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Soil Science/ Original Article

Prediction of soil classes 
in a complex landscape 
in Southern Brazil
Abstract – The objective of this work was to evaluate the use of covariate 
selection by expert knowledge on the performance of soil class predictive 
models in a complex landscape, in order to identify the best predictive model 
for digital soil mapping in the Southern region of Brazil. A total of 164 points 
were sampled in the field using the conditioned Latin hypercube, considering 
the covariates elevation, slope, and aspect. From the digital elevation model, 
environmental covariates were extracted, composing three sets, made up of: 
21 covariates, covariates after the exclusion of the multicollinear ones, and 
covariates chosen by expert knowledge. Prediction was performed with the 
following models: decision tree, random forest, multiple logistic regression, 
and support vector machine. The accuracy of the models was evaluated by the 
kappa index (K), general accuracy (GA), and class accuracy. The prediction 
models were sensitive to the disproportionate sampling of soil classes. The 
best predicted map achieved a GA of 71% and K of 0.59. The use of the 
covariate set chosen by expert knowledge improves model performance in 
predicting soil classes in a complex landscape, and random forest is the best 
model for the spatial prediction of soil classes.

Index terms: digital soil mapping, pedometry, predictive covariates, 
predictive models, soil-landscape relationship.

Predição de classes de solo em uma 
paisagem complexa no Sul do Brasil
Resumo – O objetivo deste trabalho foi avaliar o uso da seleção de covariáveis 
por conhecimento especializado no desempenho de modelos de predição de 
classes de solos em uma paisagem complexa, para identificar o melhor modelo 
preditivo para o mapeamento digital de solos na região Sul do Brasil. Um total 
de 164 pontos foram amostrados em campo, com uso do hipercubo latino 
condicionado, tendo-se considerado as covariáveis elevação, declividade e 
aspecto. A partir do modelo digital de elevação, extraíram-se as covariáveis 
ambientais que compuseram três conjuntos, formados por: 21 covariáveis, 
covariáveis após exclusão das multicolineares e covariáveis escolhidas por 
conhecimento especializado. A predição foi realizada com os seguintes 
modelos: árvore de decisão, floresta aleatória, regressão logística múltipla e 
máquina de vetor de suporte. A acurácia dos modelos foi avaliada pelo índice 
kappa (K), pela acurácia geral (AG) e pela acurácia da classe. Os modelos de 
previsão foram sensíveis à amostragem desproporcional de classes de solo. O 
melhor mapa predito obteve AG de 71% e K de 0,59. O uso do conjunto de 
covariáveis escolhido pelo conhecimento especializado melhora o desempenho 
do modelo em prever as classes de solo em uma paisagem complexa, e floresta 
aleatória é o melhor modelo para previsão espacial das classes de solo.

Termos para indexação: mapeamento digital de solos, pedometria, 
covariáveis preditoras, modelos preditivos, relação solo-paisagem.
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Introduction

The global demand for agricultural production, 
together with environmental sustainability and climate 
change concerns, has led to a growing interest in soil 
spatial information (Amundson et al., 2015). Soil maps 
are important sources of information to be used as 
a support in several areas of environmental science 
and engineering. In the state of Rio Grande do Sul, 
Brazil, as well as across the country, more detailed soil 
information at compatible scales for land use planning 
at the watershed and farm level is still necessary 
(Dalmolin & ten Caten, 2015).

In this scenario, new methodologies have been 
integrated to computational techniques in Soil Science, 
mainly in the area of soil mapping. Among these 
methods, stands out the one proposed by McBratney 
et al. (2003), named digital soil mapping (DSM), based 
on generating mathematical relationships between 
covariates and soil classes to predict the latter’s 
spatial distribution. In this approach, the covariates 
represent the main factors of soil formation, including 
climate, organisms, relief, parental material, and time. 
Moreover, the legacy data obtained by traditional 
surveys and new field samplings can be used to train 
models for soil class inferences in unmapped areas 
(Dalmolin & ten Caten, 2015; Bagatini et al., 2016; 
Pahlavan-Rad et al., 2016; Silva et al., 2016; Meier 
et al., 2018).

