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ABSTRACT. Age at the time of slaughter is a commonly used trait in 
animal breeding programs. Since studying this trait involves incomplete 
observations (censoring), analysis can be performed using survival 
models or modified linear models, for example, by sampling censored 
data from truncated normal distributions. For genomic selection, the 
greatest genetic gains can be achieved by including non-additive 
genetic effects like dominance. Thus, censored traits with effects 
on both survival models have not yet been studied under a genomic 
selection approach. We aimed to predict genomic values using the Cox 
model with dominance effects and compare these results with the linear 
model with and without censoring. Linear models were fitted via the 
maximum likelihood method. For censored data, sampling through 
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the truncated normal distribution was used, and the model was called 
the truncated normal linear via Gibbs sampling (TNL). We used an F2 
pig population; the response variable was time (days) from birth to 
slaughter. Data were previously adjusted for fixed effects of sex and 
contemporary group. The model predictive ability was calculated based 
on correlation of predicted genomic values with adjusted phenotypic 
values. The results showed that both with and without censoring, there 
was high agreement between Cox and linear models in selection of 
individuals and markers. Despite including the dominance effect, there 
was no increase in predictive ability. This study showed, for the first 
time, the possibility of performing genomic prediction of traits with 
censored records while using the Cox survival model with additive and 
dominance effects.

Key words: GBLUP; Censored data; Mixed model; Survival models

INTRODUCTION

Genomic selection (GS) in pigs has been performed mainly for traits of economic importance, 
for those related to growth and reproduction, and also for carcass traits. However, GS can also be 
applied toward traits such as age at slaughter, which is defined as the length of productive life (for 
instance, the time in days from birth to slaughter). Since this involves the presence of incomplete 
observations (i.e., censored data), not all individuals have achieved the desired slaughter weight, 
and the analysis of this trait can be performed by means of survival analysis models or different 
modifications of the linear model (Serenius et al., 2006; Hou et al., 2009).

In animal breeding, Weibul and Cox (Cox, 1972) survival models have been fitted 
using the Survival Kit software (Ducrocq et al., 2010), which only estimates the additive 
effects based on pedigree using the Bayesian approach.

In the context of GS, Santos et al. (2015) were the pioneers when it came to performing 
the genomic prediction of censored phenotypes while using the Cox survival model. As 
such, the model with only additive effects was considered, and was fitted by using the coxme 
function of the R software, since the relationship matrix based on pedigree was replaced by the 
relationship matrix based on markers. Furthermore, in GS, Kärkkäinen and Sillanpaa (2013) 
proposed the use of Bayesian threshold models for data in binary and ordinal scale in order to 
evaluate censored traits.

Recently, non-additive effects such as dominance have been included in the GS of 
pigs (Su et al., 2012; Costa et al., 2015). This effect is defined as the interaction between alleles 
at the same locus, and it is expected that the inclusion of this effect in genomic models will 
increase prediction accuracy (Su et al., 2012).

To study additive and non-additive effects in GS, the method that was originally 
proposed was the GBLUP-D, which consists of replacing additive and dominance genomic 
relationship matrices based on pedigree with marker-based relationship matrices. Besides the 
GBLUP-D, other methods such as LASSO, Ridge, and Bayesian (Bayes, Bayes B, t-BLASSO) 
were proposed for additive-dominance genomic models (Azevedo et al., 2015).

However, no study was performed based on survival models considering both effects 
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(additive and dominance) so much by usual analysis based on pedigree by genomic selection. 
Thus, we aimed to build upon the method proposed by Santos et al. (2015) to include dominance 
effects and evaluate their performance. In addition, we also aimed to compare the proposed 
model with alternative linear models in the presence and absence of censored observations.

MATERIAL AND METHODS

Population establishment and the phenotypic measurements were performed at the Pig 
Breeding Farm of the Department of Animal Science, Universidade Federal de Viçosa (UFV), 
MG, Brazil. The phenotypic data consisted of an F2 population that was generated by crossing 
11 boars and 54 dams that were randomly selected from the F1 generation, which was initially 
created by crossing two native Brazilian Piau boars with 18 commercial sows (Landrace x 
Large White x Pietrain). The use of these animals was reviewed and approved by the Bioethics 
committee of the Department of Veterinary Medicine (UFV) in agreement with the Guide to 
the Care and Use of Experimental Animals of the Canadian Council on Animal Care.

DNA was extracted from the white blood cells of parental, F1, and F2 animals at the 
Animal Biotechnology Laboratory of the Animal Science Department of the Universidade 
Federal de Viçosa. More details can be found in Band et al. (2005). From the F2 population, 
345 animals were genotyped for 384 single nucleotide polymorphisms (SNPs). The low-
density customized SNPChip used was based on the Illumina Porcine SNP60 BeadChip.

