Exploiting cell cycle inhibitor genes of the KRP family to control root-knot nematode induced feeding sites in plants

Robertas Ramos Coelho1,2†, Paulo Vieira1,3†, José Dijair Antonino de Souza Júnior1,2, Cristina Martin-Jimenez1, Lieven De Veylder4,5, Julie Cazareth6,7, Gilbert Engler1, Maria Fatima Grossi-de-Sa2 & Janice de Almeida Engler1

1INRA, University of Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France, 2Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB – Av. W5 Norte, Caixa Postal 02372 CEP 70770-917 Brasilia, DF, Brazil, 3NemaLab/ICAAM – Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Núcleo de Mitra, Ap. 94,7002-554 Évora, Portugal, 4Department of Plant Systems BiologyVIB, B-9052 Gent, Belgium, 5Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium, 6Université de Nice Sophia Antipolis, 06103 Nice, France and 7Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7225, 06560 Valbonne, France

ABSTRACT

Cell cycle control in galls provoked by root-knot nematodes involves the activity of inhibitor genes like the Arabidopsis ICK/KRP members. Ectopic KRP1, KRP2 and KRP4 expression resulted in decreased gall size by inhibiting mitotic activity, whereas KRP6 induces mitosis in galls. Herein, we investigate the role of KRP3, KRP5 and KRP7 during gall development and compared their role with previously studied members of this class of cell cycle inhibitors. Overexpression of KRP3 and KRP7 culminated in undersized giant cells, with KRP3OE galls presenting peculiar elongated giant cells. Nuclei in KRP3OE and KRP5OE lines presented a convoluted and apparently connected phenotype. This appearance may be associated with the punctuated protein nuclear localization driven by specific common motifs. As well, ectopic expression of KRP3OE and KRP5OE affected nematode development and offspring. Decreased mitotic activity in galls of KRP3OE and KRP7OE lines led to a reduced gall size which presented distinct shapes – from more elongated like in the KRP3OE line to small rounded like in the KRP7OE line. Results presented strongly support the idea that induced expression of cell cycle inhibitors such as KRP3 and KRP7 in galls can be envisaged as a conceivable strategy for nematode feeding site control in crop species attacked by phytopathogenic nematodes.

Key-words: Meloidogyne incognita, Arabidopsis; giant cells.

INTRODUCTION

Root-knot nematodes (RKN) are economically important pathogens highly adapted for plant parasitism causing extensive damage to crops (Moens et al. 2009). Nematode-induced feeding sites (NFS) of the genus Meloidogyne are formed by specialized giant cells (GCs) within the root vascular cylinder, surrounded by proliferating neighbouring cells (NCs) (Huang et al. 1985; Sijmons et al. 1994). Nematode secretions are most likely the inductive triggers to the dedifferentiation of vascular root cells into GCs (Rutter et al. 2014; Zhang et al. 2015). Induction of nematode feeding cells by RKN involves synchronous waves of mitotic activity with no cytokinesis. As GCs develop, their nuclei undergo multiple rounds of DNA synthesis along with increased cell size. The cell wall of these specialized feeding cells displays highly invaginated areas, resulting in the increased surface exchange with NCs and the xylem, allowing fast nutrient uptake (Huang 1985; Hoth et al. 2008; Rodiuc et al. 2014). The gall (or root-knot) is a result of the hyperplasia of NCs and the hypertrophy of GCs enfolding the nematode (Jones & Northcote 1972).

