CALL FOR PAPERS | Updates on Mapping Quantitative Trait Loci

Genome scan for meat quality traits in Nelore beef cattle


1Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil; 2Division of Animal Sciences, University of Missouri, Columbia, Missouri; 3Brazilian Agricultural Research Corporation (Embrapa) Pecuária Sudeste, São Carlos, São Paulo, Brazil; 4Departamento de Zootecnia, Universidade de São Paulo/Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, São Paulo, Brazil; 5Agricultural Research Service, United States Department of Agriculture (USDA), Beltsville, Maryland; 6Embrapa Gado de Corte, Campo Grande, Mato Grosso do Sul, Brazil; and 7Embrapa Informática Agropecuária, Campinas, São Paulo, Brazil

Submitted 1 May 2013; accepted in final form 3 September 2013

Tizioto PC, Decker JE, Taylor JF, Schnabel RD, Mudadu MA, Silva FL, Mourão GB, Coutinho LL, Tholon P, Sonstegard TS, Rosa AN, Alencar MM, Tullio RR, Medeiros SR, Nussu RT, Feijó GL, Silva LO, Torres RA, Siqueira F, Higa RH, Regitano LCA. Genome scan for meat quality traits in Nelore beef cattle. Physiol Genomics 45: 1012–1020, 2013. First published September 10, 2013; doi:10.1152/physiolgenomics.00066.2013.—Meat quality traits are economically important because they affect consumers’ acceptance, which, in turn, influences the demand for beef. However, selection to improve meat quality is limited by the small numbers of animals on which meat tenderness can be evaluated due to the cost of performing shear force analysis and the resultant damage to the carcass. Genome-wide-association studies for Warner-Bratzler shear force measured at different times of meat aging, backfat thickness, ribeye muscle area, scanning parameters [lightness, redness (a*), and yellowness] to ascertain color characteristics of meat and fat, water-holding capacity, cooking loss (CL), and muscle pH were conducted using genotype data from the Illumina BovineHD BeadChip array to identify quantitative trait loci (QTL) in all phenotyped Nelore cattle. Phenotype count for these animals ranged from 430 to 536 across traits. Meat quality traits in Nelore are controlled by numerous QTL of small effect, except for a small number of large-effect QTL identified for a*fat, CL, and pH. Genomic regions harboring these QTL and the pathways in which the genes from these regions act appear to differ from those identified in taurine cattle for meat quality traits. These results will guide future QTL mapping studies and the development of models for the prediction of genetic merit to implement genomic selection for meat quality in Nelore cattle.

GWAS; Zebu; QTL; beef; cattle

FOR DECADES, CATTLE BREEDING PROGRAMS have focused on improving growth (3, 13), despite the importance of meat quality and yield traits such as meat tenderness, backfat thickness (BFT), and ribeye muscle area (REA) due to their impact on consumer satisfaction and product pricing. Less attention has been paid to the genetic improvement of these traits because they are costly and difficult to measure and are observed only after an animal has been slaughtered. Meat tenderness has been identified as a major issue of the beef industry, especially in animals with indicine ancestry. It is known that crossbreed animals with higher degrees of Bos indicus contribution have decreased meat tenderness (26).

Traditional breeding programs select animals based on estimated breeding values calculated from phenotypic records and pedigrees and using an estimate of the heritability of each trait; however, this method makes no attempt at identifying the genes and pathways involved in the target traits, and the process is slow if the trait can only be measured late in life or postmortem as is the case for meat tenderness (21). Research conducted primarily in Bos taurus cattle has identified QTL on chromosomes 1, 2, 4, 5, 7, 8, 10, 11, 15, 17, 18, 20, 25, and 29 for meat quality traits (2, 6–9, 12, 16–18, 25, 27, 38, 39, 46, 56). However, it is not clear whether these loci contribute to variation in the same traits in B. indicus cattle. Furthermore, genome-wide association studies (GWAS) performed using Bayesian or genomic best linear unbiased prediction models, which may be used to estimate molecular breeding values in the deployment of genomic selection, are increasingly being used to identify quantitative trait loci (QTL) associated with complex traits (14, 15, 31, 32, 36, 52). This approach requires that thousands of molecular markers spanning the entire genome be genotyped in a population of phenotyped individuals and that the number of markers is calibrated relative to the extent of linkage disequilibrium (LD) within the population to ensure that QTL of large effect are not missed simply because they are beyond the range of LD of the nearest markers.

