Metarhizium humberi sp. nov. (Hypocreales: Clavicipitaceae), a new member of the PARB clade in the *Metarhizium anisopliae* complex from Latin America

Christian Luz\(^a,\)\(^*,\) Luiz F.N. Rocha\(^a,\)\(^b,\) Cristian Montalva\(^a,\)\(^c,\) Daniela A. Souza\(^d,\) Ana Beatriz R.Z. Botelho\(^e,\) Rogerio B. Lopes\(^d,\) Marcos Faria\(^d,\) Italo Delalibera Júnior\(^e\)

\(^a\) Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO 74690-900, Brazil
\(^b\) Federal Institute of Education, Science and Technology of Goiás, Aparecida de Goiás, GO 74968-755, Brazil
\(^c\) Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Chile
\(^d\) ESALQ, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil
\(^e\) Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil

ARTICLE INFO

Keywords:
Ascomycota
Phylogeny
Entomopathogenic fungus
Brazil
Mexico

ABSTRACT

A new species, *Metarhizium humberi*, from the *M. anisopliae* complex and sister lineage of the *M. anisopliae* s.str. in the PARB clade, including *M. pingshaense*, *M. anisopliae*, *M. robertsi* and *M. brunneum*, is described based on phylogenetic analyses [translation elongation factor 1-alpha (5'TEF and 3'TEF), RNA polymerase II largest subunit (RPB1a), RNA polymerase II second largest subunit (RPB2a) and β-tubulin (BTUB)]. *Metarhizium humberi* was first collected in 2001 in the Central Brazilian state of Goiás, later found to be a common fungus in soils in Brazil, and since then has also been isolated from coleopteran, hemipteran and lepidopteran insects in Brazil and Mexico. This new species, named in honor of Richard A. Humber, a well-known insect pathologist and taxonomist of entomopathogenic fungi, is characterized by a high insecticidal activity against different developmental stages of arthropod pests with importance in agriculture and vectors of diseases to human and animals.

1. Introduction

The genus *Metarhizium* contains well-known entomopathogenic fungi that occur mainly in soils (Lenteren et al., 2018) but that are also common as endophytes and in the rhizosphere associates of plants (Bamisile et al., 2018). There is high interest in these fungi for the control of agricultural or vector pests as well as the potential for plant growth promoters and nutrient recyclers (Vitorino and Bessa, 2017; Karabörklü et al., 2018; Mascarin et al., in press; Thomas, 2018). Studies on phylogenetics, distribution and ecology of species in the genus *Metarhizium* increased in the last years (Rocha et al., 2013; Rezende et al., 2015; Brunner-Mendoza et al., 2017; Hernández-Domínguez and Guzmán-Franco, 2017; Kryukov et al., 2017; Rehner and Kepler, 2017; Masoudi et al., 2018; Iwanicki et al., 2019), and more new species have been described from China (Chen et al., 2017, 2018a, 2018b; Chu et al., 2016; Yang et al., 2009), Thailand (Luangsa-ard et al., 2017), Japan (Nishi et al., 2017), Brazil (Montalva et al., 2016; Lopes et al., 2018) and Argentina (Gutierrez et al., 2019). The last major revision of the genus *Metarhizium* was published by Kepler et al. (2014) and highlighted the superiority of the multigene phylogenetic approach for determination of species boundaries and relationships in *Metarhizium*.

The *Metarhizium anisopliae* species complex currently consists of 13 known species with *M. pingshaense*, *M. anisopliae* s.str., *M. robertsi* and *M. brunneum* (collectively referred to as the PARB clade, Bischoff et al., 2009), *M. acapidum*, *M. globosum*, *M. guizhouense*, *M. indiciticum*, *M. majus*, *M. lepidoptae*, and the recently described species *M. kalasinense*, isolated in 2012 from an elaterid larva (Coleoptera) collected in a tropical forest in Thailand (Luangsa-ard et al., 2017), *M. alvesii* isolated in 2009 from a soil sample collected in a banana plantation in northeastern Brazil (Lopes et al., 2018), and *M. baoshanense* from soil of native forest in southwestern China (Chen et al., 2018a).