These SNPs were selected according to QTL positions that were previously identified in 
this population using meta-analyses and fine mapping (Verardo et al., 2015). Therefore, although 
a small number of markers were used, the customized SNPchip based on previously identified 
QTL positions ensures appropriate coverage of the relevant genome regions in this population. 
From these, 66 SNPs were discarded because of a low-genotyping call rate (< 0.95), and from 
the remaining 318 SNPs, 81 were discarded due to a minor allele frequency <0.05. Thus, 237 
SNP markers were distributed on the Sus scrofa chromosomes (SSC) as follows: SSC1 (N = 56), 
SSC4 (N = 54), SSC7 (N = 59), SSC8 (N = 31), SSC17 (N = 25), and SSCX (N = 12).

In order to identify individuals with rapid weight gain for slaughter, the time in days 
from birth until the slaughter of the animal was considered a response variable. The desired 
weight of the animals at the time of slaughter in this population was around 65 kg (Band et 
al., 2005). The exact time it took an animal to gain the desired weight was not known, as daily 
weighing was impractical. Only the ages and weights of the animals at the time of slaughter 
were known.

As a result, censoring was created based on slaughter weight, i.e., animals that did not 
reach 65 kg were referred to as censored (event = 0), whereas animals that reached that weight 
or more were referred to as a failure (event = 1). In this dataset, the proportion of censoring 
was around 0.561, i.e., about 44% of the animals weighed at least 65 kg. The data used in the 
analysis was adjusted for the fixed effects of sex and contemporary group (Silva et al., 2013), 
and the halothane gene was included as an additional marker.

Statistical models

The models shown in Table 1 were fitted to compare estimates of variance components 
and predicted genetic values using linear and survival models, with and without the effects of 
dominance and censoring.
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According to Schaeffer (2013), there are three possible situations for the analysis of 
censored data: 1) when the censoring is removed in the analysis; 2) when the censoring is 
included in the analysis, but is not properly taken into account, or 3) when the censoring is 
included in the analysis and is properly taken into account.  Additive linear (AL), additive-
dominance linear via ML (ADL), additive uncensored Cox (AUC), and additive-dominance 
uncensored Cox (ADUC) models belong to situation 2 and additive truncated normal linear 
(ATNL), additive-dominance truncated normal linear (ADTNL), additive Cox (AC), and 
additive-dominance Cox (ADC) models to situation 3. In the ATNL and ADTNL models, 
the censored records were simulated from truncated normal distributions (Pérez and de los 
Campos, 2014).

AL and ADL models

The AL and ADL models were fitted using the lmekin function of the coxme package 
(Therneau, 2012) of the R software (R Development Core Team, 2016). The linear mixed 
model with only additive effects (AL) was defined as follows:

Table 1. Evaluated models for time in days from birth to slaughter of the animal, considering censoring and 
additive and dominance effects.

Models Additive effect Additive and dominance effect 
Uncensored Additive linear (AL) Additive-dominance linear via ML (ADL) 

Additive uncensored Cox (AUC) Additive-dominance uncensored Cox (ADUC) 
Censored Additive truncated normal linear (ATNL) Additive-dominance truncated normal linear (ADTNL) 

Additive Cox (AC) Additive-dominance Cox (ADC) 
 

1y Za eµ= =+ + (Equation 1)

where y is a vector of length n of adjusted phenotypes for fixed effects of sex and contemporary 
group, ignoring censoring; µ is an intercept; a is the vector of random additive effects of 
individuals; Z is the incidence matrix for the random effects; and e is the vector of errors 
assumed as 2(0, )eN Iσ . The additive random effect was assumed to be 2(0, )aN Gσ , where 
G is the additive genomic relationship matrix given by VanRaden (2008):
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where W has the dimension of the number of animals (n) by the number of loci (m), with 
elements that are equal to -2pj, 1-2pj, and 2-2pj for the genotypes mm, Mm, and MM, 
respectively; pj is the allelic frequency of M at locus j and qj = 1- pj.

The lmekin function does not allow for the prediction of two separate random effects. 
Thus, the linear mixed model with additive and dominance effects (ADL) was defined as 
follows:
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where y, µ, Z, and e were defined in the same way as in model AL presented in Equation 
1, and g = a + d is a vector of the total predicted genetic values, which were assumed as 

2 2(0, )a dN G Dσ σ+ , where a is the vector of additive genetic values and d is the vector 
of dominance deviations, such that G given in Equation 2 and D is the dominance genomic 
relationship matrix:

1y Zg eµ= + + (Equation 3)
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where S has the dimension of the number of animals (n) by the number of loci (m), with 
elements that are equal to 22 , 2 ,jp pq−  and 22 jq−  for the genotypes mm, Mm, and MM, 
respectively. The parameterization g = a + d implies that, in a population with Hardy-Weinberg 
equilibrium, the covariance between the additive genetic effects and dominance deviation 
is zero (Resende et al., 2014). The G and D matrices were obtained using the GVCBLUP 
software (Wang and Da, 2014).