The success of genomic selection depends on the exploitation of LD between the markers and the QTL affecting a target trait (40). Before genetic information can be efficiently used within breeding programs, studies involving the breeds and populations targeted for improvement are essential to accurately describe the marker/QTL associations and phase relationships for important production traits in each population. Cattle breeds differ in phase relationships between marker and QTL alleles and also in allele frequencies, and consequently, the significance of QTL effects can differ between breeds. This study identifies genomic regions that putatively harbor genes related to variation in Warner-Bratzler shear force (WBSF) measured following different times of meat aging, BFT, REA, and
L*, a*, b* color parameters (L* = lightness, a* = redness, and b* = yellowness) for meat and fat, water-holding capacity (WHC), cooking loss (CL), and pH in Nelore beef cattle using genotypes produced from the Illumina BovineHD BeadChip (Illumina, San Diego, CA).

MATERIALS AND METHODS

Animal and phenotype collection. Nelore steers derived from 34 sires representing the main breeding lineages of Brazil were genotyped. Half-sib families were produced by artificial insemination of commercial and purebred Nelore dams. Animals were raised and allocated to two feedlots, as previously described (50). The animals were slaughtered at an average endpoint of 5 mm of BFT. The phenotype count for these animals ranged from 430 to 536 across traits. The research was approved by the Embrapa Pecuária Sudeste (São Carlos, São Paulo, Brazil) ethics committee.

Phenotypes for WBSF (kg), BFT (mm), REA (cm²), WHC (%), L*, a*, b* color parameters for meat and fat, and CL (%) were measured from 2.5 cm thick steaks harvested as a cross section of the longissimus dorsi muscle between the 11th and 13th ribs collected at slaughter. The steaks from the 12th rib were used to measure BFT, REA, WHC, L*, a*, b* color parameters, and CL at 24 h postmortem. Measurements of WBSF were conducted on three steaks obtained between the 11th and 13th ribs after 24 h (WBSF0), 7 days (WBSF7), and 14 days (WBSF14) of aging at 2°C in a cold chamber manufactured by Macquay Heatcraft do Brasil Ltda (São José dos Campos, São Paulo, Brazil). Briefly, the fresh steaks used were measured to measure BFT, REA, WHC, and color parameters. We determined the color parameters L*, a*, and b* after exposing the steaks to atmospheric oxygen for 30 min prior to analysis, and each trait was measured at three locations across the surface of the steak using a Hunter Lab colorimeter model MiniScan XE with Universal Software v. 4.10 (Hunter Associates Laboratory, Reston, VA), illuminant D65 and 10° standard observer. Muscle pH also was measured at three locations across the steak using a Testo pH measuring instrument model 230 (Testo, Lenzkirch, Germany). WHC was determined by a compression technique in which a 0.2 kg meat sample was compressed at a force of 10 kg for 5 min, and WHC was estimated as the difference between the weight of the sample before and after compression (20). After these analyses, the steaks were weighed and cooked in a Tenderco combined oven model TC 06 (Tenderco, Caxias do Sul, RS, Brazil) at 170°C until the temperature at the center of each sample reached 70°C, controlled by thermocouples linked to FEMU software (Flyever, São Carlos, SP, Brazil) to measure CL and WBSF. The WBSF measures were obtained with the texture analyzer TA - XT2i coupled to a Warner-Bratzler blade with 1.016 mm thickness. To measure CL, we used the difference in weights before and after cooking the grilled steaks, expressed as a percentage.