Root-knot nematodes are competent to locally alter plant gene expression (Gheysen & Fenoll 2002). Leaving the differentiated state is related to reentry into the cell cycle (De Veylder et al. 2007). Core cell cycle genes (such as CDKA;1, CDKB1;1, CYCB1;1, CYCA2;1, CCS52 gene family, DEL1) of Arabidopsis are early induced during RKN parasitism and play essential roles during the formation of the NFS (Niebel et al. 1996; de Almeida Engler et al. 1999, 2011, 2012). The progression of the plant cell cycle is driven by the periodic activation of cyclin-dependent kinases (CDKs) that in combination with different cyclins (CYCs) trigger the transition of the different phases of the cell cycle (Inze & De Veylder 2006). Plant genomes encode two plant-specific families of cyclin kinase inhibitors: the ICK/KRPs (interactors/inhibitors of CDK, also referred as Kip-Related Proteins) and the SIM/SMR (SIAMESE) families. Interactions of ICK/KRPs with CDK/CYC complexes decrease CDK activity and affect both the cell cycle progression and DNA content in a concentration-dependent manner. In Arabidopsis thaliana, seven ICK/KRP members (hereafter mentioned as KRP) have been characterized which show distinct spatial and temporal expression patterns and exert distinctive functions (De Veylder et al. 2001; Menges & Murray 2002; Ormenese et al. 2004; Menges et al. 2005; Wang et al. 2006; Vicira et al. 2014). Both mitosis and endocycle share common molecular components. Normally, mitosis (G1, S, G2 and M phases) engages cell division,
whereas endoreduplication (G1 and S phases) implies increased nuclear ploidy levels. It is therefore tempting to target both pathways to modulate progression of the cell cycle in GCs induced by RKN. Our previous studies have shown that KRP2, 5 and 6 are expressed in young GCs with distinct expression intensities during gall development (Vieira et al. 2013), whereas KRP1, 3, 4 and 7 showed no expression. KRP2 knockout line revealed mild phenotypes with stimulated mitosis, whereas krp6 lines inhibited mitosis and stimulated cytokinesis resulting in frequent cell wall stubs between nuclei in GCs. Overexpression of the expressed KRP2 as well as the expression of the not expressed KRP1 and KRP4 in GCs revealed that the increased levels of these proteins led to an inhibition of cell division and the endocycle consequently blocking the ordinary RKN life cycle (Vieira et al. 2012; Vieira et al. 2013). Unexpectedly, overexpression of the KRP6 protein rather stimulated mitosis in GCs and NCs, but still inhibiting giant-feeding cells expansion and nematode development, most likely due to the consequent delay in the endocycle (Vieira et al. 2014). The mitotic stimulation under ectopic KRP6 expression induced additional multinucleation in GCs inhibiting cytokinesis (Vieira et al. 2014; Vieira & de Almeida Engler 2015). Therefore, KRP6 expression in GCs has been accounted for inducing multinucleation in GCs and contributing for cytokinesis arrest. Having observed diverse functions amongst the different KRP family members formerly analysed during gall development, herein we explore the effect of ectopic expression of family members during gall development in the expressed mutant lines (Salk-053533 and Salk-0897170), or the Arabidopsis thaliana genotype Columbia 0 (Col-0) were tested by PCR with specific primers used for loss-of-function validation and for all overexpressing lines (hereafter referred to as 35S:KRP3-GFP, 35S:KRP5 and 35S:KRP7-GFP) lines were generated as described by Vieira et al. (2013). The intergenic regions (up to maximum 2 kb) were amplified from A. thaliana genomic DNA. The corresponding PCR fragments were cloned into the pDONR207 entry vector by BP recombination cloning and subsequently transferred into the pKGWFS7 destination vector (Karimi et al. 2002) by LR cloning, resulting in a transcriptional fusion between the KRP promoters and the EGFP-GUS fusion gene. The loss-of-function krp5 mutant lines (Salk-055533 and Salk-0897170) were obtained from the Arabidopsis Biological Resource Center. Homozygous knockout mutant lines were tested by PCR with specific primers using genomic DNA (Supporting Information Table S1). Kanamycin-resistant T3 overexpressing lines of the three KRP genes, namely 35S::KRP3-GFP, 35S::GFP-KRP5 and 35S::KRP7-GFP (hereafter referred to as KRP5OE, KRP5OE and KRP7OE, respectively), were bulked and selected from T0 lines kindly provided by Eugenia Russinova. Arabidopsis thaliana genotype Columbia 0 (Col-0) was used as the wild-type control. Both transgenic and wild-type A. thaliana Col-0 seeds were surface sterilized for 5 min in 5% NaOCl, washed four times with 95% ethanol and dried under the hood overnight. Seeds were germinated and grown in a growth chamber with a 16 h light/8h dark photoperiod at 21°C/18°C, respectively.

In vitro grown seedlings and nematode infection

Arabidopsis thaliana seeds were surface sterilized, dried and germinated on Murashige and Skoog germination medium (Duchefa, Haarlem, the Netherlands) containing 1% sucrose and 0.8% plant cell culture-tested agar (Daichin) and subsequently kept in the fridge for 48 h to synchronize germination. Plantlets were kept inclined allowing roots to grow at the surface for 7 d and then transferred to KNOP medium (Sijmons et al. 1991) to stimulate root growth. To generate galls in vitro, pre-parasitic juvenile nematodes were sterilized with 0.01% HgCl₂ for 10 min passing through a support holding a sterile paper filter. Subsequently, nematodes were treated with 50 mg L⁻¹ kanamycin for 5 min and washed three times with sterile water. Sterile juveniles were then collected from the filter in sterile water, counted and immediately used for infection of transgenic Arabidopsis seedlings. Approximately 100 sterile juveniles were used for infection per plant.

GUS histochemical analysis and microscopy

GUS activity driven by KRP3, KRP5 and KRP7 gene promoters was monitored at 3, 7, 14, and 21 d after inoculation (DAI), as described by de Almeida Engler et al. (1999), using 200 Meloidogyne incognita freshly hatched second-stage juveniles as nematode inoculum for each individual plant. Whole galls were fixed and infiltrated with a chloral-lactophenol clearing solution (Beeckman & Engler 1994) for examination with differential interference contrast bright-field optics. For dark-field microscopy, gall samples were fixed overnight in 2.0% glutaraldehyde and embedded in Technovit 7100 (Heraeus Kulzer) as described by the manufacturer and semi-thin sectioned (3 μm) using standard microtomy described by de Almeida Engler et al. (2012).