Currently, for inferences on soil types, different 
calibration methods are being tested, such as decision 
tree (Teske et al., 2014; Silva et al, 2016), multiple 
logistic regression (ten Caten et al., 2011b), support 
vector machine, and random forest (Taghizadeh-
Mehrjardi et al., 2015; Dias et al., 2016). The potential 
of each one is defined by input data, specifically by 
the degree of correlation between soil classes and 
environmental covariates (McKenzie & Ryan, 1999; 
Brungard et al., 2015), which may be high at some 
points of the landscape but low in others. It should 
be noted that not all covariates are directly related 
to a particular soil formation factor, and that some 
of them have indirect or multiple relationships with 
different formation factors (Moore et al., 1993; Ma 
et al., 2019). Time-related covariates, for example, 
are absent in predictive models unless they are 
manually incorporated (Noller, 2010). In this case, 
geomorphological maps can be a useful information 
source to represent time and parent material in soil 

genesis (Scull et al., 2005); however, this legacy 
information is often in a coarse cartographic scale, 
which is unsuitable for local studies. The predictive 
potential of the calibration methods is also influenced 
by the quality and resolution of the covariates extracted 
from the digital elevation model (DEM) (Moura-
Bueno et al., 2016), the window size from which the 
DEM derivatives are extracted (Samuel-Rosa et al., 
2015), and the quality and quantity of the soil data used 
in modeling (Teske et al., 2014).

The environmental covariates used in DSM are 
usually selected based on the relationship between soil 
distribution and landscape, whose main conditioning 
factors are geology, geomorphology, land use/land 
cover, climate, and relief. These covariates also have 
been widely used in predictive models (Bagatini 
et al., 2016; Pahlavan-Rad et al., 2016; Silva et al., 
2016; Meier et al., 2018). Among them, relief is the 
main soil formation factor taken into account in DSM 
(McBratney et al., 2003), due to the easy access to the 
DEM and to the close relationship of the covariate with 
the soil distribution pattern in the landscape (Moore 
et al., 1993; McKenzie & Ryan, 1999). Covariate 
selection can alter classification patterns and directly 
influence the result of soil class prediction (Brungard 
et al., 2015; Dias et al., 2016), which is attributed to the 
level of information on the environmental variability 
carried by each covariate (Moore et al., 1993; McKenzie 
& Ryan, 1999; Samuel-Rosa et al., 2015). This makes 
it improbable that only one predictive model will be 
useful for all geomorphic surfaces (Grunwald, 2009).

The pedologist’s knowledge about the soil-landscape 
relationship may be an alternative to covariate 
selection, in order to improve soil class mapping, 
mainly in complex landscapes. However, this strategy 
may be biased or even fail in regions where knowledge 
about the pedogenetic process is insufficient (Moore 
et al., 1993; Vasques et al., 2012). Consequently, 
studies that determine sets of covariate predictors 
to be used in the training of models under complex 
landscape conditions are fundamental (Moore et al., 
1993; McKenzie & Ryan, 1999; Samuel-Rosa et al., 
2015), aiming to generate high quality maps to meet 
the current soil data demand.

There are still challenges for DSM, such as new 
theories, methods, and applications, especially for 
highly heterogeneous landscapes (Zhang et al., 2017). 
Therefore, soil information, combined with different 
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sets of covariates and machine learning, may have a 
distinct predictive capacity for the DSM of detailed 
soil maps (≥ 1:20,000) in complex landscapes, which 
are characterized by the high variability of geology, 
relief, and land use/land cover.

The objective of this work was to evaluate the 
use of covariate selection by expert knowledge on 
the performance of soil class predictive models in 
a complex landscape, in order to identify the best 
predictive model for digital soil mapping in the 
Southern region of Brazil.

Materials and Methods

The study was carried out in an agricultural 
area of approximately 12 km2 in the municipality 
of Santa Maria, in the state of Rio Grande do Sul, 
Brazil, between the coordinates 29°37'22.94"S and 
53°39'45.28"W, 29°40'40.78"S and 53º38'41.92"W. The 
climate is classified as Cfa, according to the Köppen-
Geiger classification system. The area comprises the 
transition region called “Rebordo do Planalto”, between 
the “Planalto” and “Depressão Central” physiographic 
regions of the state.

The landscape characteristics of the study area 
condition a high variability in soil class distribution. 
According to the Brazilian soil classification system 
(Santos et al., 2013), the classes predominant in the 
region are: Neossolos, Argissolos, Cambissolos, and 
Planossolos, i.e., Entisols, Ultisols, Inceptisols, and 
Alfisols, respectively. The local relief varies between 
plain (slope from 0 to 3%) and mountainous (slope 
from 45 to 100%), and elevations range between 74 
and 454 m, with the periodical occurrence of land 
slips. The geological heterogeneity of the region is 
attributed to: the transition of acidic and basic igneous 
rocks, such as rhyolite-rhyodacite and andesite-basalt; 
consolidated sedimentary rocks, particularly aeolian 
and fluvial sandstones; and nonconsolidated rocks, 
including fluvial and colluvial deposits (Sartori, 
2009). The geological variability of the area is shown 
in Figure 1, which was adapted from the geological 
map of Camobi, in the state of Rio Grande do Sul, at 
a scale of 1:50,000 (Maciel Filho et al., 1988). Despite 
the relevance of geology for local soil genesis, the 
lack of detailed-scale maps (> 1:50,000) for the study 
area made it impossible to use this information as a 
predictor covariate. The land use/land cover that 

