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ABSTRACT: 

 

The monitoring of agricultural activities at a regular basis is crucial to assure that the food production meets the world population 

demands, which is increasing yearly. Such information can be derived from remote sensing data. In spite of topic’s relevance, not 

enough efforts have been invested to exploit modern pattern recognition and machine learning methods for agricultural land-cover 

mapping from multi-temporal, multi-sensor earth observation data. Furthermore, only a small proportion of the works published on 

this topic relates to tropical/subtropical regions, where crop dynamics is more complicated and difficult to model than in temperate 

regions. A major hindrance has been the lack of accurate public databases for the comparison of different classification methods. In 

this context, the aim of the present paper is to share a multi-temporal and multi-sensor benchmark database that can be used by the 

remote sensing community for agricultural land-cover mapping. Information about crops in situ was collected in Luís Eduardo 

Magalhães (LEM) municipality, which is an important Brazilian agricultural area, to create field reference data including information 

about first and second crop harvests. Moreover, a series of remote sensing images was acquired and pre-processed, from both active 

and passive orbital sensors (Sentinel-1, Sentinel-2/MSI, Landsat-8/OLI), correspondent to the LEM area, along the development of the 

main annual crops. In this paper, we describe the LEM database (crop field boundaries, land use reference data and pre-processed 

images) and present the results of an experiment conducted using the Sentinel-1 and Sentinel-2 data. 

 

 

1. INTRODUCTION 

Benchmarks are important to make different approaches 

comparable so that promising strategies can be identified. 

Fostering the creation of public test beds for new algorithms is a 

major ISRPS strategic policy (Chen et al., 2016). In recent years, 

some benchmark datasets have been delivered with ISPRS 

support (e.g., Nex et al., 2015; Rottensteiner et al., 2014). Several 

subsequent works were carried out on the basis of such datasets. 

However, most of them refer to urban areas. To our knowledge, 

there is only one public multi-temporal, multi-sensor dataset 

devoted to the assessment of automatic methods for agricultural 

land-cover classification (Sanches et al., 2018). 

 

Though crop recognition from remotely sensed data has been an 

active research topic (e.g. Ji et al., 2018; Kenduiywo et al., 2017; 

Zhang et al., 2016; Sonobe et al., 2015; Sonobe et al., 2014; 

McNairn et al., 2014; Jiao et al., 2014; Leite et al., 2011; Hoberg 

and Müller, 2011; McNairn et al., 2009), all related publications 

in recent years rely on experiments conducted upon proprietary 

datasets.  

 

Furthermore, most of these publications refer to agriculture in 

temperate regions. Agricultural land-cover classification in 

tropical/subtropical regions is comparatively more challenging. 

Climatic, socio-economic and infrastructure factors make the 
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crop dynamics in the tropics more complicated and difficult to 

model (Sanches et al., 2018).  

 

Optical orbital sensors (e.g. the Moderate Resolution Imaging 

Spectroradiometer - MODIS/Terra and the Operational Land 

Imager - OLI/Landsat-8) are widely used for mapping and 

monitoring agricultural activity. However, the limitation of 

image availability due to cloud cover in optical images is a major 

issue (Xiao et al., 2018; Whitcraft et al., 2015), mainly for 

tropical regions (Eberhardt et al., 2016). There are a few ways to 

work around or minimize the cloud coverage problem. Data from 

sensors operating in the microwave range (radar), where energy 

is able to pass through the clouds, can be used. However, radar 

data is less discriminative than the optical counterpart. Another 

possibility is to combine data from different sensors. 

 

Although applications combining different sensors are not new, 

the integration of multi-sensor data is still an active research 

topic, especially due to the increasing availability of new sensors. 

In recent years, multi-sensor approaches combining data from 

optical and radar sensors have been increasingly explored 

(Reiche et al., 2018) also for monitoring of agricultural targets 

(e.g. Torbick et al., 2017; Zhou et al., 2017; Navarro et al., 2016). 

However, to our knowledge there is no publication focused on 

tropical areas. The Sentinel-1 mission from Copernicus Program 

opened up new perspectives to explore radar data for crop 
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monitoring. Sentinel-1 is composed of a constellation of two 

orbiting satellites that have one synthetic aperture radar (SAR) 

operating in the C-band. It allows obtaining dense time series of 

freely distributed SAR images, with constant viewing angles 

(Inglada et al., 2016).  