Several *M. anisopliae* s.l. isolates that originated from soil samples collected in the Brazilian Cerrado biome and other locations in Brazil and from a wide range of insects have been demonstrated to represent a novel lineage within the *M. anisopliae* species complex based on molecular analyses. The genomic evidence that separates isolates of this clade from *M. anisopliae* s.str. includes sequences of the 5′intron-rich region of the translation elongation factor 1-alpha (5′TEF), internal

\(^*\) Corresponding author at: Instituto de Patologia Tropical e Saúde Pública, UFG, Avenida Esperança s/n, Campus Samambaia, 74690-900 Goiânia, Goiás, Brazil.

E-mail addresses: chrisluz@hotmail.com (C. Luz), luiz.rocha@ifg.edu.br (L.F.N. Rocha), montalva.cristian@gmail.com (C. Montalva), daniela.aguiar@embrapa.br (D.A. Souza), biazanardo@embrapa.br (A.B.R.Z. Botelho), rogerio.lopes@embrapa.br (R.B. Lopes), marcos.faria@embrapa.br (M. Faria), delalibera@embrapa.br (I. Delalibera).

https://doi.org/10.1016/j.jip.2019.107216

Received 23 November 2018; Received in revised form 16 April 2019; Accepted 9 July 2019

Available online 09 July 2019

0022-2011/ © 2019 Elsevier Inc. All rights reserved.
transcribed spacer (ITS) or the nuclear intergenic region (Rocha et al., 2013; Rezende et al., 2015) and mass spectrometric (MALDI-TOF) studies (Lopes et al., 2014). Recently, two more isolates of this new clade were collected from lepidopteran specimens in Mexico (Brunner-Mendoza et al., 2017). An isolate from this clade, IP 46, originally identified as *M. anisopliae* has been investigated extensively for its promising activity against such vector insects of diseases in humans (Mascarín et al., in press), as the mosquitoes *Aedes aegypti* and *Anopheles gambiae* (Silva et al., 2004; Albernazz et al., 2009; Santos et al., 2009; Leles et al., 2010, 2012; Mynone et al., 2009, 2010; Sousa et al., 2013; Lobo et al., 2016; Falvo et al., 2016, 2018; Rodrigues et al., 2019), triatomiine vectors of Chagas disease (Rocha and Luz, 2011; Luz et al., 2012; Rodrigues et al., 2015), cockroaches (Hubner-Campos et al., 2013; Gutierrez et al., 2016), as well as tick vectors (Luz et al., 2016), and even against *Biomphalaria glabrata*, the molluscan intermediate host of schistosomiasis (Duarte et al., 2015).

This study presents a multi-locus phylogenetic analysis to determine the placement of this important clade in the *M. anisopliae* complex, and to describe it as a new species, *M. humberi*, that we name in honor of Richard A. Humber, a well-known insect pathologist and taxonomist of invertebrate-associated fungi and for his support of the progress of insect mycology and training of scientists in Brazil.

2. Material and methods

2.1. Origin and culture of IP isolates

All nine Brazilian IP strains studied (IP 1; IP 16; IP 41; IP 46; IP 59; IP 86; IP 101; IP 118; and IP 151) were isolated from soil samples collected in Central Brazil (Rocha et al., 2013) and grown routinely on SDAY/4 medium (SDAY/4: 2.5 g L\(^{-1}\) peptone, 10 g L\(^{-1}\) dextrose, 2.5 g L\(^{-1}\) yeast extract, 20 g L\(^{-1}\) agar) in Petri dishes (100×20 mm) for 5–7 days at 25 ± 1 °C and 12 photophase. The fungi were stored in the IPTSP and co-deposited in Embrapa Genetic Resources and Biotechnology, Brasília, Brazil, and in the USDA Collection of Entomopathogenic Fungi (Ithaca, NY).

2.2. Morphological evaluations

IP 46 was investigated based on morphological characteristics using semi-permanent slide mounts prepared in lactophenol-cotton blue according to Humber (2012). The isolate was grown on SDAY/4 medium for 5–7 days at 25 ± 1 °C and 12 photophase. Fungal microstructures (conidiophores, conidiogenous cells, and conidia) were examined by brightfield or phase contrast microscopy (Nikon Eclipse E600), documented with a Nikon DS-Fi1 digital camera, and measured with Motic Images Plus 2.0 software. Measurements were based on 50 objects per microstructure from which we calculated mean values and their respective standard errors of the mean (± SEM). The color of the conidial mass was determined using the Pantone color system (Eiseman and Herbert, 1990).