predominates in the area is made up of shrubland and 
native grassland occupying more than half of the area, 
followed by native semi-deciduous forests, eucalyptus 
forestry, and annual crop agriculture. Dullius et al. 
(2018) observed that there is a relationship between 
vegetation variability and pedology. Native forests are 
predominant in strong wavy and mountainous relief. 
In wavy relief, native fields and shrubs are common, 
whereas flat relief areas are dominated by annual 
crops, mainly irrigated rice (Oryza sativa L.). These 
characteristics show that “Rebordo do Planalto” is both 
an environmentally complex region and a constantly 
changing landscape, where the soil formation factors 
do not act uniformly, making it difficult to fit soil class 
prediction models.

A total of 164 points were sampled in the field 
(Figure 1) using the conditioned Latin hypercube 
(Minasny & McBratney, 2006), considering the 
covariates elevation, aspect, and slope; this procedure 
was performed in the R programming language (R 
Core Team, 2017), with 10,000 interactions. This 
sampling method was chosen for taking into account 
the best geographical distribution of the points, based 
on the distribution frequency of the covariates in the 
landscape. At each of the 164 points, sampling was 
carried out with an auger or by opening trenches, in 
order to identify and classify the soil to the second 
categorical level, according to the Brazilian soil 
classification system (Santos et al., 2013). The points 
were randomly separated into training (70%, n=115) 
and validation (30%, n=49) sets, preserving the 
distribution of classes between sets.

The soil classes identified in the study area are 
presented in Table 1. Two soil classes, located in very 
similar parts of the landscape, were joined: Cambissolo 
Háplico (CX), an Udept; and Neossolo Regolítico (RR), 
an Orthent. This strategy aimed to reduce prediction 
errors and facilitate spatialization (Dias et al., 2016). 
The Neossolo Litólico (RL) class, an Orthent, was more 
frequently observed in areas of higher elevation and 
steeper slope; Argissolo Bruno-Acinzentado (PBAC) 
and Argissolo Vermelho-Amarelo (PVA), both Udults, 
as well as CX and RR, were found at intermediate 
elevations; and Planossolo Háplico (SX), an Aqualf, at 
sites with low elevation and flat relief.

The following terrain covariates were calculated, 
according to Wilson & Gallant (2000), from a 
30-m resolution DEM obtained from Shuttle Radar 
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Figure 1. Location of the study area in the municipality of Santa Maria, in the state of Rio Grande do Sul (RS), Brazil 
(A); extended study area with elevation representation, indicating soil identification points (training and validation) 
underlying the prediction of soil classes (B); and elevation profile in the north-south direction of the area, representing the 
geomorphological sequence (C).
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Topography Mission data: elevation, slope, topographic 
wetness index (TWI), convergence index (CI), profile 
curvature (ProfC), vertical distance to channel network 
(VDCN), cumulative flow (CF), analytical hillshading 
(AH), general curvature (GC), channel network base 
level (CNBL), transverse curvature (TrC), valley depth 
(VD), planar curvature (PlanC), longitudinal curvature 
(LC), terrain ruggedness index (TRI), slope length 
and steepness factor (LS), aspect, tangential curvature 
(TangC), topographic position index (TPI), and relative 
slope position (RSP). In addition, the normalized 
difference vegetation index (NDVI), obtained from 
Landsat 8 satellite images from November 2016, was 
used. This covariate was included to represent the 
organism factor in soil formation, considering the 
relationship between land use/land cover and soil class 
(Samuel-Rosa et al., 2011; Dullius et al., 2018), which 
was observed during the soil sampling stage in the 
study area. The covariates were derived in the SAGA-
GIS, version 2.1.2, software (Conrad et al., 2015).

Two strategies were used to identify the model 
most suitable for soil class prediction for the DSM 
of a complex landscape. The first was selecting the 
covariates with the best predictive response. For this, 
three sets were defined, composed of: A, 21 covariates 
extracted from the DEM; B, covariates applied in 
set A reduced by the principal component analysis 
(PCA), as suggested by ten Caten et al. (2011a); and C, 
covariates chosen after the analysis of their frequency 
distributions in each soil class, observed in the boxplots, 
performed by expert knowledge of the soil-landscape 
relationship in the study area. The covariates selected 

to best distinguish soil classes were: elevation, slope, 
TWI, CI, AH, GC, NDVI, CNBL, TrC, and VD in 
set B; and elevation, slope, TWI, CNBL, NDVI, and 
aspect in set C.