     

This paper introduces a new public database for crop type 

recognition in a tropical area. It consists of 794 crop field, a 

sequence of monthly land use reference data and the 

corresponding pre-processed images along one year. The area 

corresponds to Luís Eduardo Magalhães (LEM) municipality, 

Northeast of Brazil. The dataset comprises SAR and optical 

images at different resolutions, from sensors Sentinel-1, Sentinel-

2/MSI and Landsat-8/OLI.  

 

The database is freely accessible at http://www.lvc.ele.puc-

rio.br/downloads/Databases/LEM/home.html. This paper also 

presents the results of an experiment, which explores part of the 

data available in LEM database (C-band Sentinel-1 and Sentinel-

2/MSI images) for crop mapping. 

 

2.    LEM DATABASE 

2.1 LEM Municipality 

The LEM municipality is located in the West of Bahia state, in 

Northeast of Brazil, in the Cerrado Biome (Brazilian Savannah) 

(Figure 1). LEM is at a latitude of 12°05'31" south and longitude 

of 45°48'18" west, and it has an area of 3,940.537 km2 with an 

altitude of 720 m. LEM presents the Tropical Aw climate 

according to the Köppen–Geiger classification (Peel et al., 2007). 

The average temperature is 24.2 °C and the average annual 

rainfall is 1511 mm. The predominant soil in this region is yellow 

latosol. It is part of the newest Brazilian agricultural frontier 

known as MATOPIBA, an acronym formed by the initials of 

Maranhão (MA), Tocantins (TO), Piauí (PI) and Bahia (BA) 

states. MATOPIBA is being stand out in the production of 

soybean, maize, cotton and rice, having produced 9.4% of the 

2014/2015 Brazilian grain harvest (Portal Brasil, 2015). 

 

It is worth mentioning that LEM became a municipality in 2000, 

and official agricultural data started being collected in 2001. 

Since then the agro-business has progressed remarkably in this 

area (e.g. increase of area cultivated with cotton and beans, 

introduction of sorghum, reduction of rice) (IBGE, 2016a). 

According to Brazilian Institute of Geography and Statistics 

(IBGE, 2016b), LEM also presented 1.700 hectares of coffee in 

2015 and some other non-meaningful perennial crops. 

 

2.2 Field Data Collection 

Two field campaigns were conducted in LEM between 26-30th 

June 2017 and 14-19th March 2018, period corresponding of 

second (dry season) and first (wet season) Brazilian crop 

harvests, respectively. Data over 700 points was gathered, 

including geographic coordinates, type of crop and phenology 

phase and photographs. The team travelled across LEM 

collecting information about the land use of the agricultural fields 

during one week in winter 2017 and another week in summer 

2018. In each campaign, a mosaic composed by the most recent 

available OLI/Landsat-8 image was used to navigate along the 

municipality by using a GPS device connected to a laptop and the 

Global Mapper software (Global Mapper Software LLC designs, 

Parker, CO). High resolution images were used as auxiliary data 

(RapidEye and Google Earth). The focus was on crops, but other 

classes were mapped as well (e.g. cerrado, pasture). 

 

2.3 Remote Sensing Image Acquisition and Pre-processing 

2.3.1 Optical Images: A time series of optical images of 

Sentinel-2/MSI and Landsat-8/OLI was acquired from June 2017 

to June 2018 (Table 1). The images of the OLI sensor correspond 

to the WRS-2 220/68 and 220/69 and were acquired in surface 

reflectance (Level 2 product) from the United States Geological 

Survey Earth Resources Observation and Science Centre 

(http://espa.cr.usgs.gov/ordering/new). The MSI images 

correspond to the tiles 23LLG and 23LMG and were acquired in 

top-of-atmosphere reflectance (Level-1C product) from the 

Copernicus Open Access Hub (https://scihub.copernicus.eu/). 

We converted the Level 1C images into atmospherically 

corrected surface reflectance using the Sentinel-2 Atmospheric 

Correction (Sen2Cor) algorithm (European Space Agency – 

ESA). 