RT-PCR analyses of transgenic versus wild-type lines

To confirm the respective absence of transcripts in krp5 mutant lines (Salk-053533 and Salk-0897170), or the KRP levels in overexpressing lines (KRP5OE, KRP5OE and KRP7OE), semi-quantitative RT-PCR was performed. Total RNA was extracted with RNeasy Plant Mini Kit (Qiagen) according to the manufacturer’s instructions from 7-day-old whole seedlings. cDNA synthesis was performed using the SuperScript III First-Strand Synthesis System for RT-PCR. Plants overexpressing each KRP gene (KRP5OE, KRP5OE and KRP7OE) were selected based on their respective gene expression levels, phenotype and protein localization. Pairs of primers used for krp5 loss-of-function validation and for all overexpressing lines are specified in Supporting Information Table S1.
Morphological analysis of gall tissues

Arabidopsis thaliana wild-type Col-0 seeds and transgenic lines were germinated as described by de Almeida Engler et al. (1999) supplemented with the proper antibiotics. Three-week-old seedlings of overexpressing and knockout lines, and respective controls, were then transferred to soil as described by de Almeida Engler et al. (2016) and 10 d later infected with 200 freshly hatched M. incognita second-stage juveniles. Infected roots were harvested at 7, 14, 21 and 40 DAI and fixed and embedded as described for GUS analysis. Galls were sectioned (3 μm), stained in 0.05% toluidine blue and mounted in DPX (Sigma-Aldrich). Microscopy analyses were carried out using bright-field optics, and images were acquired with a digital camera (Axiocam, Zeiss).

Surface measurement of giant cells

Up to three of the largest GCs per gall section of nematode-infected KRP3OE and KRP5OE roots were selected and analysed for the different stages after nematode infection (7, 14, 21 and 40 DAI), and surface measured using the Axioplan software (Zeiss). A minimum of 30 GCs were measured for KRP3OE and KRP5OE from root sections from each time point studied. Considering the low gall number observed in the KRP7OE line, GC dimensions were recorded for only one time point (21 DAI). For the KRP3OE and KRP5OE lines, the effect of the overexpression at four time points was evaluated by analysis of variance, using the SPSS software (version 10, Chicago, IL).

Whole-mount analysis of 4,6-diamidino-2-phenylindole stained and cleared galls

4,6-Diamidino-2-phenylindole (DAPI) staining of nuclei in cleared galls was performed and analysed as described by Antonino de Souza Junior et al. (2016). DAPI stained samples were mounted in 90% glycerol on microscope slides. Cleared galls were imaged using a Leica SP8 confocal microscope with objective lens HC PL APO CS1 40X/1.30 OIL. Dye excitation was done with a diode 405 nm laser and fluorescence was collected between 431 and 532 nm. All samples were scanned at 400Hz and 16X line averaged for high quality image recording. Z-stacks were generated from approx. 100 images with a 1 μm optical slice thickness and used to generate maximum brightness projections.

Volumetric measurements of giant cell nuclei

Volumetric measurements of nuclei in GCs of KRP7OE line were performed. Imaged stacks of DAPI-stained galls were analysed with the ImageJ software. The nuclear volume was measured using the plug-in Volumest that allows estimating volumes of confocal data sets. A total of 164 nuclei were measured in KRP7OE galls and 431 nuclei in wild-type.

Flow cytometry analyses of infected and gall-less roots

Nuclear flow cytometry of galls was performed as described by Vieira et al. (2013). The nuclei were examined with the LSRII Fortessa (BD Biosciences) flow cytometer and the BD FACS Diva software (BD Biosciences). For uninfected and gall-less roots, data were assembled from approximately 2000 nuclei per run. For KRP3OE and KRP5OE, ploidy levels of 40 galls (30 DAI) were pooled for each independent biological repetition (two in total), while for KRP7OE only one repetition was analysed. Two replications were carried out per biological repetition for each line, and data of approximately 40,000 nuclei per run were collected. The mean values of repetitions of the two independent experiments were calculated, and the portion of nuclei with ploidy levels from 2C to 128C was expressed as the percentage of the total number of nuclei recorded.

KRP protein localization during cell division in root meristem cells and nematode feeding sites

Whole non-infected 7-day-old roots of KRP3OE, KRP5OE and KRP7OE lines were examined using an inverted confocal microscope (ZEISS LSM510 META) for KRP protein localization during cell division. The KRP overexpressing lines were then inoculated with sterile M. incognita as described above and galls at 14 and 21 DAI were dissected from roots and mounted in 5% agar. Thick gall slices of 100–200 μm were made with a HM650V Vibratome Microm (Walldorf, Germany) and immediately analysed by confocal microscopy. Specific GFP fluorescence was confirmed by spectral imaging using 488 nm laser line excitation and emission spectrum acquisition between 499 and 550 nm. Alternatively, GFP emission fluorescence was captured in standard scanning mode with a 500–530 nm band pass emission filter. In addition, to evaluate if the KRP5 protein was degraded by the anaphase promoting complex in galls, the GFP fluorescence was analysed in 35S:GFP-KRP5 transgenic plants treated with the 26S proteasome inhibitor MG132 (Sigma-Aldrich) and compared to untreated galls. Galls were treated with 100 μM MG132 (10 mM were dissolved in DMSO and diluted to 100 μM with water) for 6 h, and fresh gall slices were analysed by confocal microscopy.

Nematode infection tests and acid fuchsin staining

Three-week-old A. thaliana Col-0 and transgenic seedlings germinated in vitro were transferred to soil and 10 d later infected with 200 freshly hatched M. incognita second-stage juveniles (de Almeida Engler et al. 2016). Thirty days after inoculation, the number of galls and egg masses from each plant were counted and compared with control plants. Infection tests for each transgenic line were performed for two independent biological repetitions. To identify stages of nematode development and egg masses associated with galls, infected roots were fixed and stained with acid fuchsin as described by Vieira et al. (2014).
RESULTS

Promoter activity of *KRP3*, *KRP5* and *KRP7* genes in galls

Promoter activity was monitored in detail during various gall developmental stages and confirmed no GUS activity of *KRP3* or *KRP7*, and high *KRP5* promoter activity early after infection (3–7 DAI) which decreased in mature galls (21 DAI; Supporting Information Fig. S1) using short GUS-staining incubations (1 h). Longer incubation times (ON) of *KRP3pro:GUS* and *KRP7pro:GUS* lines showed very weak punctual GUS activity at comparable time points during gall development.