2.3. Molecular characterization

The nine IP isolates (Table 1) were grown in 150 mL in SDY/4 broth for 7 days in a shaker at 125 rpm and 25 ± 1 °C. DNA was extracted from mycelium using the DNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA). Partial sequences of the following four genes were amplified by PCR: β-tubulin (BTUB) using the primers BT1F and BT1R (Bischoff et al., 2009); RNA polymerase II largest subunit (RPB1a) with RPB1C and RPB1A (Stiller and Hall, 1997); RNA polymerase II second largest subunit (RPB2a) with RPB2-5F and RPB2-7cR (Liu et al., 1999); and translation elongation factor 1 alpha (3‘ end of the TEF-1α (3TEF)) with primers 983F and 2218R (Rehner and Buckley, 2005). The 5’ end of TEF-1α (5TEF) was previously sequenced by Rocha et al. (2013). The PCR products were checked using agarose gel electrophoresis and sent for purification and sequencing by Helixxa Genomic Services (Paulínia, SP, Brazil). Sequencing of both strands of the PCR products was accomplished with the Applied Biosystems Big Dye v.3.1 kit, using the same primers described above and an ABI 3500 automatic sequencer. Contigs of the isolates sequence data were assembled using Chromas Pro (v. 1.5, Technelysium Pty Ltd).

Sequences from ex-type cultures or taxonomically authenticated reference isolates used in two studies about taxonomic re-evaluations of *Metarhizium* (Bischoff et al., 2009, Kepler et al., 2014) and other sequences were obtained from GenBank database with information about host or substrate and geographical origin presented in Table 1. Multiple sequence alignments of each gene were made with Mega 5.0.3 by ClustalW and adjusted. The program MrModeltest (Nylander, 2004) obtained by PAUP (Phylogenetic Analysis Parsimony; v.4.0 b10) was used to identify the best-fit models of nucleotide substitutions using the corrected Akaike Information Criteria for each gene. A concatenated alignment ([3TEF (GTR + I + G), 5TEF (HKY + I), RPB1a (K80 + G), RPB2a (SYM + I + G) and BTUB (GTR + I)] was generated with Mesquite 3.04 software (Maddison and Maddison, 2015). Analyses of the consensus sequences of 5TEF and the concatenated alignment were carried out under the Maximum Parsimony (MP) method, and bootstrap support (BS) values were provided. Additionally, we used Bayesian phylogenetic inference by MrBayes v.3.2.1 (Ronquist et al., 2012), and posterior probability values were included in the Bayesian trees. Bayesian analysis was run over ten million generations, with tree sampling every 100 generations, and the first 25% of trees were discarded prior to consensus tree calculation.

3. Results

3.1. Morphological identification of the *Metarhizium* strain

Taxonomy— *Metarhizium humberi* Luz, Rocha & Delalibera sp. nov. (Fig. 1a−c) MycoBank registration: MB 828706

The colonies on SDAY/4 were initially colourless, and became increasingly yellow immediately below developing conidial hymenia (typically after 5–8 days) and then producing plate-like masses of laterally appressed conidial chains with a grey-green color after 5 days (Pantone 15-6414, “Reseda”; similar to CMYK 54:70:70:10 at 83% opacity) and with the conidial mass becoming slightly darker in color in the next days (Fig. 1c). Conidiogenous cells ovoid to broadly ellipsoid, 10.08 ± 0.59 × 2.09 ± 0.06 µm (overall range: 6.60–12.85 × 1.77–2.45 µm) (Fig. 1a). Conidia cylindrical, 5.17 ± 0.05 × 2.22 ± 0.03 µm (overall range: 4.14–6.05 × 1.69–2.59 µm) (Fig. 1 b).

Holotype: UFG 50751, is a dried culture of IP 46 deposited in the Herbarium of the Federal University of Goiás, Goiânia, GO, Brazil.

Ex-Type culture: IP 46, Collection of Entomopathogenic Fungi, at the Institute of Tropical Pathology and Public Health (Goiana, Goiás, Brazil), collected by Christian Luz, Luiz Fernando Nunes Rocha, Regiane Oliveira Silva and Martin Unterseher, 14 September 2001, and co-deposited as CG620 in the Invertebrate-Associated Fungal Collection (CFI) at Embrapa Genetic Resources and Biotechnology (Brasilia, Federal District, Brazil), and also co-deposited as ARSEF 12874 in the USDA-ARS Collection of Entomopathogenic Fungal Cultures (Ithaca, New York).