The second strategy was assessing different models, 
i.e., decision tree (DT) (algorithm J48), random forest 
(RF), support vector machine (SVM), and multiple 
logistic regression (MLoR), considering the A, B, and 
C covariate predictor sets. For the accuracy assessment 
of the models, the respective confusion matrices for 
the training and validation sets were generated, to 
calculate general accuracy (GA), class accuracy (CA), 
and the kappa index (K). GA was used to evaluate 
the proportion of correctly predicted map pixels in 
relation to the number of total pixels, whereas CA 
was used to assess the correct pixel ratio of each soil 
class. All statistical analyses were performed in the R 
programming language (R Core Team, 2017).

Results and Discussion

The boxplot analysis showed that only some 
covariates presented direct relationships with a given 
soil class (Figure 2), indicating that not all of them are 
directly related to soil class distribution in a complex 
landscape (McKenzie & Ryan, 1999; Brungard et al., 
2015; Ma et al., 2019), where the pedogenetic processes 
of the soil act differently (Huggett, 1975).

The mean values of CNBL differed for PBAC+PVA, 
CX, RL, RR, and SX (Figure 2), showing the potential 
of this covariate for the distinction of these soil classes. 
Covariates with a different numerical range between 
soil classes are considered the most relevant because 
they explain the differences between the sites where 
each soil class occurs in the landscape (Silva et al., 
2016). Among the most used covariates in DSM, 
elevation and slope (McBratney et al., 2003; Bishop & 
Minasny, 2006) stand out due to their high relationship 
with the residual water content in the profile and soil 
formation processes, followed by CNBL, which is 
calculated from elevation. Therefore, these covariates 
are important for soil class prediction, mainly for 
classes located at higher elevations and in steeper 
regions, as RL in the present study. The PBAC, PVA, 
CX, and RR classes are distributed at intermediate 
elevations below 200 m; furthermore, the last two 
are poorly represented among the points sampled in 
the area. Class SX was well characterized in the soil 

Table 1. Soil classes identified in the study area in the 
municipality of Santa Maria, in the state of Rio Grande do 
Sul, Brazil.

Symbol Brazilian soil classification 
system(1)

Soil 
taxonomy(2)

Sampling 
points (%)

RL Neossolo Litólico Orthent 36

PBAC Argissolo Bruno-Acinzentado Udult 26

PVA Argissolo Vermelho-Amarelo Udult 14

CX Cambissolo Háplico Udept 9

RR Neossolo Regolítico Orthent 8

SX Planossolo Háplico Aqualf 7

Total 100

(1)Santos et al. (2013). (2)Soil Survey Staff (2014).
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Figure 2. Boxplot representing: range of values; median, minimum, maximum, first, and third quartiles; and interquartile 
interval of the set of covariates of each soil class. LS, slope length and steepness factor; TRI, terrain ruggedness index; 
TWI, topographic wetness index; ProfC, profile curvature; LC, longitudinal curvature; TrC, transverse curvature; VDCN, 
vertical distance to channel network; VD, valley depth; NDVI, normalized difference vegetation index; PlanC, planar 
curvature; RSP, relative slope position; AH, analytical hillshading; GC, general curvature; CI, convergence index; CNBL, 
channel network base level; CF, cumulative flow; TangC, tangential curvature; TPI, topographic position index; PBAC, 
Argissolo Bruno-Acinzentado, an Udult; PVA, Argissolo Vermelho-Amarelo, an Udult; CX, Cambissolo Háplico, an Udept; 
RL, Neossolo Litólico, an Orthent; RR, Neossolo Regolítico, an Orthent; and SX, Planossolo Háplico, an Aqualf.
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survey and clearly identified at lower elevation sites 
below 100 m and in flat areas, despite its low sampling 
frequency in the study area.

The VDCN covariate is related to sediment erosion 
and deposition and organic matter concentration, 
allowing the prediction of the distribution of different 
soil classes in the landscape. In the present study, it 
presented greater potential to distinguish the RL class 
(Figure 2); however, its range was short for the other 
soil classes, implying their low distinction power in 
the construction of the predictive models. Similarly to 
VDCN, the NDVI has the potential to discriminate the 
RR and RL classes from the others due to differences 
in the range of this index. This fact is related to the 
association of soil classes with incipient pedogenesis 
and the land use of native forest (Dullius et al., 2018), 
which predominate in areas of relief varying from 
strong wavy to mountainous (Samuel-Rosa et al., 2011).