From the total genetic values (g), the additive genetic values (a) and dominance 
deviations (d) can be obtained as follows (Mrode, 2005):

2 1ˆ ˆaa G gσ −= Σ (Equation 5)

2 1ˆ ˆdd D gσ −= Σ (Equation 6)

In models with additive effects,   is equal to , since the dominance effects are not 
considered in the model. The AL and ADL models were fitted by the method of maximum 
likelihood (ML) while initially using the EM algorithm and then switching to the Newton-
Raphson algorithm to complete the convergence (Pinheiro and Bates, 2000).

ATNL and ADTNL models

The ATNL and ADTNL models were fitted via Gibbs sampling in the BGLR package 
of R by using Bayesian Reproducing Kernel Hilbert Spaces (RKHS) regression. This package 
allows for the fitting of models with censored records, which are considered missing and 
are sampled from a truncated normal distribution (Pérez and de los Campos, 2014). Fitting 
of the ATNL and ADTNL models will be presented by considering the more general model 
with additive and dominance effects (ADTNL), particularly the ATNL model (without the 
dominance effect). Thus, the following linear mixed model was considered:

1y Za Zd eµ= + + + (Equation 7)
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where µ, Z, and e are defined as in the AL and ADL models, a is the vector of additive genetic 
values, and d is the vector of dominance deviations. The above model induces the conditional 
distribution:

( )2| , ey N Za Zd Iθ µ σ+ + (Equation 8)

where θ represents the set of unknown parameters µ, a, d, 2
aσ , 2

dσ , and 2
eσ . For µ, a, and d, 

the following prior distributions were assumed:

2 2 2 2
1 1 2, 2( )  tan ;  | , (0, )  | (0, )a a d dp cons t a K N K and d K N Kµ σ σ σ σ∝ ∼ ∼ (Equation 9)

where K1 and K2 are the kernel square matrices with a size equal to the number of individuals, 
and in the ADTNL model, K1 and K2 were replaced by the additive (G) and dominance (D) 
genomic relationship matrices (de Los Campos et al., 2009). For variance components 2

aσ , 2
dσ , 

and 2
eσ  were assumed weak priors. The vector of phenotypes includes censored and uncensored 

records. Thus, the density function of the conditional distribution in (8) is given by
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where Yobs is the dataset with uncensored records of dimension nu, n is the total number of 
observations, Φ is the cumulative distribution function of the standard normal, and ti is the 
truncation point, which was 150 days in this study.

By using a data augmentation technique for censored observations, the conditional 
distribution of the observed data in Equation 8 can be rewritten as:
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∝ − − − − + − − −∑ ∑ (Equation 11)

where 
icen iy t≥ , i.e., the unobserved value, must be greater or equal to the truncation point. 

For more details, see Sorensen et al. (1998) and Guo et al. (2001). For parameter estimation, 
the Gibbs sampler algorithm was used while assuming 120,000 iterations. The first 20,000 
iterations were discarded and, to ensure independence, a spacing of 10 between samples was 
considered. The convergence was verified by the Geweke criterion in the BOA package of the 
R software (Smith, 2007).

AC and ADC models

In the context of GS, the additive Cox model (AC) is defined as follows:

( ) { }0( )exph t h t Za= (Equation 12)
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where h0(t) is an unspecified nonnegative function of time called the baseline hazard, Z is the 
incidence matrix for random effects, and a is the vector of additive genetic effects, which were 
assumed with a zero mean and variance-covariance matrix 2

1 aGσΣ = , where 2
aσ  is the additive 

genetic variance and G is the additive genomic relationship matrix given in Equation 2.
When extending the AC model presented in Equation 12, the Cox model with additive 

and dominance effects (ADC) was defined as follows:

{ }0( ) h ( )exph t t Zg= (Equation 13)

where h0(t) is defined as in Equation 12 and Z is the incidence matrix of the total genetic effects 
(g), where g = a + d is a vector of total predicted genetic values, as in Equation 3, with zero 
for the mean and a variance-covariance matrix of 2 2

2 a dG Dσ σΣ = + . G and D matrices are 
given in Equations 2 and 4, respectively. Similar to the ADL model, the a and d random effects 
were considered to be independent. The individual additive genetic values (a) and dominance 
deviations (d) were obtained from Equations 5 and 6, respectively.