 

2.3.2 Radar Images: A time series of C-band SAR Sentinel-

1A images with VV and VH polarizations was acquired, between 

June 2017 and June 2018, from the Sentinel Scientific Data Hub 

in Interferometric Wide Swath (IWS) mode, Ground Range 

Detected (GRD) Level 1 product and were pre-processed using 

the Sentinel-1 Toolbox 5.0 (Table 2).  

 

The process pipeline involved the application of orbit file, 

radiometric calibration, terrain correction and linear 

transformation to dB. During the application of the orbit file, the 

orbit state vectors provided in the Sentinel-1A metadata, which 

are generally not accurate, were refined with precise orbit files 

available days-to-weeks after the generation of the product. Then, 

digital pixel values were converted radiometrically, and 

calibrated backscatter to sigma nought calibration coefficient to 

get the value to the antenna from a unit area on the ground related 

to ground range. Next, a Range Doppler terrain correction was 

employed using a Shuttle Radar Topography Mission (SRTM) 

digital elevation model (DEM) to compensate distortions due to 

image data that is not directly at the sensor’s Nadir location. The 

images were georeferenced to the WGS84 system. Finally, both 

bands, VV and VH, were scaled to dB. 

 

  

Figure 1. Location of Luís Eduardo Magalhães (LEM) 

municipality (red dot), in West of Bahia state, Brazil. 
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2.4 Crop Field Boundaries 

We delimited 794 crop fields selected in situ, using high spatial 

resolution image data (RapidEye) and a time series of Landsat-

8/OLI and Sentinel-2/MSI images. All selected fields were 

visited in both field campaigns.  

 

The original polygons match the boundaries of the crop fields in 

the high resolution images (5 m of RapidEye). However, to avoid 

errors on edge pixels we defined the polygons considering a 60 

m wide buffer inside the crop field boundaries (see Figure 2). 

 

2.5 Land Use Reference Data 

The database contains the land use classes of 794 crop fields (see 

Figure 3), on a monthly basis, for the period between June 2017 

and June 2018.  

 

Based on information collected in situ, optical remote sensing 

time series images (Sentinel-2/MSI and Landsat-8/OLI) and 

NDVI profiles (MODIS/Terra), we built monthly references for 

the visited fields covering one crop year (from June 2017 to June 

2018). For June 2017 and March 2018 the reference is based on 

the field information. The reference for the other months was 

created by an experienced image interpreter. For the visual 

interpretation NIR-SWIR-Red false-colour compositions were 

generated for each date (OLI R5-G6-B4 and MSI R8A-G11-B4).  

 

The land use classes present in the LEM area were: soybean; 

maize; cotton; coffee; beans; wheat; sorghum; millet 

(commercial and non-commercial millet); eucalyptus; pasture; 

hay; grass (areas cultivated with some type of grass, for unknown 

purpose - hay production, to recover area affected with 

nematodes etc.); crotalaria; maize+crotalaria (maize cultivated in 

consortium with crotalaria); cerrado; conversion area  (a earlier 

cerrado field that has been recently deforested, for unknown 

purpose – pasture, crop cultivation etc.); uncultivated soil (bare 

soil, soil with crop residues from previous harvest, and soil with 

weeds); other non-commercial crops (NCC); and not identified 

(planting observed in the images between August and November, 

in areas irrigated by central pivot). Table 3 shows the fields per 

class distribution over all images in the dataset. 

 

  
Figure 2. Illustration of crop field boundaries over false-colour 

compositions of (A) Landsat-8/OLI (R5-G6-B4) and (B) 

Sentinel-2/MSI (R8A-G11-B4) images. In black are the original 

polygons and in red the final boundaries considering a buffer 

zone of 60 m. 

 

 

Figure 3. Distribution of the fields in LEM. 

 

  

Year Month 
Date 

OLI 

Date 

MSI 

2017 

June 15 04, 24 

July 01, 17 09, 14, 

August 02, 18 03, 18, 23 

September 03, 19 07, 12, 27 

October 05, 21 02, 17, 22 

November 06, 20 06, 11, 16, 26 

December 08, 24 01, 06, 16, 21, 26 

2018 

January 09, 25 05, 10, 15, 25, 30 

February 10, 26 04, 09, 14, 19, 24, 30 

March 14, 30 01, 06, 11, 16, 21, 26, 31 

April 15 05, 10, 15, 20, 25, 30 

May 01, 17 05, 10, 15, 20, 25, 30 

June 02, 18 04, 09, 14, 19, 24, 29 

 

Table 1. Dates of Landsat-8/OLI and Sentinel-2/MSI image 

acquisitions over LEM. 