DNA extraction and genotyping. Straws of frozen semen obtained from Brazilian artificial insemination centers were used to extract DNA from bulls by a standard phenol-chloroform method (43). For the steer progeny, 5 ml blood samples were collected, and DNA extractions were performed by a salting-out method. DNA concentration was measured by spectrophotometry, and quality was verified by the 260/280 optical density ratio, followed by inspection of integrity through agarose gel electrophoresis. All animals were genotyped using the Illumina BovineHD BeadChip (Illumina, San Diego, CA) either at the United States Department of Agriculture’s Agricultural Research Service Bovine Functional Genomics Laboratory in Beltsville, MD, or at the ESALQ Genomics Center, Piracicaba, São Paulo, Brazil. Genotypes were called in the Illumina Genome Studio software. Animals were filtered according to call rate (<90%) and heterozygosity (>40%). Loci were deleted if they could not be uniquely localized to an autosome or the X chromosome in the UMD3.1 sequence assembly, call rate (<85%), minor allele frequency (<0.1%), and Hardy-Weinberg equilibrium. Only effects of single nucleotide polymorphisms (SNPs) located on the autosomal chromosomes were considered for association analysis.

Genome-wide association analysis. Missing genotypes were imputed with BEAGLE (5) without the use of pedigree information. Meat quality traits were analyzed under a Bayesian model with GenSel software (15). The BayesC approach, which is less sensitive to starting values for additive genetic and residual variances was first used to estimate these variances, assuming the π parameter was zero (i.e., assuming that all SNPs contributed to explaining genetic variance in each trait). The estimated additive genetic and residual variances from the BayesC0 analyses were then used as starting values in BayesCπ analyses to estimate the π parameter for each trait. The estimated values for the additive genetic and residual variances and π were finally used to run BayesB analyses to estimate the SNPs effects. The BayesB analysis fits separate variances for every SNP in the model allowing large effect SNP to be estimated without overly regressing their effects toward zero. The statistical model included fixed effects of birth and feedlot locations, breeding season, slaughter group, and animal age at slaughter as a covariate.

The Bayesian estimation of SNP effects was performed based on the model below:

\[
y = \mu + \sum_{j=1}^{k} \beta_j \delta_j + e
\]

where \( y \) is the vector of phenotypic values, \( \mu \) is an overall mean, \( k \) is the number of marker loci in the panel, \( \beta_j \) is the random allele substitution effect for locus \( j \), which is conditional on \( \sigma^2_\beta \) and is assumed normally distributed \( N(0, \sigma^2_\beta) \); when \( \delta_j = 1 \) but \( \beta_j = 0 \) when \( \delta_j = 0 \), \( \delta_j \) is a random 0/1 variable indicating the absence (with probability \( \pi \)) or presence (with probability \( 1 - \pi \)) of locus \( j \) in the model, and \( e \) is the vector of random residual effects assumed normally distributed \( N(0, \sigma^2_e) \).

On the basis of the magnitude of the \( \pi \) parameter estimated in the BayesCπ analysis, we identified all genes within ±10 kb of the largest effect 651,259 \((X-\hat{\pi})\) SNPs to search for candidate genes for the detected QTL. The genomic regions associated with each trait were examined for candidate genes using Map Viewer (NCBI). The enriched annotation and pathways in which genes within these regions are involved were evaluated using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) software (23).

RESULTS

Summary statistics. Raw means, standard deviations, variance components, heritability, and π estimates for each trait are in Table 1. The estimates of heritability are based on small sample sizes and consequently possess considerable sampling variance. Heritability estimates varied between 0.05 for L*fat and 0.28 for b*muscle.

GWAS. After selection of SNPs based on call rate, allele frequency, and Hardy-Weinberg equilibrium, as described in the methodology, genotypes were available for 651,259 SNP loci scored in both the steers and their sires and 0.80% of missing genotypes were imputed. The sire genotypes were used in the analysis to estimate the molecular breeding values for these important animals. We found that the evaluated meat quality traits were primarily influenced by QTLs of small effect and that no genes of large effect such as attributed to \( \text{CAPN1} \) and \( \text{CAST} \) in taurine cattle (4, 10, 35, 44) were detected.