Unlike the linear model, in the Cox model, the intercept is absorbed in the baseline 
hazard function. In the Cox mixed model fitted with the coxme package, the estimation is based 
on a penalized partial likelihood that was developed by applying the Laplace approximation 
to the marginal likelihood function, since the solution of the multidimensional integral is 
intractable (Pankratz et al., 2005).

AUC and ADUC models

In order to compare the linear and Cox models in equivalent situations (normal data 
and uncensored), the uncensored Cox models with additive (AUC) and additive-dominance 
(ADUC) effects were also fitted. The difference between these models, when compared to the 
AC and ADC models, is that the observed time for all individuals was regarded as failure time 
(indicator variable of censoring equal to 1). The AC, AUC, ADC, and ADUC models were 
fitted by the method of ML, which was implemented in the coxme package of R (Therneau, 
2012). For the Cox model, the coxme function provides only ML estimates. Thus, in order to 
compare the estimates that were obtained in the Cox model without censoring with estimates 
obtained from the linear model, we used the method ML and not REML for linear models.

Additive ˆ a(m )  and dominance ˆ d(m )  markers effect estimates

The ˆ am  and ˆ dm  effects were obtained from their respective expressions (Resende et 
al., 2014):

1ˆ ˆ( ' ) 'am W W W a−= (Equation 14)

where â  and d̂  are the vectors of additive genetic values and dominance deviations in each 
model, and W and S are the matrices that were previously defined.

1 ˆˆ ( ' ) 'dm S S S d−= (Equation 15)
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Heritability estimates

Heritability estimates were obtained from the estimated variance components. The 
phenotypic variance is given by the following 2 2 2 2

y a d eσ σ σ σ= + + , where 2
aσ  and 2

dσ  
are the additive and dominance genetic variances, respectively, and 2

eσ  is the residual 
variance. The following estimates of heritability were calculated: additive or narrow sense 
heritability 2 2 2( / )a a yh σ σ= , heritability of dominance 2 2 2( / )d d yh σ σ=  and total or broad 
sense heritability 2 2 2( )a dH h h= + .

For the AC and ADC models, the term that was relative to the random error was not 
included in the model because it was incorporated in the baseline hazard function (Pankratz 
et al., 2005). Thus, residual variance cannot be directly obtained. An alternative was proposed 
by Yazdi et al. (2002) and was used by Schneider et al. (2005) and Santos et al. (2015). Under 
this approach, the residual variance is replaced by 1/(1-c) where c is the proportion of censored 
data. Therefore, the phenotypic variance is given by 2 2 2 1/ (1 )y a d cσ σ σ= + + − , and the 
additive, dominance and total heritabilities are given, respectively, by:

2 2 2 2/ ( 1/ (1 c))ac a a dh σ σ σ= + + − (Equation 16)

For the AUC and ADUC models, the proportion of censored observations was zero; 
thus, the residual variance was assumed to be equal to 1 and the phenotypic variance is given 
by 2 2 2 1y a dσ σ σ= + + . This expression is equivalent to random error under a latent scale with 
a standard normal distribution and probit link function (Resende et al., 2014). For models with 
only additive effects, the term 2

dσ  was excluded from the phenotypic variation.

Additive models vs additive-dominance models

In order to verify the superiority of the models with additive and dominance effects over 
models with only additive effects, the likelihood ratio test (LRT) was used while considering 
the ML estimation method. This test is based on the following: D = [-2*log-likelihood for the 
restricted model - (-2*log-likelihood for the more general model)], which considers the model 
with only additive effects (H0) versus the model with additive and dominance effects (H1). 
The statistics of the test follow a Chi-square distribution with degrees of freedom based on the 
difference between the number of parameters (variance components). The P value for the test 
is given by 2

10,5 1 ( )P Dχ − ≤   (Ertl et al., 2014). Thus, the LRT was used to compare the 
following models: AL vs ADL, AC vs ADC, and AUC vs ADUC.

For the ATNL and ADTNL models that were fitted by Gibbs sampling, the goodness-
of-fit was verified by the deviance information criterion ( )DDIC D P= + , where D  is the 
posterior mean deviance and PD is the “effective number of parameters”. The best models were 
those with the lowest DIC.

2 2 2 2/ ( 1/ (1 ))adc d dh cσ σ σ= + + − (Equation 17)

(Equation 18)2 2 2
c ac dcH h h= +
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Model comparison

The predicted genomic values in the AC and ADC models are inversely proportional to 
the observed values and to the predicted genomic values in the additive and additive-dominance 
linear models. This is because in the Cox model, the predicted values are determined while 
using the hazard scale, whereas the observed data and the predicted values in the linear models 
are determined on the observed scale of days (Hou et al., 2009). Thus, the correlation was 
obtained between the ranks of sorted genomic breeding values (GBVs) in decreasing order 
for the Cox model, and in ascending order for the observed values and predicted GBVs in the 
linear models. The same idea was used for the predicted total genomic values (TGVs) with 
additive-dominance models. In addition, Spearman correlations between the predicted GBVs 
and TGVs in the eight models were also calculated. To verify whether the estimates differ from 
zero, Spearman’s rho was used to estimate a rank-based measure of association, with P values 
computed via the asymptotic t approximation.