 

Year Month 
Date 

Sentinel-1 

 June 12, 24 

 July 06, 30 

 August 11, 23 

2017 September 04, 16,  28 

 October 10 

 November 03, 15, 27 

 December 09, 21 

2018 

January 02, 14, 26 

February 07, 19 

March 03, 15, 27 

April 08, 20 

May 02, 14, 26 

June 07, 19 

 

Table 2. Dates of Sentinel-1 image acquisitions over LEM 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-1, 2018 
ISPRS TC I Mid-term Symposium “Innovative Sensing – From Sensors to Methods and Applications”, 10–12 October 2018, Karlsruhe, Germany

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-1-387-2018 | © Authors 2018. CC BY 4.0 License.

 
389



 

3.    EXPERIMENT 

3.1 Material and Methods 

To illustrate the use of the LEM Database, two experiments were 

carried out using Sentinel-1 and Sentinel-2 multitemporal image 

sequences. We selected for the first experiment Sentinel-1 

images from June 2017 to May 2018, one image per month (see 

horizontal plot axis in Figure 4a) in both polarizations, VV and 

VH. The second experiment was carried out upon Sentinel-2 

images from June 2017 to October 2017, one image per month 

(see horizontal plot axis in Figure 4b) using bands 2 (490 nm), 3 

(560 nm), 4 (665 nm) and 8 (842 nm). A subset of the whole 

reference map was selected for the experiments, comprising 

approximately 25% of the whole database. 

 

We applied a method known as image stacking. In this approach 

each pixel is represented by a feature vector formed by staking 

together the spectral features of all pixels in the same spatial 

coordinates along the whole sequence. Notice that in this 

approach, pixels in different epochs at the same image coordinate 

share the same representation. This brings about a 𝑛 × 𝑑 

dimensional feature space for 𝑑 features per epoch of a sequence 

comprising 𝑛 images. For each epoch, we trained a specific 

classifier to map points in this feature space to the corresponding 

crop type in that epoch. 

 2017 2018 

Class Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun 

Soybean 4 2 - - - 10 127 450 450 420 7 4 4 

Maize 41 29 15 6 1 4 25 54 61 56 71 53 11 

Cotton 15 14 4 - - - - 4 23 23 23 23 22 

Coffee 17 17 17 15 15 15 15 15 15 15 15 15 15 

Beans 27 8 4 2 - - 1 1 - 5 15 12 - 

Wheat 1 1 1 - - - - - - - - - - 

Sorghum 48 40 20 2 - - - - - - - - - 

Millet 197 140 38 3 - - - - 1 1 6 6 1 

Eucalyptus 8 8 8 8 8 8 8 8 8 8 8 8 7 

Pasture 30 30 30 30 28 24 24 24 24 24 23 23 23 

Hay 23 14 9 6 8 13 13 13 13 13 12 11 9 

Grass 22 20 19 19 12 14 22 27 28 27 29 26 18 

Crotalaria 1 1 - - - - - - - - - - - 

Maize+Crotalaria 1 1 1 1 - - - - - - - - - 

Cerrado 66 66 66 65 63 63 63 63 63 63 63 63 62 

Conversion area 6 6 6 7 9 9 9 9 9 8 8 8 9 

Uncultivated soil 286 396 552 618 636 625 464 49 51 113 437 360 444 

NCC 1 1 1 1 1 1 1 3 3 3 3 3 2 

Not identified - - 3 11 13 8 22 74 45 15 74 179 167 

 

Table 3. Number of fields per class in each epoch. 