The software DAVID v6.7 was used to search for enriched functional clusters and pathways based upon our supplied gene lists. For WBSF0, we identified 858 candidate loci (including uncharacterized loci, pseudogenes and predicted proteins, Sup-
We identified 4,161 genes within regions tagged by the 1 SNP selected based on the parameter estimated for this trait (Table 1). Genes that have already been reported as candidates for meat tenderness QTL were found in these analyses. One SNP associated with WBSF0 was located in the vicinity of calpain 5 (CAPN5); SNPs associated with WBSF0 were also found in collagen family (COL1A1 and COL2A1) genes. However, no associated SNP was found within 10 kb of calpastatin (CAST), which has been shown to be associated with WBSF in taurine breeds. BTA7 was found to harbor SNPs, which explained the greatest amount of additive genetic variance in WBSF0 (Fig. 1); however, these SNPs were not located near any annotated genes, suggesting that the causal mutations may be regulatory in nature. The largest QTL identified for WBSF0 was located on BTA23 at 24 Mb (Table 2); the QTL in this genomic region accounted for only 0.11% of the additive genetic variance. Few genes located within the vicinity of this QTL, including the glutathione S-transferase alpha gene family (GSTA2, GSTA3, GSTA5, GSTA4). We also identified candidate genes in other QTL regions such as SERPIN2, which encodes a serine protease protein and is located near to associated SNPs on BTA2. Serpin genes are known to control proteolysis in molecular pathways associated with cell survival and development (45). The DAVID functional analysis revealed clusters involved in potassium and calcium channel activity, and the enriched pathways found were neuroactive ligand-receptor interaction, neuronal precursor cell lineage, and adherens junction (Supplemental Table S1).

We identified 4,161 genes within regions tagged by the SNPs that were associated with WBSF7 (Supplemental Table S1). Two associated SNPs were found in the vicinity of calpain 1 (mu/I) large subunit (CAPN1), four in CAPN2, three in CAPN5, and two in CAST, in addition to the collagen gene family members (COL1A1, COL2A1, COL2A2, COL2A3, COL6A3), which were also enriched in this analysis. A candidate gene (ASAP1: ArfGAP with SH3 do-

Table 1. Raw means, SD, heritability, and estimated π of each trait

<table>
<thead>
<tr>
<th>Trait</th>
<th>n</th>
<th>Mean ± SD</th>
<th>σ²a</th>
<th>σ²e</th>
<th>h²</th>
<th>π</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBSF0, kg</td>
<td>442</td>
<td>8.70 ± 2.20</td>
<td>0.37228</td>
<td>1.84566</td>
<td>0.1678</td>
<td>0.99295</td>
</tr>
<tr>
<td>WBSF7, kg</td>
<td>425</td>
<td>5.93 ± 2.16</td>
<td>0.523924</td>
<td>2.21659</td>
<td>0.1911</td>
<td>0.95723</td>
</tr>
<tr>
<td>WBSF14, kg</td>
<td>437</td>
<td>4.56 ± 1.89</td>
<td>0.290425</td>
<td>1.56359</td>
<td>0.1566</td>
<td>0.99685</td>
</tr>
<tr>
<td>BFT, mm</td>
<td>536</td>
<td>6.42 ± 2.33</td>
<td>0.779323</td>
<td>2.87337</td>
<td>0.2133</td>
<td>0.990398</td>
</tr>
<tr>
<td>REA, cm²</td>
<td>534</td>
<td>59.98 ± 7.55</td>
<td>10.848</td>
<td>29.2516</td>
<td>0.2705</td>
<td>0.891685</td>
</tr>
<tr>
<td>pH</td>
<td>425</td>
<td>4.71 ± 1.10</td>
<td>2.00</td>
<td>0.823522</td>
<td>0.322681</td>
<td>0.2815</td>
</tr>
</tbody>
</table>

Warner-Bratzler shear force (WBSF) was measured following different times of meat aging: 24 h after slaughter (WBSF0), 7 days after slaughter (WBSF7), and 14 days after slaughter (WBSF14). BFT, backfat thickness; REA, ribeye muscle area; WHC, water-holding capacity; CL, cooking loss. Color parameters for meat and fat: L*, lightness; a*, redness; b*, yellowness.