![Figure 1](image-url).

Figure 1. Histological analysis of gall tissues in the *krp5* line of *Arabidopsis* upon infection with *Meloidogyne incognita*. Bright-field images of longitudinal sections of galls stained with toluidine blue in wild-type and *krp5* mutant at different stages of nematode infection (7, 14 and 21 d after inoculation (DAI)). Less cytoplasm was observed in nematode induced giant cells. Asterisk, giant cell; n, nematode. Bars = 50 μm.
development (Supporting Information Fig. S1), suggesting the absence of expression of these two cell cycle inhibitors in nematode-induced galls.

Loss of KRP5 function affects nematode reproduction

Considering that KRP5 gene was the only member here analysed showing expression in galls, we used single insertion mutant lines of krp5 for a detailed morphological analysis of the NFS development. Gall morphology in both krp5 knockout lines was alike to the wild-type at early time points, but at later time points (14 and 21 DAI) GCs contained less cytoplasm and larger vacuoles (Fig. 1), possibly causing a delay on nematode development. DAPI stained nuclei in the krp5 line showed that mitotic activity and DNA replication occurred in GCs seen by the nuclei phenotype at 7 to 21 DAI (Fig. 1). Nuclei number often seemed higher than in wild-type galls (Fig. 1 krp5 7DAI). Infection tests were focused on one krp5 (SALK-053533) mutant line (Supporting Information Fig. S2), and data showed a significant reduction of egg masses (approx. 45% less egg masses than wild-type) (Fig. 2a). Acid fuchsin stain revealed a delay in nematode development (Fig. 2b), with fewer females containing associated egg masses in comparison to wild-type galls (Fig. 2a).

Overexpression of KRP3, KRP5 and KRP7 differentially affects gall development

In order to evaluate the ectopic effects of KRP3, 5 and 7 genes in galls, overexpressing lines (35S:KRP3-GFP, 35S:GFP-KRP5 and 35S:KRP7-GFP) were generated and analysed during gall development. Lines selected for RKN infection were based on three criteria: presence of the typical serrated leaf phenotype denoting inhibition of cell proliferation (Supporting Information Fig. S3a); increased expression levels of the KRP gene (Supporting Information Fig. S3b); and exclusive nuclear localization of the corresponding protein (Supporting Information Fig. S3c) also validated the functionality of overexpressing lines.

A detailed microscopy analysis of NFS induced in both KRP3OE and KRP7OE roots illustrated a severe reduction of gall size at different developmental stages (7, 14, 21 and 40 DAI) as a result of the reduced GC dimensions (Supporting Information Fig. S4a,c) and decreased cell division of surrounding NCs (Fig. 3). Distinctively, galls induced in the KRP3OE line showed exceptionally narrowed phenotype of GCs (Fig. 3). In the KRP7OE line, galls and GCs were obviously smallest, while the reduced number of NCs presented a disorganized morphology (Fig. 3). Galls formed in the KRP5OE background were also smaller due to decreased NC division compared to controls (Fig. 3).

Surface measurements were carried out on GC sections for lines of the three overexpressing genes and compared to the size of wild-type GCs (Supporting Information Fig. S4). The average surface of GCs in the KRP3OE line was significantly smaller than in wild-type even when cells were elongated (Supporting Information Fig. S4a). Although galls induced in the KRP5OE were frequently smaller, the variability in GC surface size did not show statistical differences amongst the different time points studied (Supporting Information Fig. S4b). Differently, in the KRP7OE line, smaller rounded GCs (Supporting Information Fig. S4c) and repressed NC division resulted in galls with reduced size compared to wild-type.

Ectopic KRP expression induces nuclear changes in giant cells

Morphological analyses by confocal microscopy of thick gall sections cleared and DAPI-stained of the three KRPOE lines revealed major changes in size, number and shape of GCs nuclei. Three-dimensional confocal projections of serial optical sections of galls at 7, 14 and 21 DAI for each KRPOE lines were

Figure 2. Nematode infection tests and development in the krp5 line compared to the wild-type. (a) Nematode infection tests of the krp5 line compared to the wild-type Col-0. Data shown represents means ± SE from two independent biological repetitions, in which a minimum of 30 seedlings of each line were evaluated for nematode infection in soil. Pairwise comparisons were made by Student’s t-test (P ≤ 0.05). (b) Acid fuchsin staining of galls at 30 DAI. In most krp5 galls, the females have not reached maturity and consequently did not produce eggs. e, eggs; G, gall; n, nematode. Scale bars = 50 μm.
Figure 3. Ectopic KRP expression significantly affects the size of galls induced by *M. incognita*. Histological analysis of nematode-induced wild-type galls compared to *KRP3OE*, *KRP5OE* and *KRP7OE* lines at different phases of nematode infection (7, 14, 21 and 40 DAI). Bright-field images of longitudinal gall sections stained with toluidine blue. Note that in lines with ectopic KRP3 expression giant cells are elongated and the number of neighbouring cells is significantly reduced. Asterisk, giant cell; n, nematode. Scale bars = 50 μm.
generated and compared with those of the wild-type (Fig. 4). Giant cells within the KRP3OE line displayed prominent elongated nuclei, which were apparently connected as gall developed, suggesting a cumulative effect of mitotic defects within the GCs (Fig. 4a–c; Supporting Information Movie S1). Similarly, but less frequent, an elongated nuclear phenotype was also observed in GCs within the roots of the KRP5OE line (Fig. 4d–f and Supporting Information Movie S2). Differently, GCs in KRP7OE line presented fewer and rounded nuclei (Fig. 4g and Supporting Information Movie S3), compared to wild-type (Fig. 4h and Supporting Information Movie S4), in contrast to the elongated and connected nuclei observed in both KRP3OE and KRP5OE lines.