In the Cox models (AUC and ADUC) and in the linear models fitted via ML (AL and 
ADL), censoring was not taken into account, i.e., the time of all individuals was considered 
to be failure time. This procedure was used to evaluate the prediction consistency. Similar 
comparisons were performed for the ATNL and ADTNL model with the AC and ADC model 
with censored data.

The equivalence between the Cox model and linear model when selecting the best 
individuals and the largest marker effects was evaluated by means of the agreement rates 
between the 10% largest predicted GBVs in similar additive models (AL and AUC, ATNL, 
and AC) and between the 10% largest predicted TGVs in the additive-dominance models 
(ADL and ADUC, ADTNL, and ADC). The same agreement rates were calculated for the 10% 
highest additive and dominance marker effects. In linear models, the selected animals were 
those whose genomic genetic values minimized the time until slaughter. In the Cox model, the 
selected animals were those whose genomic genetic values maximized the hazard (Hou et al., 
2009; Sobczyńska and Blicharski, 2015).

In addition to calculating the agreement rates between models, the Cohen’s kappa 
coefficient (k) was obtained, which assessed the degree of agreement between two models 
in the above-described equivalent situations. The statistical significance of k was assessed.

RESULTS

For ATNL and ADTNL models fitted via Gibbs sampling, the P values that were 
obtained for the Geweke criterion were higher than the predetermined significance level of 
5%, thereby indicating that convergence was attained for the MCMC chain. For linear (ADL) 
and Cox (ADC and ADUC) models, the dominance variance was null, and on occasion the 
dominance heritabilities were also null (Table 2). For the ADTNL model fitted via RKHS, 
the dominance variance was equal to 12.36. When including the dominance effect in this 
model, the additive genetic variance decreased, and 11.2% of the phenotypic variation was 
explained by the dominance variation. Su et al. (2012), when evaluating the daily gain in 
Danish Duroc pigs by means of the linear model, reported dominance values explaining 5.6% 
of the phenotypic variation.
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The additive genetic variances that were estimated in linear models with truncated 
normal distribution (ATNL and ADTNL) were higher than the estimated variances in the 
classical linear models, with an increase of about 192.94 and 124.38% for additive and 
dominance-additive models, respectively. The same occurred for the dominance variance, 
which was equal to 0.007 in the ADL model and 12.356 in the ADTNL model.

In the linear analysis, broad-sense heritability estimates ranged between 0.08 and 0.25. 
These values correspond with those obtained by Hollander et al. (2015) and Sobczyńska and 
Blicharski (2015). In these studies, the pedigree-based relationship matrix was considered. In 
addition, the dominance effect was not taken into account.

The narrow-sense heritability values using the Cox survival model were around 0.02 
in the presence and absence of censoring and the dominance effect. Low heritability values 
(0.05 and 0.08) were also found by Mészáros et al. (2010) in Large White and Landrace pigs 
when using the Weibull survival model.

For all the models evaluated, the correlations were significant at 1% according to 
Spearman’s test (Table 3). In the models with only additive effects, TGVs were equal to GBVs 
(g = a). The linear models (LA and LA) and uncensored Cox (AUC and ADUC) presented 
with similar predictive ability values (0.40). The same occurred for models where censoring 
was considered (ATNL, ADTNL, AC, and ADC), with predictive capacity values around 0.20.

In the models that were fitted by ML, the correlations between GBVs and between 
TGVs in the same models, with or without dominance effect, were equal to 1, since the 
dominance effect in these models was null. For the truncated normal linear model where the 
dominance effect was not zero, the correlation between GBVs in the additive and additive-
dominant models was equal to 0.97, and between TGVs was equal to 0.88. As previously 
reported, in the ATNL model, TGV is equal to GBV since the dominance effect is not estimated.

Among the different models, the highest Spearman correlation values between TGVs 
(above the diagonal) and GBVs (below the diagonal) were obtained between the linear model 
and uncensored Cox model (-0.93). In both models, censoring was not taken into account. 

Table 2. Estimates of additive genetic variance ( 2
aσ ), dominance variance ( 2

dσ ), residual variance ( 2
eσ ), 

phenotypic variance ( 2
yσ ), narrow-sense (or additive) heritability ( 2

ah ), dominance heritability ( 2
dh ) and 

broad-sense (or total) heritability 2( )H for age at slaughter in pigs, considering the Cox and linear model.