1 The online version of this article contains supplemental material.
From the GWAS for BFT (Fig. 2), a QTL located on BTA11 explained the greatest amount of variation in BFT (0.36%). Few genes and uncharacterized loci are mapped to this region (Table 2); however, none of them have a clear function in lipid anabolism or catabolism. *TTF1* (transcription termination factor, RNA polymerase I), located on BTA9, was the gene that harbors the single SNP that explains the greatest additive genetic variance in BFT. The enrichment analyses identified

**Table 2. QTL with the largest effect on variation in each trait**

<table>
<thead>
<tr>
<th>Trait</th>
<th>Chr</th>
<th>Position, bp</th>
<th>Position, Mb</th>
<th>SNPs, n</th>
<th>Variance Explained, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBSF0</td>
<td>23</td>
<td>24,002,374...24,999,318</td>
<td>24</td>
<td>453</td>
<td>0.11</td>
</tr>
<tr>
<td>WBSF7</td>
<td>13</td>
<td>71,001,773...71,998,254</td>
<td>71</td>
<td>364</td>
<td>0.10</td>
</tr>
<tr>
<td>WBSF14</td>
<td>2</td>
<td>73,002,970...73,996,212</td>
<td>73</td>
<td>271</td>
<td>0.19</td>
</tr>
<tr>
<td>BFT</td>
<td>11</td>
<td>82,000,961...82,998,027</td>
<td>82</td>
<td>298</td>
<td>0.36</td>
</tr>
<tr>
<td>REA</td>
<td>23</td>
<td>24,002,374...24,999,318</td>
<td>24</td>
<td>453</td>
<td>0.08</td>
</tr>
<tr>
<td>L*fat</td>
<td>23</td>
<td>24,002,374...24,999,318</td>
<td>24</td>
<td>453</td>
<td>0.14</td>
</tr>
<tr>
<td>a*fat</td>
<td>12</td>
<td>36,010,895...36,994,095</td>
<td>23</td>
<td>333</td>
<td>0.10</td>
</tr>
<tr>
<td>b*fat</td>
<td>23</td>
<td>43,006,538...43,997,236</td>
<td>43</td>
<td>323</td>
<td>1.21</td>
</tr>
<tr>
<td>WHC</td>
<td>17</td>
<td>58,001,206...58,998,805</td>
<td>58</td>
<td>326</td>
<td>0.10</td>
</tr>
<tr>
<td>CL</td>
<td>8</td>
<td>24,002,374...24,999,318</td>
<td>24</td>
<td>453</td>
<td>0.10</td>
</tr>
<tr>
<td>pH</td>
<td>8</td>
<td>87,002,083...87,998,405</td>
<td>87</td>
<td>304</td>
<td>4.01</td>
</tr>
</tbody>
</table>

Chr, chromosome; position (bp), position where the quantitative trait locus (QTL) starts and finishes in the chromosome in base pairs; position (Mb), position of the QTL on the chromosome in megabases.
clusters related to cofactor biosynthetic process, amino-acid biosynthesis, cell death, among others (Supplemental Table S2). Previously identified candidate genes including leptin (LEP) and diacylglycerol O-acyltransferase 1 (DGAT1) (48, 49) were not identified in this analysis. Enriched pathways include drug metabolism, pentose and glucuronate interconversions, pantothenate and CoA biosynthesis, and neuroactive ligand-receptor interaction (Supplemental Table S2).

Analyses for REA identified six QTL that individually explained 0.8% of the additive genetic variance as being the most important loci (Supplemental Table S3). The same QTL described for WBSF0 at BTA23 appeared to also influence REA (Table 2). Genes related to protein kinase activity, ATP-binding, cell death, and keratin filament were found to be enriched. EH-domain containing 2 (EHDH2) gene located on BTA18 harbors one of the single SNPs explaining the most additive genetic variance in this trait (Fig. 2). The enriched pathways were adherens junction, sphingolipid metabolism, O-glycan biosynthesis, and glycosphingolipid biosynthesis (Supplemental Table S2).