 

 
(a) (b) 

 

Figure 4. Overall accuracy (dark blue bars) and average F1-score (light blue bars) for different sequences (bar), formed by taking 

the first image and stacking more images to classify the last image in that sequence. Sequence of (a) C-band SAR Sentinel-1 images 

and (b) MSI/Sentinel-2 images (right). 
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3.2 Experimental Protocol 

In the first experiment on Sentinel 1 data each pixel was 

represented by a feature vector comprising the backscatter 

responses in both polarizations, VV and VH, at the same image 

coordinate along all epochs in the sequence. Similarly, in the 

second experiment we stacked the spectral responses of Sentinel 

2 data in bands 2, 3, 4 and 8 of all pixels at the same spatial 

coordinate through all epochs to form the pixel-wise feature 

vectors. 

 

A random forest (RF) classifier was trained upon pixels of 

randomly selected fields. The RF consisted of 200 random trees 

with maximum depth equal to 25. As our database is unbalanced, 

samples of less abundant classes were replicated to obtain 

approximately 20 000 samples per class in each epoch. Finally, 

the classifier was tested on sites not used for training. Stratified 

random sampling from Quantum GIS was applied to take 

approximately 20% samples for training and 80% for testing 

from the whole set of fields selected for these experiments. 

 

The experiment was carried out on sequences of different lengths. 

First, we applied the aforementioned procedure on the earliest 

image in the sequence – a monotemporal scenario. Then, we 

added the next date image, forming a two images sequence, and 

applied the protocol to classify the latest one, in this case the 

second image in the sequence. We repeated this procedure 

successively by adding one more image to the sequence and 

classifying the most recent one. In this way, we measure accuracy 

on each image in the sequence, whereby each result refers to a 

different sequence length. This protocol represents 

approximately the problem of successfully refining the 

estimation of cultivated area for each crop type as time goes on 

and more images become available. 

 

3.3 Results 

Figure 4 summarizes the results in terms of overall accuracy 

(OA) (dark blue bars) and average F1-score (light blue bars) for 

all sequences considered in the experimental protocol for both 

sensors, Sentinel-1 (Figure 4a) and Sentinel-2 (Figure 4b).  

 

Largely, accuracy increased as more images were added to the 

sequence. Notably, the accuracy decreased as we added the 8th 

image in the Sentinel-1 experiments (see Figure 4a). The reason 

for this behaviour is the transition between crop cycles that 

occurred exactly from the 7th to 8th epoch. In this case the data 

related to a prior, already harvested crop, was not relevant for the 

recognition of the new crop. Notice that the accuracy increased 

again from the 9th epoch on, as images of the new crop cycle were 

added to the sequence. 

 

Finally, Figure 4 shows a clear superiority of Sentinel 2 (Figure 

4b) over the Sentinel 1 data (Figure 4a) in terms of classification 

accuracy for the same sequence length. This is clearly, due to the 

richer information provided by optical sensors when compared 

with the SAR counterpart. 

 

4.    CONCLUSION 

This paper introduced the LEM database, built to serve as 

benchmark for new crop mapping approaches based on 

multitemporal/multisensor remote sensing data. The database 

contains land use information of 794 crop fields located in the 

Luís Eduardo Magalhães municipality, Brazil, which presents 

crop dynamics typical of tropical areas. The LEM database also 

contains sequences of pre-processed optical (Landsat-8/OLI and 

Sentinel-2/MSI) and radar (C band Sentinel-1) remote sensing 

images. 

 

To exemplify the use of the database the paper also reported 

experiments using either Sentinel-1 or Sentinel-2 data. Especially 

in tropical regions, it is virtually impossible to obtain cloud free 

MSI images with appropriate temporal resolution to cover the 

entire crop year (both dry and wet periods).  Data from Landsat-

8/OLI optical sensor (also available in the database) can be taken 

to partially solve this problem. Although optical sensors 

generally provide comparatively richer information, we see a 

trend towards the use of optical and radar sensors together. The 

LEM database can be useful to the development of new 

multitemporal and multi-sensor approaches for agricultural land-

use classification. 

 

ACKNOWLEDGEMENTS 

The authors gratefully acknowledge the ISPRS for financial 

support (Scientific Initiatives 2017). We further acknowledge the 

support from CNPq and CAPES. The authors are especially 

grateful to Adriano Vecchiatti Lupinacci and Ricardo Kyoshi 

Atarassi for providing information about LEM´s agricultural 

practices and crop calendar. 