Also based on boxplot analyses, Silva et al. (2016) 
observed that VDCN was the covariate with the 
highest power to discriminate soil classes in an area 
of approximately 4.85 km2, with flat to undulating 
relief, in the state of Minas Gerais, Brazil. Moreover, 
Meier et al (2018) found that precipitation, annual 
temperature, TWI, slope, VDCN, and bands 1, 7, and 
11 of Landsat 8 were the most important covariates 
for the prediction of soil classes in an area located 
in Zona da Mata, also in the state of Minas Gerais. 
The study of Teske et al. (2014) showed that elevation, 
slope, flow length, and slope orientation were the 
covariates that best explained soil distribution in a 
landscape with flat and slightly undulating relief in the 
“Encosta Inferior” physiographic region, located in the 
northeast of the state of Rio Grande do Sul. According 
to these authors, elevation was the most important 
covariate in the distinction of Rhodudults, soils with a 
base saturation <35%, a clayey B horizon, and a dark-
colored surface horizon. However, for Eutrudepts, 
soils with an incipient development horizon and a high 
base saturation in the 25–75-cm layer, the elevation 
range was higher, and the inclusion of the covariates 
slope and flow length was required for discrimination 
between soil classes.

Despite the wide usage of TWI in DSM studies, its 
potential to discriminate soil classes was not confirmed 
in the present work, since its median values were close 
and it varied greatly in the five evaluated soil classes 
(Figure 2); this result disagrees with that of Meier 

et al (2018), who found that TWI was the fourth most 
important covariate for soil discrimination. Although, 
during the sampling stage, the PBAC and PVA classes 
occurred in sites with different soil moisture, the 
boxplot analysis did not allow this distinction based 
on TWI values. This discrepancy can be explained, in 
part, by the effect of the parent material on these soil 
classes; the Santa Maria formation, for example, was 
related to PBAC and the Caturrita formation to PVA. 
In addition, data on local geology are not available on 
the scale needed to allow this distinction, hampering 
the development of better DSM. This is an indicative 
that the same covariate and/or set of covariates 
perform differently in distinguishing soil classes due 
to the heterogeneity of the covariates and the complex 
interaction between them in the pedogenesis process. 
In the landscape, soil formation factors do not act 
uniformly, which makes it difficult to construct 
more accurate predictive models (Ma et al., 2019). 
Therefore, in complex landscapes, as those assessed 
in the present study, the difficulty in establishing the 
covariates linked to the most important formation 
factors involved in soil genesis is evident. A similar 
behavior was observed by Samuel-Rosa et al. (2015), 
when fitting models to predict the soil granulometric 
composition of this same physiographic region of the 
state of Rio Grande do Sul.

The quality of DEM-derived data is an important 
factor in DSM, especially in areas with a complex 
landscape, with great soil variability. Teske et al. (2014) 
and Moura-Bueno et al. (2016) showed that relief is 
represented differently by each DEM. Teske et al. 
(2014) reported a greater variation in elevation values 
obtained from orbital sensors with a higher spatial 
resolution of 30 m, reflected in a reduction in the 
accuracy of the soil-landscape relationship for an area 
of approximately 68.5 km2. However, when evaluating 
the quality of the DEM for DSM, Moura-Bueno et al. 
(2016) found that a spatial resolution of 30 m may be 
restrictive in cases of errors in altitude values when 
detailed DSM is applied in areas of gently undulating 
relief. Therefore, the DEM resolution used and the 
accuracy of the covariates may explain the small 
differences between the values of: TWI for the PBAC, 
CX, and SX classes; elevation for RR+CX, PBAC, 
PVA, and SX; and slope for PBAC and PVA (Figure 2). 
In this case, the detail level of the terrain underlying 
the DEM was insufficient to discriminate these soil 
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classes in the landscape, resulting in a loss of the 
predictive capacity of the models due to the difficulty 
in establishing rules capable of distinguishing classes. 
However, to discriminate the RL from the other 
classes and RR from SX, the covariate elevation was 
important. Furthermore, to distinguish PBAC, PVA, 
and SX from RR and RL, the TWI median value 
should differ.

Regarding the sets of predictor covariates, the 
accuracy of the models trained with all covariates (set 
A) was higher than that of those trained with the other 
sets, with a mean GA of 76% and K of 0.66 (Table 2). 
In validation, the highest values were obtained with 
set B, with a mean GA of 67% and K of 0.53. The 
reduction in the number of covariates in set B did not 
improve the mean accuracy of the training model; 
however, despite the smaller number of soil data 
used in validation, the mean accuracy values of set B 
increased, compared with those of set A. Decreasing the 
number of covariates facilitates the prediction process, 
since, when working with many covariates, whether 
multicollinear or irrelevant, relationships that are not 
pertinent to soil mapping can be established between 
soil geomorphology and soil classes, reducing the 
performance of the model. The use of many covariates 
may also hamper the establishment of pedological 
relationships at the moment of interpretation of the 
soil-landscape relationship (Brungard et al., 2015).