Ectopic KRP3 expression induces changes in nuclei shape and ploidy levels in giant cells

Due to the convoluted, elongated and variable sizes of the clustered nuclei within KRP3OE and KRP5OE GCs (Fig. 5c,f), it was not possible to accurately record the average number of nuclei and measure nuclei surfaces associated within each GCs.

Figure 4. Ectopic KRP3, KRP5 and KRP7 expression causes nuclear morphology changes in giant cells. (a–h) 3D confocal projection of serial optical sections of thick slices cleared and stained with DAPI allowed the visualization of changes of nuclear morphology in mutant lines. (a–c) KRP3OE gall 7, 14 and 21 DAI. (d–f) KRP5OE gall 7, 14 and 21 DAI. (g) KRP7OE gall 21 DAI. (h) Wild-type gall 21 DAI. Elongated nuclei apparently connected are observed already early (7 DAI, orange arrows) in giant cells of KRP3OE and KRP5OE lines. Scale = 50 μm. [Colour figure can be viewed at wileyonlinelibrary.com]
However, the enlarged nuclei at early time points after infection (7 DAI) in both KRP3 and 5 overexpressing lines suggest that these nuclei may enter the endoreduplication cycle earlier (Fig. 5a,d). Therefore, nuclear flow cytometry measurements were performed for roots and galls. Results revealed that the ploidy levels of gall-less roots of wild-type and mutant lines ranged from 2C to 16C (Fig. 6a,b). Ploidy populations from wild-type galls varied from 2C to 128C (Fig. 6c,d). In the KRP3OE line, we could observe a slightly increased ratio of nuclei over 8C to 128C compared to wild-type galls (Fig. 6c). For the KRP5OE line, nuclear ploidy levels of GCs showed only small differences amongst nuclei containing 4C and 8C (Fig. 6d). No clear differences in GCs ploidy levels might be due to the elongated nuclei phenotype observed for both KRP3OE and KRP5OE lines.

A single flow cytometric measurement was performed for KRP7OE line due to the very low gall number per seedling (Fig. 7a). Results suggested that higher ploidy levels are present in GCs overexpressing KRP7. Volumetric measurements of nuclei in GCs in the KRP7OE line showed that the total nuclei volume was higher in wild-type GCs considering the higher nuclei number (Fig. 7b,c). However, the range of nuclei average volume values showed to be higher in KRP7OE line than in wild-type (Fig. 7d), suggesting that the cells tried to compensate the low number of nuclei in KRP7OE by generating larger nuclei by promoting the endocycle. This observation corroborated with flow cytometric measurements where higher ploidy levels were observed in KRP7OE GC nuclei.

KRP protein localization in uninfected roots and galls

All KRPs Arabidopsis members show a strict nuclear localization during interphase, with KRP3-GFP and GFP-KRP5 displaying a sub-nuclear localization (Supporting Information Fig. S3c). Herein, we report the subcellular localization of 35S:KRP3-GFP, 35S:GFP-KRP5 and 35S:KRP7-GFP in root cells during mitosis by time-lapse confocal microscopy (Fig. 7). For KRP3-GFP and GFP-KRP5, we observed protein co-localization with chromosomes in mitotic dividing cells, from anaphase to the following stages of mitosis (Fig. 7), while KRP7-GFP became dispersed into the cytoplasm after nuclear envelope breakdown. Throughout mitosis, a weak KRP7 fluorescence was observed within the cytoplasm, and during cytokinesis, a progressive accumulation of KRP7 could be observed in the nuclei of the two new daughter cells (Fig. 7). Protein localization of the three KRPs was followed in vivo during

Figure 5. Nuclear flow cytometry analysis of roots and galls ectopically expressing KRP3 and KRP5. (a–b) Percentage of ploidy levels of nuclei in gall-less wild-type roots in the KRP3OE (a) and KRP5OE (b) lines. (c–d) Percentage of ploidy levels in galls (30 DAI) in the KRP3OE (c) and KRP5OE (d) lines. In KRP3OE, an increase in nuclei with high ploidy levels was observed at 16C to 128C, while in KRP5OE, nuclear ploidy levels were higher only for 4C and 8C compared to wild-type galls.