Type locality: Parque Nacional das Emas, Goiás State, Brazil; S 18°10’56.1", W 52°44’34.5’.

Type substrate: soil sample from a tropical gallery forest in a Cerrado ecosystem.

Sexual state: unknown.

Etymology: *M. humberi* is named in honor of Richard Alan Humber,
<table>
<thead>
<tr>
<th>Species</th>
<th>Strain code</th>
<th>Substrate</th>
<th>Origin</th>
<th>Accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. robertii</td>
<td>ARSEF 727</td>
<td>Orthoptera</td>
<td>Australia</td>
<td>EU248685</td>
</tr>
<tr>
<td>M. robertii</td>
<td>ARSEF 7501</td>
<td>Coleoptera</td>
<td>Australia</td>
<td>EU248848</td>
</tr>
<tr>
<td>M. robertii</td>
<td>ESALQ 1621</td>
<td>soil</td>
<td>Brazil</td>
<td>KP027972</td>
</tr>
<tr>
<td>M. robertii</td>
<td>ESALQ 1625</td>
<td>soil</td>
<td>Brazil</td>
<td>KP027972</td>
</tr>
<tr>
<td>M. robertii</td>
<td>ESALQ 1634</td>
<td>soil</td>
<td>Brazil</td>
<td>KP027972</td>
</tr>
<tr>
<td>M. robertii</td>
<td>ESALQ 1635</td>
<td>soil</td>
<td>Brazil</td>
<td>KP027972</td>
</tr>
</tbody>
</table>
internationally recognized insect mycologist and formerly curator of the USDA-ARS Collection of Entomopathogenic Fungal Cultures (ARSEF) at the USDA-ARS Robert W Holley Center for Agriculture & Health in Ithaca, NY, USA. The co-authors of this publication agreed to apply this species epithet prior to informing Dr. Humber. We recognize his long experience and merit in insect pathology and taxonomy of internationally recognized insect mycologist and formerly curator of the University of São Paulo, Brazil; Lopes et al., 2018) increases the productivity of morphologies from other fungi of the PARB clade examined recently (Bischoff et al., 2009) and other ESALQ strains based on its 5'TEF gene which Bischoff et al. (2009) regarded at that time to be the most informative for distinguishing individual species in the genus Metarhizium dedicated to honorable and influential researchers who contributed decisively to the development of insect mycology in Brazil.

3.2. Molecular characterization

The alignment of the characters obtained from partial sequencing of five loci comprised 3998 base pairs (5'TEF: 708 bp, 3'TEF: 922 bp, BTUB: 652 bp, RPBIa: 675 bp and RPBIa: 1041 bp). The Bayesian and MP phylogenetic analysis of these combined loci produced a strongly supported and distinct specific branch named M. humberi, consisting of all tested Brazilian IP strains (IP 1, IP 16, IP 41, IP 46, IP 59, IP 86, IP 101, IP 118 and IP 151). M. humberi clustered as a distinctly separate group nested within the PARB clade and as a sister group to M. anisopliae s.str. (Fig. 2). High bootstrap values of 89% (MP) and 1 (Bayesian posterior probability) were obtained for the clade in which the strains described above are placed. The MP and Bayesian analyses produced slightly divergent topologies in relation to the clustering among Brazilian strains with six haplotypes in the Bayesian inference (Fig. 2) while the MP analysis indicated only four Brazilian haplotypes (Mhum 1 = IP 86; Mhum 2 = IP 46; Mhum 3 = IP 151; Mhum 4 = IP 1, IP 16, IP 41, IP 59, IP 101 and IP 118) in the MP analysis.