Models  Variance components 

y 2
a  2

d  2
e  2

y  2
ah  2

dh  H2 

AL NC 9.103 - 108.985 118.088 0.077 - - 
ADL NC 9.101 0.007 108.981 118.089 0.077 0.000 0.077 
ATNL NTC 26.666 - 79.756 106.422 0.247 - - 
ADTNL NTC 20.421 12.356 77.782 110.559 0.182 0.112 0.294 
AC C+B 0.057 - - - 0.024(a) - - 
ADC C+B 0.057 0.000 - - 0.024(a) 0.000(d) 0.024 
AUC C+B* 0.018 - - - 0.018(a) - - 
ADUC C+B* 0.018 0.000 - - 0.018(a) 0.000(d) 0.018 

 AL = additive linear model; ADL = additive-dominance linear model; ATNL = additive truncated normal linear 
model; ADTNL = additive-dominance truncated normal linear model; AC = additive Cox model; ADC = additive-
dominance Cox model; AUC = additive uncensored Cox model; ADUC = additive-dominance uncensored Cox 
model; y = response variable; NC = continuous response variable and without censoring; NTC = continuous 
response variable with truncated normal distribution for censored data; C+B = continuous response variable + 
indicator variable of censoring; C+B* = continuous response variable + indicator variable equal to 1. (a)Narrow-
sense (or additive) heritability calculated as in Equation 16; (d)dominance heritability calculated as in Equation 17.
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The truncated normal linear and Cox models, which considered censoring, presented with 
Spearman correlations equal to -0.78 between GBVs of additive models, as well as -0.84 and 
-0.64 between GBVs and TGVs of additive-dominant models, respectively.

AL = additive linear model; ADL = additive-dominance linear model; ATNL = additive truncated normal linear 
model; ADTNL = additive-dominance truncated normal linear model; AC = additive Cox model; ADC = additive-
dominance Cox model; AUC = additive uncensored Cox model; ADUC = additive-dominance uncensored Cox 
model.

Table 3. Spearman’s rank correlations (above the diagonal) between total genetic values (TGV, defined as 
the sum of the genetic effects in the model) and Spearman’s rank correlations (below the diagonal) between 
genomic breeding values (GBV) from different models.

Models AL ADL ATNL ADTNL AC ADC AUC ADUC 
AL 0.42 1 0.40 0.29 -0.62 -0.62 -0.93 -0.93 
ADL 1 0.42 0.40 0.29 -0.62 -0.62 -0.93 -0.93 
ATNL 0.40 0.40 0.18 0.88 -0.78 -0.78 -0.35 -0.35 
ADTNL 0.47 0.47 0.97 0.19 -0.63 -0.64 -0.26 -0.26 
AC -0.62 -0.62 -0.78 -0.84 0.21 1 0.53 0.53 
ADC -0.62 -0.62 -0.78 -0.84 1 0.21 0.53 0.53 
AUC -0.93 -0.93 -0.35 -0.38 0.53 0.53 0.38 1 
ADUC -0.93 -0.93 -0.35 -0.38 0.53 0.53 1 0.38 

 

The lowest correlations were obtained between TGVs and GBVs of the truncated 
normal linear model and the uncensored Cox model, with values equal to -0.26 between 
TGVs, -0.35 between GBVs for ATNL, and -0.38 between GBVs for ADTNL. The correlation 
between the linear model and truncated normal linear model was 0.40 between GBVs in the 
additive models, and increased to 0.47 in the additive-dominant models. Between TGVs, the 
correlation was 0.29 in the additive-dominant models.

The Spearman correlation values below the diagonal in Table 3 were higher than the 
values above the diagonal only for the truncated normal linear model, where the dominance 
effect was not zero. This was expected, since the values above the diagonal are the correlations 
between TGVs (sum of additive and dominance effects) and GBVs (only additive effects), 
while the values below the diagonal are the correlations between predicted GBVs by the 
additive and additive-dominance models.

The LRT for models fitted via ML and DIC values for the models fitted via the 
Bayesian approach are shown in Table 4. According to the LRT, for the three evaluated cases, 
the hypothesis that the additive model is adequate was not rejected (P value greater than 5%), 
so we can conclude that the model with additive effects only was the best.

The same occurred for the truncated normal linear model, where the model with 
additive effects presented with a lower DIC, and was thus more adequate than the model with 
additive and dominance effects. Ertl et al. (2014), when evaluating the inclusion of dominance 
effects in dairy cattle, found that LRT was not significant for four of the nine evaluated traits.