In this sense, set C was made up of covariates 
with a greater potential to discriminate soil classes 
based on expert knowledge of the soil-landscape 
relationship in the study area. For this set, the mean 
model accuracy was lower than that for sets A and B, 
both in training and validation. However, each model 
performed differently regarding accuracy. RF, for 
example, performed best in set C, with a GA of 71% 
and K of 0.59 (Figure 3); in set A, it had difficulties in 
predicting the PBAC and PVA classes, resulting in their 
generalization, especially of PVA, which showed the 
lowest CA of 29% (Table 2). With this model, a lower 
area was also predicted for the RR+CX association, 
resulting in a CA of 0%. It should be noted that, during 
the soil sampling stage, it was observed that PBAC 
and PVA occur in the same position in the landscape; 
the difference between both is only the color of the 
B horizon, which is bright and gray for PBAC due 
to its aquic condition. The covariate TWI, therefore, 
would have potential in discriminating these classes 

in the landscape; however, in the field, the parental 
material is more significant due to its relationship with 
soil drainage, which conditions different moisture 
regimes. In the present study, PBAC is predominantly 
derived from the Santa Maria formation, which is 
clayey-loamy and provides residual wetness. In spite 
of the importance of geology, it was not included in the 
predicted model because of the coarse scale used in the 
studied area, as aforementioned.

The RF model fitted with set B showed difficulties 
in accurately predicting the PBAC and RR+CX classes 
(Table 2), which were confused with RL (Figure 3); 
the model was more generalist and more uncertain 
to predict RR+CX, with a CA of 50%. However, 
when fitted by set C, RF had higher accuracy in the 
predictions of RR+CX and RL, with a CA of 100% for 
the RR+CX association. These soil classes occur in the 
middle third of the slope in the study area, associated 
with the land uses/land covers shrubland and native 
grassland, as well as with distant shrubs and pastures 
of the network of drainage channels. This makes it 
difficult for pedologists to separate RR+CX from the 
other soil classes in the landscape based on elevation 
and slope, for example. However, the selection of 
covariates, such as NDVI and CNBL, from expert 
knowledge has proved to be an efficient strategy in the 
construction of predictive models, especially of RF.

The obtained GA values were higher than those 
reported by Dias et al. (2016), who found a GA between 
48.3 and 58% and K between 0.41 and 0.50, while 
evaluating strategies to predict soil classes using the 
RF model. Franco et al. (2015) also obtained a lower 
GA of 53% and K of 0.34 when reducing covariates, 
via PCA, for soil mapping in an area with a complex 
landscape at the “Depressão Central” physiographic 
region, in the state of Rio Grande do Sul.

The higher precision values obtained by the RF 
model are an indicative of its potential when the 
predictor covariates are identified based on expert 
knowledge of the soil-landscape relationships and 
on the boxplot analysis. This result is the opposite of 
that observed by Brungard et al. (2015), who verified 
lower soil CA prediction when the covariates were 
selected by expert knowledge. However, Ma et al. 
(2019) suggested that pedologists should have a 
better understanding of the factors controlling the 
variation of the soil-landscape relationship, not only 
of the tools used for mathematical modelling of data. 
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Table 2. Accuracy indicators for the three sets of predictor covariates and four prediction models evaluated.

Covariate set(1) Prediction 
model(2)

Class accuracy (%)(3) General 
accuracy (%)

Kappa index
PBAC PVA RL RR+CX SX

Training set

A

DT 94 88 98 83 100 93 0.91
RF 65 50 88 17 67 63 0.50

SVM 54 89 83 60 0 69 0.56
MLoR 84 56 90 39 100 77 0.68
Mean 74 71 90 50 67 76 0.66

B

DT 94 88 100 78 100 93 0.91
RF 61 50 83 11 67 60 0.46

SVM 54 73 83 50 0 67 0.54
MLoR 66 62 84 42 80 71 0.61
Mean 69 68 87 45 62 73 0.63

C

DT 97 93 88 82 100 90 0.87
RF 63 45 77 13 100 60 0.46

SVM 56 73 78 50 100 67 0.54
MLoR 62 54 78 43 89 68 0.56
Mean 70 66 80 47 97 71 0.61

Validation set

A

DT 75 43 80 25 100 65 0.52
RF 83 29 90 0 100 65 0.50

SVM 52 0 75 0 0 61 0.43
MLoR 58 29 85 25 100 61 0.46
Mean 67 25 83 13 75 63 0.48

B

DT 75 29 90 25 100 67 0.54
RF 47 75 79 50 100 67 0.53

SVM 48 33 83 50 0 63 0.47
MLoR 50 40 86 75 100 69 0.57
Mean 55 44 85 50 75 67 0.53