The phylogenetic analysis using the 5'TEF sequences of the IP strains and other strains from widely dispersed sites in Brazil and Mexico (Rocha et al., 2013; Lopes et al., 2014; Rezende et al., 2015; Brunner-Mendoza et al., 2017), showed all 19 strains to cluster within the new species, with 88% bootstrap support and 1 Bayesian posterior probability (Fig. 3). This analysis also completely confirmed the currently recognized species limits in the M. anisopliae complex and that M. humberi is, indeed, a genomically distinct new species within the PARB complex. Not surprisingly for so relatively common and widely distributed a species, M. humberi currently comprises nine haplotypes based on 5'TEF sequences that are designated as H1 through H9. Six of these haplotypes (H1–H6) originated from isolates recovered only in soil samples from distantly separated regions in Brazil: H1 (IP 118), H2 (IP 101), H3 (IP 86 and IP 59) and H4 (ESALQ 4829) collected in the State of Goiás, H5 (ESALQ 4614) and H6 (ESALQ 4925) originated from the State of Mato Grosso. H7 was found both in soil samples in Goiás (IP 41 and IP 16) and from a coleopteran insect (CG814) from the State of Paraná; H8 was recovered from soil in Goiás (IP 1) and from a hemipteran insect in the State of Mato Grosso (CG835). H9, the last and most frequently encountered haplotype (CG1233, IP 46, IP 151, ESALQ 1657, ESALQ 1638, EH 853 and EH 874), was detected either in soils or from cadavers of two insect orders from several different States in Brazil as well as from Mexico (Table 1). Other phylogenetic trees obtained by Bayesian analysis of 3'TEF, RPBIa, RPBIa and BTUB between M. humberi IP 46 and the members of the PARB clade are available as supplementary material (Suppl. 1–4).

4. Discussion

Results of the multilocus analysis clearly support the recognition of M. humberi as a new species closely allied with M. anisopliae s.str. in the PARB clade of the M. anisopliae complex. In fact, 3'TEF, 5'TEF, RPBIa, RPBIa and BTUB are considered the principal genes for distinguishing individual species in the genus Metarhizium (Bischoff et al., 2009; Kepler et al., 2014). The description of M. humberi as a new species is also supported by sequencing the ITS, MzIG3 and MZFG543igs regions as well as by mass spectrometric data (Rocha et al., 2013; Lopes et al., 2014; Rezende et al., 2015). Although both molecular and mass spectrometric findings provide independent evidence of a new species, M. humberi cannot be distinguished by its characteristic asexual reproductive morphologies from other fungi of the PARB clade examined by Bischoff et al. (2009).

This new species, together with M. robertsii (named after Donald W. Roberts, Emeritus Research Professor of the Utah State University, USA; Bischoff et al., 2009) and M. alvesii (named after Sérgio B. Alves from the University of São Paulo, Brazil; Lopes et al., 2018) increases the group of species described in the genus Metarhizium dedicated to honorable and influential researchers who contributed decisively to the development of insect mycology in Brazil.

Extensive biological survey data now suggest that the most common species of Metarhizium in Brazilian soils is M. robertsii followed by M. humberi and M. anisopliae s.str. (Rocha et al., 2013; Lopes et al., 2013, 2014; Rezende et al., 2015; Zanardo, 2015; Castro, 2016; Moreira, 2016; Iwanicki et al., 2019). Recent reports from Mexico (Brunner-Mendoza et al., 2017) proved that the occurrence of M. humberi is not restricted only to Brazil, but suggest that this new species probably occurs in other regions in the Americas with tropical climate and distinct rainy and dry seasons (Kottek et al., 2006). This new species was referred to by Rezende et al. (2015) as Metarhizium sp. indet. 1 and forms a strongly supported group sharing the same haplotype with other ESALQ strains based on its 5'TEF gene which Bischoff et al. (2009) regarded at that time to be the most informative for distinguishing individual species in the genus. In a study, using 303 MzIG3 sequences originated from five Brazilian biomes (Zanardo, 2015) Metarhizium sp. indet. 1 (now identified as M. humberi) has shown higher haplotype and nucleotide diversities than M. robertsii, M. anisopliae, M. pingshaense and two other lineages–Metarhizium sp. indet. 2 and Metarhizium sp. indet. 3– whose taxonomies remain incompletely characterized.

Of the 126 isolates currently identified as M. humberi, the vast majority (98.4%) were reported from the Brazilian states of Goiás (67.5%), Minas Gerais (19%), Mato Grosso (8.7%), São Paulo (2.4%), and Paraná (0.8%). Two other isolates were found in Mexico where
Single isolates were collected from each of the states of Tamaulipas and Oaxaca (Fig. 4) (Rocha et al., 2013; Lopes et al., 2014; Rezende et al., 2015; Zanardo, 2015; Castro, 2016; Moreira, 2016; Brunner-Mendoza et al., 2017; Iwanicki et al., 2019).