The estimated \( \pi \) values for a*muscle and b*muscle color parameters were higher than for the other traits (Table 1), indicating that relatively few SNPs are associated with these traits (Fig. 3). There were no annotated candidate genes identified within \( \pm 10 \) kb of the associated SNPs. For L*muscle, the most strongly associated SNP was found on BTA21 (Fig. 3); this region harbors the fibronectin type III and SPRY domain containing 2 (FSD2) gene. (Supplemental Table S4).

The a* and b* color parameters for fat and L* for muscle seem to be influenced by similar large-effect genes (Fig. 3, Supplemental Table S4). Pathways related to lysine degradation, other glycan degradation, and cell adhesion molecules, among others appear to be important for the maintenance of color in bovine postmortem muscle (Supplemental Table S4). We identified a QTL at 58 Mb on BTA17 that has the largest effect (0.10% of additive genetic variance) on WHC (Table 2 and Supplemental Table S5). In this QTL region (Table 2) are located protein kinase, AMP-activated, beta 1 noncatalytic subunit (PRKAB1), and heat shock 22 kDa protein 8 (HSPB8). DAVID revealed clusters such as organic and catabolic processes, activation of immune response, and ubiquitin-dependent protein catabolic process for the genes in the genomic regions associated with WHC (Fig. 4). The enriched pathways were calcium signaling and neuroactive ligand-receptor interaction (Supplemental Table S5). As for WHC, the largest effect QTL identified to influence CL is located on BTA23 and explains 0.10% of the additive genetic variance; genes related to antigen processing and presentation pathway including heat shock proteins were enriched in this analysis.

A major QTL for muscle pH (24 h) was identified on chromosome 8 at 87 Mb that explained 4.01% of the additive genetic variance.

**Discussion**

WBSF values (Table 1) are higher than those normally reported for \( B. \) \( taurus \) breeds (32), but this was expected and is in agreement with the observation that WBSF increases as the proportion of \( B. \) \( indicus \) breeding increases in crossbred animals (26). We estimated the heritability of each trait using BayesC0 analyses because BayesC is less sensitive to sample size than BayesB, which requires the joint estimation of SNP effect variances for each of the markers included in the model (15). Nevertheless, most of the heritability estimates were moderate in size, indicating that QTL exist for all of these traits in Nelore cattle.

Many important production traits in taurine cattle are polygenic and are controlled by a large number of QTL (41, 42). The identification of genes underlying variation in complex traits would enhance our understanding of the biology of phenotypic variation and would facilitate improved accuracy of selection. We performed a GWAS for 14 meat quality traits using a half-sib Nelore population that enabled us to identify many QTL underlying these traits. With the exception of CL, a*fat, and pH for which large effect QTL were identified, the detected QTLs were of very small effect. For meat tenderness, in particular, this finding is contrary to results in taurine cattle where QTL explaining 4.1–7.4% of the additive genetic variance in WBSF have been detected (32). The improvement of meat quality traits, including meat tenderness, could stimulate consumer purchases of beef because they expect desirable eating experiences and tend to divert their purchases to other sources of animal protein when they experience tough meat.

Changes in texture and sensorial properties can occur because of the postmortem degradation processes that influence the quality attributes of beef. Much attention has been paid to the calpain and calpastatin genes, which are involved in an important proteolytic system, and variation in these genes has been found to affect meat tenderness in different cattle populations (10, 11, 35, 44). Although we found SNPs in \( CAPN1, \) \( CAPN2, \) \( CAPN5, \) and \( CAST \) that were associated with WBSF measures in this population, they had smaller effects than other QTL candidates (Supplemental Table S1). This result may reflect the small sample size employed in this study. It is also possible that differences between taurine and indicine cattle for allele frequencies at the \( CAPN1 \) and \( CAST \) causal mutations or the extent of LD between SNPs and these causal variants could
result in different marker effects being detected in different breeds. The presence of epistasis could also influence the magnitude of SNP effects across different populations, since it is known that epistatic effects can explain large amounts of the variation in quantitative traits (24).

