value.

a Functions are defined by return type, function name, and parameters inside parentheses.

Figure 2 Diagrammatic representation of the models and functions.



© Burleigh Dodds Science Publishing Limited, 2020. All rights reserved.

Improving crop pest/disease modeling﻿ 11

4.2.1 �Algorithm 1: model communication 
using a coupling interface

Set up model initialization
CALL init_coupling()
FOR daily steps:
        Rate calculations
                When the model wants to send data:
                  1. Store the data using ‘setters’
                  2. CALL send_data()
    Integration 
                When the model wants to receive data:
                  1. Retrieve the data using ’getters‘
                  2. CALL receive_data()
    Daily output
END daily steps
Print outputs of the model
CALL finalize_coupling()
Finish the simulation

5 �CROPGRO-soybean: insect pest and disease damage
Population growth, increasing affluence, rapid urbanization, and dietary 
transition are rising global demands for food and fuel products (Fan et al., 2017). 
Food security is decreasing in the context of the inter-linked food and economic 
crisis, and a number of studies (Paillard et al., 2014; Beddington et al., 2012) 
have indicated the need for increasing research efforts in the area of agriculture 
and climate change. They include the improvement of modeling capabilities to 
better assess the impacts on agricultural production of extreme weather events. 
In this context, there is also a need to integrate pests and pathogens into the 
climate change/food security debate. Many pests and pathogens exhibit a 
considerable capacity for creating, recombining, and selecting fit combinations 
of variants in key pathogenicity, fitness, and aggressiveness traits that there is 
little doubt that any new opportunities resulting from climate change will be 
exploited by them (Gregory et al., 2009).

As a significant source of protein for humans and livestock, the global 
consumption of soybean products has increased dramatically, more specifically, 
in Asia (Cao and Li, 2013). Hence, soybeans play a preeminent role in ensuring 
global food security. However, the soybean crop is exposed to a number of 
serious insect pests and plant diseases, which may, in turn, threaten global food 
security. Brazil is a prominent country in the international agricultural scene and 
this is due in large part to the role of soybeans in the national production of 
grains, placing the country as one of the main suppliers of these oilseeds (FAO, 
2017).
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Crop simulation models are considered important tools in the studies of 
interactions and changes in climate and their effects on different crops and 
the possible impacts of these changes on grain yield (Asseng et al., 2014). 
Since these models are able to make inferences about real systems, their 
application in agricultural systems currently represents a powerful resource 
for the evaluation of scenarios, management options and extrapolations of 
experimental results in space and time. They can also be used for an academic 
purpose, research assistance, support systems, and management decision 
management as well as strategic planning analysis and management policies 
(Jones et al., 2003). Here, an exploratory exercise establishes a procedure to 
integrate the CROPGRO-soybean model present in the DSSAT and insect pest/
disease models. This procedure should enable to quantify the effects of insect 
pests and diseases on soybean production. The choice of DSSAT-CROPGRO-
soybean simulation model relies on the fact that it has been successfully 
validated with many controlled field-experimental data across the world (Battisti 
et al., 2017) including Brazil. Most importantly, the DSSAT-CROPGRO-soybean 
simulation model has a PEST module which facilitates model coupling.

Here, we choose aphids to represent an insect pest. The virtual aphid, in 
the nymph phase as in the adult phase, can affect soybean productivity, causing 
direct damage. The damage is due to feeding on phloem sap (assimilate 
removal effect). The level of damage depends on the population density of 
the aphid. The population dynamics of aphids are affected by biotic factors 
(natural enemies such as parasitoids, predators, and pathogens) and abiotic 
factors (temperature, humidity, and rainfall). Temperature is one of the main 
factors that interfere with the development of aphid populations. This factor 
affects rates of development, reproduction, and survival, thus reflecting the 
population density on a plant (Lima et al., 2009).

Simulation systems have been used to represent a wide range of problems 
in the entomological area, including modeling of population growth, dispersion 
and migration (Parry, 2013; Toebe, 2014), life cycle (Isidoro et al., 2009; Zhou 
et al., 2010), and infestations (Perez and Dragicevic, 2010). In 2014, Toebe 
developed an agent-based model which simulates the life cycle of aphids that 
are considered pests to crops. In the architecture of the model, the simulation 
of population growth of particular aphid species considers factors that reflect 
the biology of the insect that needs to be parameterized.

The agents in the model are abstract representations of individuals being 
simulated. The environment in which the agents are embedded is delimited 
geographically, and agents may enter and exit this area according to their typical 
behavior. The environment has characteristics that include meteorological 
variables and host plants.

The execution of the model starts by loading the configuration settings. 
Upon loading the parameters, the virtual environment is assembled in the 
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memory and the initial agent-insect population is distributed within the 
environment. The simulation is executed step by step, and at each step, 
weather data from a selected meteorological station is used as input and the 
routine behavior of each agent is implemented. Once the behavior of each 
insect is executed, the step is incremented and the process is repeated until 
the last step, which is the last day of the simulation. At the end of every step, the 
simulation results are saved in the database.