C

DT 50 23 72 25 34 51 0.32
RF 56 40 87 100 100 71 0.59

SVM 40 0 80 0 0 55 0.34
MLoR 53 50 87 50 50 67 0.53
Mean 50 28 82 44 46 61 0.44

(1)A, 21 covariates extracted from the digital elevation model; B, covariates applied in set A reduced by the principal component analysis; and C, 
covariates chosen after the analysis of their frequency distributions, associated with expert knowledge of the soil-landscape relationship. (2)DT, decision 
tree; RF, random forest; SVM, support vector machine; and MLoR, multiple logistic regression. (3)PBAC, Argissolo Bruno-Acinzentado, an Udult; PVA, 
Argissolo Vermelho-Amarelo, an Udult; RL, Neossolo Litólico, an Orthent; RR, Neossolo Regolítico, an Orthent; CX, Cambissolo Háplico, an Udept; 
and SX, Planossolo Háplico, an Aqualf.

In young and unstable geomorphic surfaces, such as 
those assessed in the present study, there is a greater 
difficulty in constructing mathematical models that 
explain pedogenesis (Samuel-Rosa et al., 2015), and 
the use of environmental covariates selected by expert 
knowledge may be a strategy in DSM.

Using legacy data to update soil class maps of 
northern Iran, Pahlavan-Rad et al. (2016) obtained K 
values of up to 0.34 and concluded that the RF model 

is more efficient than MLoR in predicting soil classes. 
According to Hengl et al. (2007), MLoR models 
depend on a strong correlation between predictor 
covariates and the soil, besides requiring a minimal 
representativeness of each soil class in the training 
phase. In the present study, the highest GA and K 
values for the validation of set B were obtained with 
model MLoR; however, for set C, both values were 
lower than those with RF (Table 2). According to ten 
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Caten et al. (2011b), the MLoR model is sensitive to 
prediction errors for soil classes found close to each 
other in the landscape, as is the case of PBAC and 
PVA in the present study; MLoR showed the lowest 
accuracy for the latter. To solve this problem, ten Caten 
et al. (2011a) suggested the use of a greater number 
of representative covariate predictors. However, in set 
A, which has the highest number of covariates, the 
accuracy for PVA by MLoR was not improved. This 
may be associated with the negative multicollinearity 
effect in linear models (Hengl et al., 2007) or with the 
fact that the covariates are not being representative in 
distinguishing soil classes in the landscape.

The SVM model presented the poorest performance 
in predicting the PVA, RR+CX, and SX classes, with 
zero accuracy for the three sets of covariates (Table 2). 

Figure 3. Maps generated by the random forest model for three sets of covariates: A, 21 covariates extracted from the digital 
elevation model; B, covariates applied in set A reduced by the principal component analysis; and C, covariates chosen after 
the analysis of their frequency distributions, associated with expert knowledge of the soil-landscape relationship. K, kappa 
index; GA, general accuracy; SX, Planossolo Háplico, an Aqualf; RR, Neossolo Regolítico, an Orthent; CX, Cambissolo 
Háplico, an Udept; RL, Neossolo Litólico, an Orthent; PVA, Argissolo Vermelho-Amarelo, an Udult; and PBAC, Argissolo 
Bruno-Acinzentado, an Udult.

Taghizadeh-Mehrjardi et al. (2015) also found that 
this model performed worse than MLoR, RF, and 
DT. The authors reported that the accuracy of the 
SVM model decreased as the level of soil taxonomic 
detail increased, reaching values of order K = 0.74, 
subgroup K = 0.68, and family K = 0.60. The highest 
values were obtained for the model of artificial neural 
networks (order K = 0.84, subgroup K = 0.75, and 
family K = 0.69), and intermediate ones for RF (order 
K = 0.78, subgroup K = 0.73, and family K = 0.65). 
The generalization by the SVM model, mainly in 
sets A and C, was only able to discriminate the most 
representative classes of the area, i.e., 37% RL and 
26% PBAC. Similarly, Bagatini et al. (2016), when 
evaluating the extrapolation of the soil-landscape 
relationship in two watersheds in Southern Brazil by 
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the DT method, concluded that unrepresentative soil 
classes in the landscape were underestimated in the 
training and validation of the model. Taghizadeh-
Mehrjardi et al. (2015) pointed out that the spatial 
distribution and number of representative samples per 
soil class influence the quality of DSM.