The difference between genes and pathways identified in this Nelore study and those already reported for taurine breeds could reflect differences in metabolism or in the selection history of Zebu cattle. Functional clusters related to potassium and calcium transport as well as to metal binding were found to be enriched in our analyses of the WBSF measures. Potassium is necessary for muscle contraction and nerve impulses and also contributes to the proper balance of fluids in cells (28). Studies conducted with the same Nelore population show that potassium content in beef may affect meat tenderness (51). Furthermore, the calpain system is highly sensitive to fluctuating levels of calcium ions, pH, and temperature, and these three parameters all change rapidly immediately postmortem (47), indicating that calcium channel activity could generally influence postmortem tenderization.

Important pathways including neuroactive ligand-receptor interaction and TGF-β signaling were identified from the genes in the regions of the genome where SNP were associated with WBSF0. In the neuroactive ligand-receptor interaction pathway, several genes related to G protein-coupled were identified (Supplemental Table S1). Studies have shown that activation of G protein-coupled receptors is involved in the maintenance of skeletal muscle and also could be involved in the mediation of myofiber maturation and growth, operating through many signaling pathways to selectively stimulate protein synthesis or inhibit cytokine-dependent protein turnover (19).

The TGF-β pathway is involved in many cellular processes including apoptosis. Factor-beta (TGF-β) superfamily genes have been identified as important regulators of muscle development (33). Genes from our gene list, including NOG (Noggin), which is crucial for cartilage morphogenesis and joint formation and also inhibits bone morphogenetic protein (BMP) signaling, which is essential for growth and neural tube and somite patterning, and BMP7 (bone morphogenetic protein 7), which induces cartilage and bone formation, are in this pathway (29).

The PTPRT gene was identified as a QTL candidate (Table 2) for WBSF7 and may be involved in both signal transduction and cellular adhesion in the central nervous system; both pathways were also found as playing an important role in variation in WBSF0. Cytokine-cytokine receptor interaction

---

Fig. 3. Genome-wide plot of additive genetic variance explained by each marker for a*fat (A), b*fat (B), L*fat (C), a*muscle (D), b*muscle (E), and L*muscle (F). Color parameters: a*, redness; b*, yellowness; L*, lightness.
and chemokine signaling pathways were enriched for genes tagged by SNPs influencing WBSF7, suggesting that alternative and unobvious mechanisms may be acting on meat tenderness besides proteolysis. Some studies have proposed that heat shock proteins may play a role in meat tenderness (22, 37), and another study has suggested that genes involved in immune response may also be involved (55).

The O-glycan biosynthesis pathway was also enriched among the genes associated with WBSF7 and is involved in modifications of serine or threonine residues of proteins (53). The nonenzymatic glycosylation of tissue protein helps the formation of crosslinks, as O-linked oligosaccharide, that can lead to the structural and functional deterioration of collagen (34). The formation and accumulation of these crosslinks can contribute to the toughness of meat from aged animals. O-glycan biosynthesis is involved in glycosylation, which may affect collagen and other protein synthesis and could be the most common and complex form of posttranslational modification (54). From the analysis of genes within common regions associated with all WBSF measures, we infer that biological processes of regulation of transcription, glycosylation, and metal-binding are important to meat tenderness in Nelore cattle. Finally, for WBSF14 gene clusters involved in cell adhesion were found. Cell adhesion proteins appear to play an important role in the meat tenderness of this population.

The neuroactive ligand-receptor interaction pathway was enriched among the genes associated with BFT, indicating genes related to this pathway play a role in fat deposition in Nelore. The adherens junction sphingolipid metabolism, O-glycan biosynthesis, and glycosphingolipid biosynthesis pathways appear to have roles in muscle growth since they were also enriched in the REA analysis.