At every step of the simulation, the model considers the execution of the 
routine behavior of each agent in the virtual environment (Fig. 3). The first 
activity (development) involves the degree days accumulation in accordance 
with the function and development stage of the insect. It is followed by the 
feeding activity, which may or may not occur depending on the stage of the 
insect. The movement activity is also dependent on the stage of the insect 
and may or may not occur in apterous or winged form or both. The activity 
of reproduction only occurs for reproductive individuals and consists of the 
degree days accumulation up to a given threshold, which implies the birth of a 
new insect that depends on reproductive traits. Finally, the possible causes of 
mortality are investigated for the agent.

The effect of virtual aphid on soybean yield was simulated through 
CROPGRO-soybean simulation model. The coupling point in the PEST module 
is the variable TPSR (Daily absolute assimilate damage g[CH2O]/m2/d). It was 
empirically set that an amount of 0.0004 g[CH2O]/d per aphid (Chander et al., 
2006).

The aphid agent-based simulation model proposed by Toebe (2014) 
framework was used in this work. The model is generic, expandable and 
parameterizable and can be applied to different species of insects that infest 
different crops. The model was developed in the Java programming language. 

Figure 3  Fluxogram of the aphid agent-based model. Source: adapted from Toebe 
(2014).
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The ability to add modules is useful in simulation problems because factors that 
were not considered in the initial design can be incorporated later.

In the case of plant disease, process-based models of the Susceptible-
Exposed-Infectious-Removed (SEIR) type may represent a compelling approach 
for a generic modeling application. This type of model is generic even beyond 
the field of agriculture since the basic idea is also broadly accepted in animal 
and human disease epidemiology. The methods considered by this model 
type surely capture epidemiological processes that dictate epidemic build-up: 
disease transmission, the lag between infection and infectiousness of the 
host. Concepts and theories that exist and have been applied in a fragmented 
way so far can, therefore, be assembled toward an application for a generic 
epidemiological modeling platform (Donatelli et al., 2017).

Pavan and Fernandes (2009) developed a generic disease model, that 
is, the model can be parameterized to cover several diseases that occur in a 
given crop (Fig. 4). The model design aims a detailed representation of disease 
progress. The model was designed to mimic a fungal disease disease cycle. 
The generic disease model dynamically links to the PEST subroutine present 
in CROPGRO-soybean. The fungal leaf disease model was structured following 
the principles for coupling host and diseases dynamics introduced by Berger 
and Jones (1985). Disease dynamics were handled at the cohort level as 
proposed by Berger (1989) and applied in the development of a bean rust 
simulator (Berger et al., 1995). Parameters used in the model were extracted 
from literature (Rodrigues et al., 2012).

The number of cohorts is equal to the number of days the soybean 
plant has grown. Each cohort number corresponds the day the cohort has 
emerged. The generic model describes the disease progress on the soybean 
and its effects on growth and yield. Disease progress was modeled for each 
leaf cohort. Initially, the leaf cohort area was infection-free (healthy), but it was 
subjected to infection as time progressed depending on inoculum availability 
and environmental conditions. Disease progress of the entire plant canopy 
was computed by summing up disease progress on each leaf cohort. As the 
soybean plant naturally senesces, the total area of the cohorts matches to the 
entire leaf area calculated by CROPGRO-soybean. The generic disease model 
requires various input parameters that are produced by other modules within 
CROPGRO-soybean, related to crop growth, senescence, and environmental 
conditions.

The integration of CROPGRO-soybean and the generic disease model 
was via coupling points already implemented in PEST subroutine. In order to 
use these coupling points, the generic disease model calculates the diseased 
leaf area (PDLA: percent diseased leaf area %/d) and defoliation leaf damage 
(PLFAD: daily percent leaf area damage %). These coupling points are translated 
into specific model state variables, by VEGDM subroutine, like WLIDOT (daily 
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pest or freeze damage to leaf mass g/m2/day), LAIDOT (daily change in leaf area 
index due to pest damage m2/m2/d), and DISLA (diseased leaf area cm2[leaf]/
m2/d) (Boote et al., 1983; Batchelor et al., 1993).

Leaf wetness is recognized as a very important determinant of plant 
diseases since it is fundamental for the fungal infection process. A leaf wetness 
duration empirical model that considers the number of hours with relative 
humidity above a specific threshold is the most common and easy to apply, and 
in this regard, several studies have been developed in many parts of the world 

Figure 4 Diagram of the generic disease model.
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(Alvares et al., 2015). In our example, the number of hours of relative humidity 
greater than 90 was used as a proxy for leaf wetness duration.