© 2017 John Wiley & Sons Ltd, Plant, Cell and Environment, 40, 1174–1188
NFS development. 3D-confocal projections confirmed the elongated GCs nuclei for the KRP3OE line (Supporting Information Fig. S4a,b), as observed in DAPI-stained cleared galls (Fig. 5a–c). As well, in vivo KRP7-GFP line illustrated sparse and enlarged nuclei (Supporting Information Fig. S5c,d). Our data suggests that the co-localization of KRP3 and KRP5 proteins within the chromosomes could be related to an erroneous segregation of chromosomes causing connectivity of the GC nuclei when these genes are overexpressed.

Treatment with the proteasome inhibitor MG132 increases GFP-KRP5 protein levels in galls

To investigate if GFP-KRP5 was regulated by the 26S proteasome protein degradation in roots and gall cells, we applied the inhibitor MG132. Expression of the GFP-KRP5 fusion protein was clearly increased in uninfected roots (Fig. 8a) as well as in galls upon MG132 treatment (Fig. 8c) compared to untreated samples (Fig. 8b,d). This accumulation of GFP-KRP5 suggests that KRP5 protein is targeted by the proteasome for degradation in galls.

Ectopic expression of KRP impairs nematode maturation and reduces offspring

We also examined the effect of the ectopic expression of KRP3, 5 and 7 would have any effect on the nematode life cycle. In the three KRP7OE lines, infective J2 nematodes were able to penetrate and migrate along the roots, and induce galls. However, at 30 DAI, a 40 to 80% reduction in gall number was observed (Fig. 9a–c) compared to wild-type. Reduction in egg mass number was also observed for the KRP3OE and KRP5OE lines (Fig. 9a,b), whereas at this time point, no egg masses were yet detected in the KRP7OE line (Fig. 9c).

Infected roots (30 DAI) were then stained with acid fuchsin to evaluate the developmental stage of the nematodes associated with each gall (Fig. 9d). Whereas in wild-type plants, most of the pear-shaped females achieved the reproductive maturity, including well-developed egg masses, in the three KRP overexpressing lines, most nematodes associated with these galls were under-developed compared to wild-type (Fig. 9d).

DISCUSSION

Successful parasitism of obligatory sedentary plant-pathogens such as the RKN is dependent on the cell cycle machinery of the plant host (de Almeida Engler et al. 2011). Previously, we have shown that ectopic expression of KRP1, KRP2 and KRP4 severely reduced gall expansion by decreasing GC size and inhibiting NC division (Vieira et al. 2012, 2013). Conversely, overexpression of KRP6 accelerated gall mitotic activity resulting in the formation of large galls filled with NCs but containing GCs of reduced size (Vieira et al. 2014). These data...
demonstrate that different members of the Arabidopsis ICK/KRP family can exert different functions and effects during gall development. KRPs interact with CDKA;1 and form complexes with D-type cyclins (De Veylder et al. 2001; Verkest et al. 2005; Boruc et al. 2010; Van Leene et al. 2010, 2011). KRP5 appear to bind preferentially to distinct CDK–cyclin complexes, like CYCD2;1, CYCD4;1 and CYCD4;2. In addition, different KRPs do not inhibit the kinase activity of the CDKA complex in vitro with the same efficiency (Wang et al. 1997) justifying their distinct actions. Therefore, we investigated how the ectopic expression of the three remaining KRP genes (KRP5 expressed, and KRP3 and KRP7 not expressed in galls) of A. thaliana might affect NFS development.

Figure 7. KRP3-GFP, GFP-KRP5 and KRP7-GFP localization in Arabidopsis during cell division, using 7-day-old seedlings. Time lapse during mitotic cell division in Arabidopsis root cells. White arrows point to co-localization of KRP3-GFP and GFP-KRP5 with chromosomes, and orange arrows points to the progressive accumulation of KRP7-GFP in the two daughter cells nuclei, respectively.

KRP3, KRP5 and KRP7 are differently expressed in galls

Promoter-GUS fusions and mRNA in situ hybridization have shown the KRP5 expression in galls, while transcripts of KRP3 and KRP7 were not detected (Vieira et al. 2013). Here, we show in detail that the KRP5 promoter activity increases during GC induction (1 to 7 DAI) and expansion (up to 14 DAI). KRP5 is highly expressed in endoreduplicating plant cells, as for expanding GCs, and is required to induce endocycles in etiolated seedlings (Jégu et al. 2013). Absence of KRP3 or KRP7 expression in nematode feeding sites follows similar expression profiles observed in uninfected root vascular tissues. These observations differ from promoters of other cell
The lack of a drastic phenotype might be caused by a few nutrients available to the more frequent presence of vacuoles in GCs, suggesting delayed nematode maturation and reproduction possibly due to galls (Vieira et al. 2013). Nevertheless, absence of KRP5 delayed nematode maturation and reproduction possibly due to the more frequent presence of vacuoles in GCs, suggesting fewer nutrients available.

KRP5 loss-of-function moderately affects giant-feeding cell development

Morphological analysis of galls induced in the krp5 loss-of-function lines showed mild defects caused by KRP5 deficiency as observed in Arabidopsis seedlings (Jégú et al. 2013). The lack of a drastic phenotype might be caused by a redundant function of KRP5 with other KRPs expressed in galls (Vieira et al. 2013). Nevertheless, absence of KRP5 delayed nematode maturation and reproduction possibly due to the more frequent presence of vacuoles in GCs, suggesting fewer nutrients available.