The proportion of agreement among the 10% smallest predicted GBVs in the linear 
model and the 10% largest predicted GBVs in the additive uncensored Cox model was equal 
to 76% (Table 5), with a kappa equal to 0.74; i.e., of the 34 individuals, 26 were in agreement 
for both models. For the marker effects, the agreement rate was 58% (14 markers of 24), with 
a kappa of 0.54.
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The same agreement rates were observed among TGVs and additive marker effects in 
the additive-dominant models, since the dominance effect was null in these models.

When considering the censoring, the percentage of agreement between the ATNL 
model and the AC model was 53% between the GBVs and 46% between the largest marker 
effects, with kappa coefficients of 0.48 and 0.40, respectively. When including the dominance 
effect, this agreement percentage increased to 59% between GBVs and 54% for the additive 
marker effects.

When evaluating the hypothesis that the kappa is null, the same was rejected at a 
significance level of 1% for all cases evaluated, thus showing that there is a direct and significant 
correlation between the GBVs, TGVs, and marker effects in the comparative models.

DISCUSSION

This study aimed to estimate additive and dominance genetic variance components 
using genomic prediction models for censored data, such as the Cox survival model and the 
linear model with truncated normal distribution.

aModels without taking into account the censoring; bmodels considering censoring; AL = additive linear model; 
ADL = additive-dominance linear model; ATNL = additive truncated normal linear model; ADTNL = additive-
dominance truncated normal linear model; AC = additive Cox model; ADC = additive-dominance Cox model; AUC 
= additive uncensored Cox model; ADUC = additive-dominance uncensored Cox model. χ2 value = 2 ln (likelihood 
for additive models / likelihood for additive – dominance models).

Table 4. -2log-likelihood, χ2-value and its corresponding P value of the likelihood ratio test and DIC values 
for Bayesian models.

Models -2logL 2 value P value DIC 
ALa 2541.214   - 
ADLa 2541.218 -0.004 0.475 - 
ATNLb - - - 1025.127 
ADTNLb - - - 1032.066 
ACb 1378.220   - 
ADCb 1378.221 -0.0006 0.490 - 
AUCa 3232.948   - 
ADUCa 3232.950 -0.002 0.482 - 

 

Table 5. Proportion of agreement and Cohen’s kappa coefficient (in parentheses) between the smallest 10% and 
largest 10% predicted genetic values using linear and Cox models, respectively, and between the 10% largest 
additive (AMEGBV and AMETGV) and dominance (DMETGV) marker effects for the linear and Cox models.

Models TGV GBV AMEGBV DMETGV 
Additive     
AL vs AUC - 0.76 (0. 74**) 0.58 (0.54**) - 
ATNL vs AC - 0.53 (0.48**) 0.46 (0.40**) - 
Additive-dominance   AMETGV  
ADL vs ADUC 0.76 (0. 74**) 0.76 (0.74**) 0.58 (0.54**) 0.71 (0.68**) 
ADTNL vs ADC 0.44 (0.38**) 0.59 (0.54**) 0.54 (0.49**) 0.50 (0.44**) 

 AL = additive linear model; ADL = additive-dominance linear model; ATNL = additive truncated normal linear 
model; ADTNL = additive-dominance truncated normal linear model; AC = additive Cox model; ADC = additive-
dominance Cox model; AUC = additive uncensored Cox model; ADUC = additive-dominance uncensored Cox 
model. *Significant at 5%, **significant at 1% level, nsnot significant.
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For the linear and Cox models that were fitted by using the lmekin and coxme 
functions of the coxme package of R, the additive and dominance effects were obtained through 
Equations 5 and 6, respectively, since in these models only the total genetic effects (sum 
of additive and non-additive effects) were predicted. This approach is conceptually allowed 
because it considers the independence between both of the predicted effects (Mrode, 2005).

As reported, the truncated normal linear model fitted via RKHS presented with additive 
and dominance variance estimates that were much higher than the estimated variances of the 
linear model fitted via ML. A similar result was observed by Morota et al. (2014) in a study 
on beef cattle, where they also found that additive and dominance variance estimates were 
overestimated when using parametric kernels. The authors attributed this to the possible lack 
of orthogonality between additive (G) and dominance (D) genomic relationship kernels, in 
that a single kernel captures multiple sources of genetic information.

When including the dominance effect in the truncated normal linear model, the broad 
sense heritability decreased by approximately 26%. According to Muñoz et al. (2014), this 
result is expected due to the proportion of dominance variance that can be explained by the 
additive genetic variance.

In the AUC and ADUC models, the residual variance was equal to 1, in that the 
random error in latent scale had a standard normal distribution with the probit link function. By 
accounting for censoring, Yazdi et al. (2002) showed that the error variance can be estimated 
by the expression 1 / (1 - c) in the Cox model, where c represents the proportion of censored 
data. In this study, c was equal to 0.56. A summary of the estimations used for heritability in 
the survival analysis was presented by Resende et al. (2014), who showed that the expression 
that was used here and was proposed by Yazdi et al. (2002) is the best estimator, as it is valid 
for the Cox and Weibull models.