Some 95.2% of known *M. humberi* strains were isolated from soil samples, with 60.8% of those is from predominantly conserved areas of native savanna in Central Brazil’s Cerrado biome. Nonetheless, this species is not restricted to natural soils in the Cerrado biome but occurs also in other ecosystems and from cultivated agricultural soils. In the Cerrado, only 10.8% of the strains were collected from agricultural

![Majority rule consensus phylogram from the Bayesian analysis of a concatenated dataset comprising partial 5'TEF, 3'TEF, RPB1a, RPB2a and BTUB gene sequences. Trees were rooted using the sequence from *Metarhizium frigidum* ARSEF 4124 as outgroup. Support for branches were given as the Bayesian posterior probability (first number) and percentage of bootstrap support derived from a MP analysis (second number). “−” indicates the inexistence of support value since trees from MP and Bayesian analyses do not have similar topology in the specified branch; * represents the ex-type strains and the scale bar the number of expected substitutions per site.](image-url)
Fig. 3. Phylogenetic hypothesis based on Bayesian analysis of 5’introne-rich region of the translation elongation factor 1-alpha (5’TEF) gene sequences. Trees were rooted using the sequence from Metarhizium frigidum ARSEF 4124 as outgroup. Support values were given as the Bayesian posterior probability (first number) and percentage of bootstrap support derived from a MP analysis (second number). * - * indicates the inexistence of support value since trees from MP and Bayesian analyses do not have similar topology in the specified branch; * represents the ex-type strains and the scale bar the number of expected substitutions per site.
Apart from soils, a total of 4.8% of all *M. humberi* isolates were isolated from a diverse spectrum of mycotized insect from the orders Coleoptera (33.3%), Hemiptera (33.3%) and Lepidoptera (33.3%) in field crops in Brazil and Mexico (Lopes et al., 2014; Rezende et al., 2015; Brunner-Mendoza et al., 2017; Table 1). These insect-derived isolates were not genotypically different from the soil-derived isolates.

That *M. humberi* is, in fact, distributed across Brazil and elsewhere in the Americas and recoverable from soil samples as well as from diverse diseased insects both underscores and amplifies the interest about its possible roles in the natural environment. The large body of research involving IP 46 confirms *M. humberi* to be a highly effective pathogen affecting such a wide a range of invertebrate hosts. These facts also indisputably place this new taxon among an elite group of fungal taxa with broad suitability for use as biological control agents against dipteran, hemipteran, lepidopteran and coleopteran pests of medical, veterinary and agricultural importance. These potential target pests include mosquitoes, triatomines, cockroaches, ticks and even snails.

In addition to IP 46, another strain of *M. humberi*–ESALQ 1638, *Metarhizium* sp. indet. 1–has been extensively studied and proved to be highly virulent against the two-spotted spider mite, *Tetranychus urticae* (Castro et al., 2018). This ESALQ isolate of *M. humberi* is under consideration for registration as a mycoinsecticide in Brazil (Italo Delalibera Jnr., personal communication), and its rhizosphere competence has been demonstrated in sugarcane, strawberry and soybean plants. The potential for ESALQ 1638 to enhance plant growth while simultaneously providing protection against insect pests and plant pathogens has been demonstrated (Italo Delalibera Jnr., personal communication). The approvals for registration in Brazil of biological control agents require the explicit and unambiguous identification to the species level of any microbe being used. The results of the studies reported here to describe and to characterize *M. humberi* specifically facilitate a current effort in Brazil to register a new biopesticide product based on *M. humberi* for use against pests.

Acknowledgments

The authors are grateful to Eladio Rojas and Cristian González (Laboratorio Regional of Servicio Agrícola y Ganadero, Osorno, Chile) for access to microscopic facilities and technical support and Natasha Sant’ Anna Iwanicki for the critical review. This study was supported by the Brazilian Coordination of the Improvement of Higher Education–Science without Borders (CAPES-CSF, project PVE 71/2013, 149988) and grants from the Brazilian National Council for Scientific and Technological Development (CNPq n° 563233/2010-9 and 311672/2016-7), Federal Institute of Education, Science and Technology of Goiás (IFG-PROAPP 006/2014), São Paulo Research Foundation (FAPESP n° 2010/52342-4 and 2011/51556-3), and EMBRAPA (SEG 01.15.02.001.03.04).

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jip.2019.107216.

References