 

REFERENCES 

Chen, J., Dowman, I., Li, S., Li, Z., Madden, M., Milss, J., 

Paparoditis, N., Rottensteiner, F., Sester, M., Toth, C., Trinder, 

J., Heipke, C., 2016. Information from imagery: ISPRS scientific 

vision and research agenda. ISPRS Journal of Photogrammetry 

and Remote Sensing, 115(3), pp. 21.  

 

Eberhardt, I.D.R., Schultz, B., Rizzi, R., Sanches, I.D., 

Formaggio, A.R., Atzberger, C., Mello, M.P., Immitzer, M., 

Trabaquini, K., Foschiera, W., Luiz, A.J.B., 2016. Cloud cover 

assessment for operational crop monitoring systems in tropical 

areas. Remote Sensing, 8(3), pp. 219-232. 

 

Hoberg, T. and Muller, S., 2011. Multitemporal Crop Type 

Classification Using Conditional Random Fields and RapidEye 

Data. In International Archives of the Photogrammetry, Remote 

Sensing and Spatial Information Sciences – ISPRS Hannover 

Workshop, 14-17 June 2011, Hannover, Germany. 

 

IBGE - Brazilian Institute of Geography and Statistics, 2016a. 

Produção agrícola municipal, culturas temporárias, 2015. 

Available in: 

<http://www.sidra.ibge.gov.br/bda/pesquisas/pam/default.asp>. 

Accessed in18 Nov. 2016. 

 

IBGE - Brazilian Institute of Geography and Statistics, 2016b. 

Produção agrícola municipal, culturas permanentes, 2015. 

Available in: 

<http://www.sidra.ibge.gov.br/bda/pesquisas/pam/default.asp>. 

Accessed in18 Nov. 2016. 

 

Inglada, J., Vincent, A., Arias, M., Marais-Sicre, C., 2016. 

Improved early crop type identification by joint use of high 

temporal resolution SAR and optical image time series. Remote 

Sensing, 8, pp. 362. 

 

Ji, S., Zhang, C., Xu, A., Shi, Y., Duan, Y., 2018. 3d 

convolutional neural networks for crop classification with multi-

temporal remote sensing images. Remote Sensing, 10, 75. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-1, 2018 
ISPRS TC I Mid-term Symposium “Innovative Sensing – From Sensors to Methods and Applications”, 10–12 October 2018, Karlsruhe, Germany

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-1-387-2018 | © Authors 2018. CC BY 4.0 License.

 
391



 

Jiao, X., Kovacs, J., Shang, J., McNairn, H., Walters, D., Ma, B., 

Geng, X., 2014. Object-oriented crop mapping and monitoring 

using multi-temporal polarimetric RADARSAT-2 data. ISPRS 

Journal of Photogrammetry and Remote Sensing, 96, pp. 38–46. 

 

Kenduiywo, B.K., Bargiel, D., Soergel, U., 2017. Higher Order 

Dynamic Conditional Random Fields Ensemble for Crop Type 

Classification in Radar Images. IEEE Transactions on 

Geoscience and Remote Sensing, 55(8), pp. 4638–4654. 

 

Leite, P., Feitosa, R. Q., Formaggio, A. R., da Costa, G., Pakzad, 

K., Sanches, I. D., 2011. Hidden Markov Models for crop 

recognition in remote sensing image sequences. Pattern 

Recognition Letters, 32(1), pp. 19–26. 

 

McNairn, H., Kross, A., Lapen, D., Caves, R., Shang, J., 2014. 

Early season monitoring of corn and soybeans with TerraSAR-X 

and RADARSAT-2. International Journal of Applied Earth 

Observation and Geoinformation, 28, pp. 252–259. 

 

McNairn, H., Shang, J., Jiao, X., Champagne, C., 2009. The 

Contribution of ALOS PALSAR Multipolarization and 

Polarimetric Data to Crop Classification. IEEE Transactions on 

Geoscience and Remote Sensing, 47(12), pp.  3981–3992. 

 

Navarro, A., Rolim, J., Miguel, I., Catalão, J., Silva, J., Painho, 

M., Vekerdy, Z., 2016. Crop monitoring based on SPOT-5 Take-

5 and sentinel-1A data for the estimation of crop water 

requirements. Remote Sensing, 8(6), 525. 