A possible pleiotropic QTL window on BTA23 had the largest effect on Lmuscle and Lfat meat color parameters, WBSF0, REA, and CL. Further studies mining this region could help identify whether this is an effect of one or more variants that would be useful for simultaneously improving four meat quality traits in Nelore.

Postmortem chilling and pH, atmospheres used for packaging, antimicrobial interventions, and cooking can all influence meat color parameters. QTL were identified for all of these traits, suggesting that there are loci of large effect underlying these traits (30). The major QTL region found for a*fat (Table 2) harbors few genes; however, ruling out the implication of

Fig. 4. Genome-wide plot of additive genetic variance explained by each marker for water-holding capacity (WHC, A), cooking loss (CL, B), and pH (C).
these genes on this trait is difficult since there is little knowledge available on the biological mechanisms that regulate this fat color trait. Pathways influencing meat and fat color parameters include the cell adhesion molecules pathway that was detected for more than one color trait. Cell interactions are mediated by different families of receptors, including targeting cell adhesion to extracellular matrix proteins and to ligands on adjacent cells, and could influence many processes such as cellular growth, differentiation, junction formation, and polarity (1).

WHC of fresh meat is important because it affects both the yield and the quality of commercialized beef. It appears that proteolysis affects WHC and also plays a fundamental role in meat tenderness. The functional clusters organic acid catabolic process and proteolysis were enriched among genes in regions associated with WHC (Supplemental Table S5), and proteases including calpains CAPN2, CAPN12, CAPN13, and CAPN14 were identified as candidate genes. The calcium signaling pathway was the most enriched pathway, which indicates that WHC may be affected by proteases such as the calpains, which are dependent on calcium. Changes in connective tissue during the cooking process may have a tenderizing effect. It has already been proposed that heat shock proteins may play a role in meat tenderization (22, 37). In our analysis, heat shock proteins were implicated in variation in CL, which is important for the juiciness of cooked beef.

The largest effect QTL identified for pH suggests that there is a major gene in this genomic region that influences the maintenance of a physiologically balanced internal environment.

Genetic variants have been largely explored in explaining variation in meat quality traits, but the underlying mechanisms affecting these traits remain poorly understood. Since the meat quality traits evaluated in this study in Nelore cattle appear to be controlled mainly by many QTL of small effect, identifying the relevant genes will be difficult, because each causal gene has a small contribution to overall variation. Thus, genomic selection, which explores the variability at many genes simultaneously, will be a better strategy for improving these traits than marker assisted selection.

This study provides the first step toward applying genomic selection for meat quality traits in Nelore cattle. We have identified important metabolic pathways related to meat quality traits that have not been reported in B. taurus cattle. These results may be biased since the magnitude of the estimated QTL effects is influenced by sample size. Studies with other populations from the Nelore breed will be required to validate the results of this study and will also be helpful for the development of models for the prediction of genetic merit to implement genomic selection for meat quality in Nelore cattle.

ACKNOWLEDGMENTS

We thank Flavia Aline Bressani, Wilson Malagô Jr. and Avelardo U. C. Ferreira for technical assistance, and Dr. Michele Lopes do Nascimento, Dr. Andrea Souza, and Amália Saturnino for monitoring the feedlots. Dr. Michel E. B. Yamaguchi and Fabio D. Vieira for technical assistance on data base maintenance, Dr. Dorian Garrick for data analysis support, the University of Missouri for accepting the first author as a visiting scholar, the National Council for Scientific and Technological Development (CNPq) for providing fellowships to M. M. de Alencar, L. L. Coutinho, and L. C. A. Regitano, and the São Paulo Research Foundation (FAPESP) for providing a scholarship to P. C. Tizioto.

GRANTS

We thank Embrapa, CNPq, and FAPESP for financial support.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS


REFERENCES

16. Gill JL, Bishop SC, McCorquodale C, Williams JL, Wiener P. Association of selected SNP with carcass and taste panel assessed meat quality
GWAS FOR MEAT QUALITY IN NELORE