Ectopic KRP expression influences giant cell and nuclei shape and affects ploidy levels in feeding sites

KRP5OE, KRP5OE and KRP7OE lines generated herein were challenged by M. incognita. Ectopic KRP5 expression appears not to affect drastically the overall gall or GC morphology, or cell division, but prevents cells to progress into the cell cycle, as observed in lateral roots by Jégú et al. (2013). Cell cycle inhibition in the KRP5OE line was enough to cause an overall decrease in gall and egg mass number, even when suggested by Jégú et al. (2013) that KRP5 inhibits cell proliferation with a lower efficiency than other KRPs. Although KRP5 is known as a positive regulator of endoreduplication in particular plant tissues such as in etiolated seedlings (Jégú et al. 2013; Wen et al. 2013), no clear stimulation of the endocyte was observed in GCs recorded by flow cytometry.

Ectopic KRP expression in giant cells overexpressing KRP5 were significantly smaller, contained fewer nuclei that were larger and containing higher ploidy levels, and had less cytoplasm than in wild-type. Galls showed disordered cells neighbouring GCs compared to the wild-type. KRP7 has been reported to be negatively regulated by BAF60, a subunit of SWI/SNF complexes of chromatin architecture remodelers. Plus, BAF60 is a positive regulator of root development and cell cycle progression (Jégú et al. 2015). Although KRP7 is normally not expressed within the GCs, its ectopic expression can induce severe changes in gall morphology, suggesting its capacity of de-regulation of CDK/CYC complexes occurring during gall ontogeny.

A noteworthy change in GC morphology was seen in KRP3OE galls. Artificial KRP3 expression caused an elongated GC phenotype with reduced cell size, already observed at early stages of gall development (7 DAI) compared to the large and rounded wild-type sectioned GCs. Regulatory mechanisms that control gall organization and GC shape involving the cell cycle are not yet reported and ectopic KRP3 expression might regulate GC morphogenesis. As well, rearrangements of galls cells might influence the direction of GC expansion along the vascular cylinder. Plants overexpressing KRP3 display reduced organ size, serrated leaves and reduced fertility, and show higher DNA ploidy level in the shoot apical meristem (SAM) and leaf tissues (Jun et al. 2013). Although DNA content increased in galls up to 128C ploidy levels and displayed a higher percentage of nuclei with prominent DNA content originated from GC, these did not enlarge. Our data strongly suggests that atypical KRP3 expression in galls exerts a negative regulatory role in the mitotic cell cycle possibly provoked by the inhibition of CDK/CYC complexes anticipating endoreduplication, as seen for the SAM and leaves (Jun et al. 2013). This will compromise gall expansion affecting the nematode’s life cycle with a strong decrease in progeny.

Aberrant nuclei morphology caused by the cumulative KRP3 and KRP5 expression in giant cells is possibly linked to their proteins nuclear localization patterns

Development of the NFS during RKN parasitism involves a tight regulation of both the mitotic and endoreduplication cycles (de Almeida Engler et al. 1999, 2012, 2015). Repeated endocyte events will result in duplicated chromatids that continue associated within a sole chromocenter (Comai 2005). Giant cell nuclei of KRP1OE, KRP4OE (Vieira et al. 2012, 2013), KRP3OE and KRP5OE lines showed subnuclear localization distribution in a spotted pattern that has been linked with...
chromocenters, and co-localized to chromosomes during mitosis (Jakoby et al. 2006; Bird et al. 2007; Jégu et al. 2013 and our work). Interestingly, their overexpression resulted in a convoluted and distended nuclear phenotype, caused by cumulative effect with gall aging, suggesting that excess of KRP protein in GCs deregulates mitosis possibly provoking an incorrect segregation of chromosome most likely enhanced by the high mitotic activity.

This might lead to nuclei enveloping more chromosomes than normally observed in GCs nuclei. Likewise, the excess binding of these KRPs upon overexpression in various loci of chromatin might affect heterochromatin structure.

Jégu et al. (2013) suggested KRP5 as a multifunctional protein connecting transcriptional regulation of key cell cycle genes as well as modulating heterochromatin structure, because its overexpression decreases chromatin compaction and increases endoreduplication. Indeed, less compacted chromocenters were observed in GC nuclei of the KRP5OE line, suggesting a link of this protein to have a function in heterochromatin structure allowing endoreduplication of regions that normally are not replicated.

Interestingly, KRP1, 3, 4 and 5 present a conserved nuclear localization signal motif (YLQLRSRRL) that is responsible for the spotted sub-localization in the nuclei (Jakoby et al.)

Figure 9. Nematode infection tests of KRP3, KRP5 and KRP7 overexpressing lines drastically affect nematode reproduction. (a) Nematode infection tests of the KRP3OE, (b) KRP5OE and (c) KRP7OE lines compared to the wild-type. Data shown in (a–c) represent means ± SD from two independent biological repetitions, in which a minimum of 30 seedlings of each line was evaluated for nematode infection. Pairwise comparisons were made by Student’s t-test (P ≤ 0.001). (d) Acid fuchsin staining of galls 30 DAI show that for all three overexpressing lines there is a delay or arrest in nematode development consequently inhibiting egg production. e, eggs; G, gall; n, nematode. Scale bars = 50 μm.
Treatment of KRP5OE infected roots with a proteasome inhibitor suggests KRP5 protein accumulation in galls