 

Nex, F., Gerke, M., Remondino, F., Przybilla, H.-J., Baumker, 

M., Zurhorst, A., 2015. ISPRS benchmarck for multi-platform 

photogrammetry. ISPRS Annals of the Photogrammetry, Remote 

Sensing and Spatial Information Science, Volume II-3/W4, 2015 

PIA 15+HRIGI15 – Joint ISPRS conference, 25-27 March 2015, 

Munich, Germany. 

 

Peel, M.C., Finlayson, B.L., Mcmahon, T.A., 2007. Updated 

world map of the Köppen–Geiger climate classification. Hydrol. 

Earth Syst. Sci., 11(5), pp. 1633–1644. 

 

Portal Brasil, 2015. MATOPIBA se consolida como nova 

fronteira agrícola do País. Available in: 

http://www.brasil.gov.br/economia-e-

emprego/2015/10/matopiba-se-consolida-como-nova-fronteira-

agricola-do-pais. Accessed in 15 Dec. 2016. 

 

Reiche, J., Hamunyela, E., Verbesselt, J., Hoekman, D., Herold, 

M., 2018. Improving near-real time deforestation monitoring in 

tropical dry Forest by combining dense Sentinel-1 time series 

with Landsat and ALOS-2 PALSAR-2. Remote Sensing of 

Environment, 204, pp. 147-161. 

 

Rottensteiner, F., Sohn, G., Gerke, M., Wegner, J.D., Breitkopf, 

U., Jung, J., 2014. Results of the ISPRS benchmark on urban 

object detections and 3D building reconstruction. ISPRS Journal 

of Photogrammetry and Remote Sensing, 93, pp. 256-271. 

 

Sanches, I.D., Feitosa, R.Q., Diaz, P.M.A., Soares, M.D., Luiz, 

A.J.B., Maurano, L.E.P., 2018. Campo verde database: seeking 

to improve agricultural remote sensing of tropical áreas, 15(3), 

pp. 369-373. 

 

Sonobe, R., Tani, H., Wang, X., Kobayashi, N., Shimamura, H., 

2014. Random forest classification of crop type using multi-

temporal TerraSAR-X dual-polarimetric data. Remote Sensing 

Letters, 5(2), pp. 157–164. 

 

Sonobe, R., Tani, H., Wang, X., Kobayashi, N., Shimamura, H., 

2015. Discrimination of crop types with TerraSARX-derived 

information. Physics and Chemistry of the Earth, Parts A/B/C, 

pp. 83–84:2–13. 

 

Torbick, N., Chowdhury, D., Salas, W., Qi, J., 2017. Monitoring 

rice agriculture across Myanmar using time series Sentinel-1 

assisted by Landsat-8 and PALSAR-2. Remote Sensing, 9, 119. 

 

Xiao, C., Li, P., Feng, Z., Wu, X., 2018. Spatio-temporal 

differences in cloud cover of Landsat-8 OLI observations across 

China during 2013–2016. Journal of Geographical Sciences, 

28(4), pp. 429–444. 

 

Whitcraft, A.K., Vermote, E.F., Becker-Reshef, I., Justive, C.O., 

2015. Cloud Cover throughout the agricultural growing season: 

impacts on passive optical earth observation. Remote Sensing of 

Environment, 156, pp. 438–447. 

 

Zhang, X., Sun, Y., Shang, K., Zhang, L., Wang, S., 2016. Crop 

classification based on feature band set construction and object- 

oriented approach using hyperspectral Images. IEEE Journal of 

Selected Topics in Applied Earth Observations and Remote 

Sensing, 9(9), pp. 4117–4128. 

 

Zhou, T., Pan, J. Zhang, P., Wei, S., Han, T., 2017. Mapping 

winter wheat with multi-temporal SAR and optical images in an 

urban agricultural region. Sensors (Switzerland), 17(6), pp. 1–16. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-1, 2018 
ISPRS TC I Mid-term Symposium “Innovative Sensing – From Sensors to Methods and Applications”, 10–12 October 2018, Karlsruhe, Germany

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-1-387-2018 | © Authors 2018. CC BY 4.0 License.

 
392