A case study is used to explore the model coupling of a crop model, 
an insect pest model, and a plant disease model. The case study concerns a 
fictitious situation where a soybean crop is planned to be cultivated in Southern 
Brazil region. The growth of the soybean crop is constrained by the presence 
of insect pests and diseases. A hypothetical experiment that included the 
simulation of a generic soybean cultivar (maturation group 5.5) with and without 
the impact of an insect pest and/or a fungal foliar disease was prepared. The 
experiment was simulated over the soybean growing seasons of 2012 through 
2017. Soil profile and weather data for the locality of Passo Fundo, RS, Brazil 
were extracted from AgroDB database (Lazzaretti et al., 2016).

The comparisons between the yield predictions and the expected yield 
show that the CROPGRO-soybean model was able to simulate the development 
and soybean yield. Both, the insect pest (aphids) and the fungal foliar disease 
had an impact on the soybean growth and final yield (Fig. 5). The simulated 
soybean yield differed between individual treatments and within each year 
due to weather conditions during the growing season. Overall, the simulated 
impact of the fungal foliar disease on the growth and final yield of soybean was 
greater than the impact caused by aphids.

By using the MPI_coupling interface, the CROGRO: Soybean simulation 
model, the agent-based model, and the generic disease model can be 
combined in a complex model. Most of all, without modification into the code 
of the models. This is made possible through the exchange of messages and 
also by saving and retrieving data dynamically with the coupling interface 
during execution.

Figure 5 CROPGRO-soybean model daily simulation outputs for leaf area index, canopy 
weight, 1000-grain weight, and the final grain yield under no impact of pests and diseases 
(control), with the aphids effect (ABM), with the disease effect (DGM) and with the effect 
of pests and diseases (BOTH).
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The implementation of the MPI_coupling interface described in this 
chapter should be applicable for any model written in a language which has 
MPI bindings. These are generally directly callable from C, C++, and Fortran. 
Some programming languages can interface with the MPI libraries and are thus 
compatible with this technique. The programming languages R and Python, for 
example, are commonly adopted among data scientists and can interface with 
the MPI libraries.

The significant advantage of choosing the MPI_coupling interface is the 
speed of implementation. In our example, this was apparent when using 
the coupling points already present in PEST module of CROPGRO-soybean 
model.

6 �Future trends and conclusion
The demand to predict the impact of pests and diseases on agricultural 
production systems is a critical component in the development and analysis 
of situations affecting producers’ income and food security. We present a 
model coupling method which enables one to write generic and modular 
computational models. We show that by using this method it is possible 
to combine several computational models without modifying any existing 
code and only write new code for the coupling interface. This is a significant 
advantage for model development which reduces the probability of bugs 
and eases development, testing, and validation of computational models. 
The proposed model coupling approach should support system analysis 
including essential processes and their dynamics over an appropriate range 
of environmental variables. Possible applications of crop models integrated to 
pest and disease models include strategic decisions, such as breeding for host 
plant resistance in future climate scenarios, policy-making, priority-setting for 
research, applications for risk analysis of exotic invasive species, deployment 
of early warning systems, and for resource allocation. Further work should aim 
primarily to develop coupled models for crop model applications. It should 
target to serve various coupled models with flexibility, user-friendliness, and 
extensive coupling functions.

7 �Where to look for further information
There is a Special Issue of the journal Agricultural Systems (volume 155) 
covering the foundation for the next generation of agricultural systems data, 
models and knowledge products. In the Introduction to this Special Issue, the 
authors described a vision for quickening the rate of agricultural innovation and 
meeting the growing global demand for food security. They also synthesize 
insights and formulate a strategy to advance data, models, and knowledge 
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products that are consistent with the vision as mentioned above. In the Special 
Issue, there is an article on pest and disease modelling.

The Agricultural Model Intercomparison and Improvement Project 
– AgMIP (https://agmip.org) is a major international collaborative effort 
focusing on ‘incorporating state-of-the-art climate products as well as crop 
and agricultural economic model improvements in coordinated regional and 
global assessments of future climate impacts’. In 2015, responding to the need 
to include modeling of pests and disease in agricultural assessments, AgMIP 
held a workshop at the University of Florida (http​s://c​onfer​ence.​ifas.​ufl.e​du/ 
pe​st/in​dex.h​tml).​

The Community of Practice on Crop Modeling (CoPCM) is part of the 
CGIAR Platform for Big Data in Agriculture (http​s://b​igdat​a.cgi​ar.or​g/com​munit​
ies-o​f-pra​ctice​/crop​-mode​ling/​) and encompasses a wide range of quantitative 
applications. An example is a project ‘Combining crop and disease modeling 
with numerical weather forecasting to inform wheat blast early warning systems 
in Bangladesh, Brazil, and beyond.’ The CoPCM from the Big Data Platform 
supports the project.
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