In the validation stage, a reduction in accuracy was 
observed in the three sets of covariates with the DT, 
MLoR, and SVM models, especially with the DT. The 
algorithm used by the DT constructed a sophisticated 
model training solution, presenting the highest GA and 
K values in the training stage (Table 2), with a minimum 
error in CA. However, when challenged with a new 
data set (validation set), classification errors occurred, 
reducing the robustness of the model, which is attributed 
to a problem known as overfitting. This problem can be 
induced by the characteristics of the variables, mainly 
when the number of independent variables used to 
construct the models is higher than that of dependent 
variables. Moreover, each predictor covariate presents 
soil class information, which increases the possibility 
of inferring patterns, but decreases the possibility 
of generalizing such patterns, especially in areas 
of complex topography and geology, as the region 
evaluated in the present study. This is more frequent in 
generalized linear models, where no multicollinearity 
effects on data are detected in the model fitting phase 
(Hengl et al., 2007). This problem was also described 
by Kempen et al. (2009), in the prediction of soil classes 
by the MLoR model. In the current study, this behavior 
was mainly observed for set A, in which GA and K 
decreased in the validation stage. For the B and C sets, 
the reduction of covariates eliminated the effect of 
multicollinearity, slightly reducing the accuracy of the 
MLoR model in validation.

The values of CA varied between the sets of 
covariates and models (Table 2). The main underlying 
factors for this were: representativeness of each class 
in the landscape, covariates of the terrain used as 
predictors, differentiated potential of each covariate 
in the discrimination of classes, and capacity of each 
model in the construction of the classification rules. 
In the validation of the RF and SVM models, the 
CA for SX was, respectively, 100 and 0% in all sets, 
evidencing the low capacity of SVM in predicting SX. 
However, the DT and MLoR models reached 100% CA 
for SX in validation for sets A and B, which dropped 
to 34% for set C. This result is a consequence of the 

low sampling frequency in class SX, representing 7% 
of the area, and of the sensitivity of the SVM, DT, 
and MLoR models in relation to this factor. Despite 
the low representativeness of SX, when using the 
RF model, the CA value was higher than that for the 
most representative classes in the area – RL, PBAC 
and PVA. The representation of SX is associated with 
well-defined relief features, i.e., lower and plain parts 
of the landscape (Figure 3), with a low amplitude 
regarding the elevation and slope values (Figure 2). 
In addition, the CA values of the NDVI are associated 
with the irrigated rice crop, and the ones obtained for 
the SX class are in agreement with those recorded by 
Cordeiro et al. (2017) in intensive agricultural areas, 
during the summer period, at the “Depressão Central” 
physiographic region of the state of Rio Grande do 
Sul. A similar performance was also observed for 
RL, which, although quite representative in the area, 
is found in higher and steeper sites, constituting 
landscapes well discriminated by the covariates 
elevation, slope, NDVI, and VDCN, which showed the 
highest CA values in all models.

Regarding the variability of soil classes in the 
study area, the highest CA values in the prediction 
of RR+CX were obtained by the RF model (Table 2), 
evidencing its robustness, particularly when using the 
covariates of set C, especially slope, NDVI and CNBL, 
which differ in relation to those of the other soil classes 
(Figure 2). When evaluating different strategies to 
predict soil classes in areas with no reference data in a 
sedimentary watershed of the São Francisco River, in 
the state of Minas Gerais, Dias et al. (2016) found that 
the use of detailed taxonomic information (subgroup 
level) resulted in an increase in map fragmentation 
and in accuracy loss. Moreover, the accuracy of the 
different sets of predictor covariates and prediction 
models varied, being the highest for the RF model.

Regional prediction models based on landscape 
characteristics must be developed with expert 
knowledge input, according to Grunwald (2009). 
Therefore, in the present study, the evaluation and 
selection of covariates by expert knowledge regarding 
the soil-landscape relationship was an efficient 
strategy. The RF model was more robust than DT, 
MLoR, and SVM for soil class prediction in a complex 
landscape, characterized by heterogeneous relief 
and geology. The prediction models were sensitive 
to disproportionate soil class sampling, which is a 
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limitation to obtain accurate soil maps in complex 
landscapes. Consequently, the classes that are difficult 
to discriminate by the terrain covariates require more 
samples for model training and validation.

Conclusions

1. The use of the covariate set chosen by expert 
knowledge improves the performance of the 
models – decision tree, random forest, multiple logistic 
regression, and support vector machine – in predicting 
soil classes in a complex landscape.

2. Random forest is the best spatial prediction model.
3. The support vector machine model is only able to 

discriminate the most representative soil classes in a 
complex landscape.

4. The multiple logistic regression model is negatively 
affected by the multicollinearity of the covariates.
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