There are few studies that include dominance effects in the usual analysis as well as 
in genomic selection. Moreover, no reports were found in the literature that considered the 
estimation of the two variance components (additive and dominance) when using survival 
models. The Survival Kit software (Ducrocq et al., 2010) permits the estimation of only one 
component at a time and also only allows for the use of the pedigree-based relationship matrix, 
which makes it impossible to predict genetic values using the genomic relationship matrix. 
Therefore, comparing both approaches (classical and Bayesian) while using the genomic 
relationship matrix in the Cox model is not yet possible.

In genomic selection, the correlation between the predicted genomic values and the 
corrected phenotypes is called of the predictive ability, which is used to assess the quality 
of fit of the models in the estimation population (Resende et al., 2014). When including 
the dominance effect, the predictive abilities of the GBVs in the evaluated models did not 
increase. Similar results were obtained by Ertl et al. (2014) in dairy cattle. According to Nishio 
and Satoh (2014), this was due to the low and null dominance effects that were obtained in the 
evaluated models. de Almeida Filho et al. (2016) obtained the highest accuracies in additive-
dominant models in relation to additive models only with regards to simulated traits with great 
dominance effects.

According to Muñoz et al. (2014), additive effects can capture a large proportion of 
the genetic variance of non-additive effects, such as dominance, due to a possible lack of 
independence between these effects in improved populations.

The predictive ability values were lowest (around 0.20) in the models where censoring 
was taken into account (ATNL, ADTNL, AC, and ADC) versus in the models where it was 
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not considered (LA, LAD, AUC, and ADUC). This occurred because of the greater distance 
between the predicted genetic values and the adjusted phenotypes of the censored times. 
Although they presented with the smallest predictive abilities, these models are conceptually 
more appropriate, since they express the correlations with the phenotypes in the latent scale 
(Santos et al., 2015).

The uncensored Cox models (AUC and ADUC) presented with the highest Spearman 
correlations in the AL and ADL models in comparison to the ATNL, ADTNL, AC, and ADC 
models. This reveals the influence of censoring, since in the AUC and ADUC models, all data 
were uncensored.

Negative correlations between the linear and Cox models are to be expected, since 
the random effects in both models are inversely proportional. In the linear model, the fit is 
performed directly on the time variable, while in the Cox model, the fit is based on the hazard 
of the animal with regards to obtaining the desired weight at slaughter; i.e., the best animals in 
the linear models were those with the lowest predicted TGVs and GBVs, since they reached 
the desired slaughter weight in a shorter period of time. In the Cox models, the best animals 
were those with the greatest predicted TGVs and GBVs; thus, the risk function grows rapidly, 
thereby indicating that the animal’s weight also grows quickly (Hou et al., 2009; Giolo and 
Demétrio, 2011; Santos et al., 2015).

The agreement percentages between predicted genomic values and marker effects 
were lowest in the models where censoring was considered. In addition to censoring, another 
factor that played a role in the occurrence was the difference in model fits. The ATNL and 
ADTNL models were fitted via the Bayesian approach using RKHS, while the AC and ADC 
models were fitted by the ML method.

In addition, as has been reported, the estimates that were obtained in the ADTNL 
model were biased because of a lack of orthogonality among additive and dominance genomic 
relationship kernels (Morota et al., 2014).

In addition to the predictive ability, Cohen’s kappa coefficient has also been employed 
for evaluating genomic models, as can be seen in Ornella et al. (2014).

Contrary to what has been reported by Onteru et al. (2011), where the implementation 
of survival models in GS is not yet possible, this study showed that for the method where the 
pedigree-based relationship matrix is replaced by a marker-based relationship matrix (GBLUP 
and GBLUP-D in linear models), fitting the Cox model can be conducted relatively simply, 
without the need for a large computational demand. Furthermore, the fit has allowed for the 
estimation of non-additive effects, such as the dominance effect.

In addition to the Cox model, other models such as the linear model with truncated 
normal distribution have been proposed for censored data in GS (Pérez and de los Campos, 
2014), thereby expanding the analytical possibilities in additive and non-additive models. 
However, as mentioned above, the approach that was used for the truncated normal linear 
model while using the RKHS method overestimated the additive and dominance genetic 
variance estimates, thus indicating the need for further investigation of this method.

CONCLUSION

This paper showed for the first time and through real data analyses the possibility of 
performing genomic prediction of censored phenotypes using the Cox survival model with 
additive and dominance effects. In general, for the assessed trait in the study population, the 
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dominance variance was null, but on occasion the augmentation of predictive abilities did not 
include the dominance effect in the assessed models.
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