KRP1, KRP2 and KRP3 regulate plant development and are regulated by 26S proteasome-mediated protein degradation being KRP6 targeted for degradation by specific E3 ligases (Zhou et al. 2003; Weinil et al. 2005; Jakoby et al. 2006; Liu et al. 2008; Ren et al. 2008; Jun et al. 2013). The F-box-like 17 complex formed by an SKP1-Cullin-F-box protein E3 ubiquitin ligase targets KRP members for proteasome-dependent degradation, as the loss of F-box-like 17 function leads to the stabilization of KRP members and inhibition of the cell cycle progression (Kim et al. 2008; Zhao et al. 2012). In vivo examination of uninfected and infected roots treated with the proteasome inhibitor MG132 showed enhanced GFP expression, suggesting that KRP5 protein levels accumulated in treated cell nuclei and is controlled by the proteasome. These observations suggest that KRP5 abundance via temporal protein degradation during gall development might be important for cell cycle regulation and consequently for nematode feeding site expansion and nematode reproduction.

In summary, the functional characterization performed herein of the three additional cell cycle inhibitor genes (KRP3, KRP5 and KRP7) has highlighted interesting features of these KRP family members with respect to the other members of the KRP gene family previously investigated. Inhibiting KRP3 and KRP7 activity resulted in a more drastic decrease in gall size preventing nematode maturation. KRP3 and KRP7 genes are naturally not expressed in galls, and therefore ectopic expression of non- or weakly expressed KRPs might lead to the inactivation of CDKA/CYCD complexes disturbing progression of the cell cycle and thereby interfering with GC fate and nematode survival. Detailed analysis of the diverse members of the KRP multi-gene family gave us information of gene function, as well allowed us to select effective and robust inhibitor(s) suited for developing new strategies to decrease nematode propagation by inhibiting feeding site development. Since engineering forced expression of KRP inhibitors in GCs have been shown to be deleterious for gall development, this strategy can be considered as a potential approach for RKN control. On the whole, for this approach, KRP1, 2, 3, 4 and 7 seem to be best candidates for a gall-targeted ectopic expression. When a viable level of resistance in crop plants may be accomplished, this approach could be, extended towards other cell cycle-dependent nematode feeding sites as syncyta (de Almeida Engler et al. 1999, 2015; de Almeida Engler & Gheysen 2013) induced by cyst nematodes.

ACKNOWLEDGMENTS

We thank C. Escudero, M.Y. Serrano, I.M. Torres and F.E. Díaz Manzano for helping with KRP mutant analyses, Nathalie Marteu for providing pre-parasitic nematodes and Natalia Rödluc for bulking seeds. We thank J. Boruc and E. Russinova for kindly providing primary transformants of KRP5 overexpressing lines. R.C. has been supported by a doctoral scholarship in Brazil from CNPq (process number: 143030/2009-4) and in France from CAPES (process number: 6585-11-6), J. D.A.S.J. has been supported by a post doctoral scholarship of a CAPES-COFECUB (no. sv 683/10 2011) project.

REFERENCES

de Almeida Engler J., Kyndt T., Vieira P., Van Cappelle E., Boudolf V., Sanchez V., ... Gheysen G. (2012) CCSS2 and DEL1 genes are key components of the endocycle in nematode-induced feeding sites. The Plant Journal 72, 185–198.

compared to KRP3OE, KRP5OE and KRP7OE lines. (b) Transcript levels of KRPOE lines were examined by RT-PCR-based DNA gel blot analysis, showing highest transcript levels in the KRP3OE and KRP7OE lines. (c) Nuclear localization of KRP3, KRP5 and KRP7 in Arabidopsis root cells. For both KRP3 and KRP5, a sub-nuclear localization is also observed. (d) Root apical meristems in KRP3, KRP5 and KRP7 overexpressing Arabidopsis roots are apparently smaller than in wild-type. Scale bars = 50 μm.

Figure S4. Giant cell surface (μm²) measurements of wild-type plants compared to the KRP overexpressing lines at different stages after nematode infection (7, 14, 21 and 40 DAI). Measurements were made on a minimum of 30 giant cell sections (only the two to three largest giant cells were measured per gall) for KRP3OE (a) and KRP5OE (b), while for KRP7OE (c) measurements were only performed for 21 DAI. Letters ‘a’ and ‘b’ represent significant difference of 5% of probability for each time point.

Figure S5. In vivo localization of (a,b) KRP3-GFP and (c,d) KRP7-GFP in nuclei of galls induced by M. incognita. KRP3-GFP showed grouped and interconnected nuclei within giant cells (arrows). Scale bars = 25 μm.

Figure S6. Nuclear flow cytometry analyses of uninfected roots of KRP overexpressing lines compared to wild-type. Representative flow cytometry graphics of nuclei isolated from 4-week-old roots (approximately 2000 nuclei were measured per run). (a) KRP3OE, (b) KRP5OE, (c) KRP7OE.

Table S1. List of primers used.

Movie S1. 3D confocal projections of serial optical sections of a 21-day-old gall induced by M. incognita in the KRP3OE line.
Movie S2. 3D confocal projections of serial optical sections of a 21-day-old gall induced by M. incognita in the KRP5OE line.
Movie S3. 3D confocal projections of serial optical sections of a 21-day-old gall induced by M. incognita in the KRP7OE line.
Movie S4. 3D confocal projections of serial optical sections of a 21-day-old gall induced by M. incognita in the wild-type.