COMPARATIVE PHENOLIC PROFILE AND ANTIRADICAL ACTIVITY OF SYRAH WINE AND ITS MANUFACTURE BY-PRODUCTS

Walkia Poliana de Oliveira¹; Luiz Claudio Correa²; Maria Spinolla Miranda³; Adriano Costa de Camargo⁴; Maria Auxiliadora Coelho de Lima⁵; Aline Camarão Telles Biasotto⁶

¹Department of Bromatological Analysis – Farmacy – Bahia Federal University – UFBA, Salvador, BA, Brazil; ²Brazilian Agricultural Research Corporation - EMBRAPA Tropical Semi-Arid, Petrolina, PE, Brazil; ³University of São Paulo, ESALQ USP, Piracicaba - SP, Brazil.
E-mail: walkia2020@hotmail.com

INTRODUCTION

More than 67 million tons of grapes are produced worldwide every year, and about 66% of them are used for making wine and other alcoholic beverages. However, the winemaking industry generates great amounts of by-products. In fact, winemaking by-products account for more than 30% of the grape production, but this unexpensive feedstock has no practical application. About 20 million tons of winemaking by-products are discarded every year. These by-products are mainly constituted of rachis, seeds and skins (pomace), and solid sediments recovered after wine decanting. About six million liters of wine are produced each year in the São Francisco Valley region in the Northeast of Brazil where Syrah is the most used cultivar for wine production. The aim of the present study was to characterize the phenolic profile and evaluate the antiradical activity of winemaking by-products produced with Syrah grapes grown in São Francisco Valley, Brazil.

MATERIAL AND METHODS

SAMPLES

Syrah fresh grape (3 samples: skin, skin and seed, seed)

Rachis

Pomace (3 samples: skin, skin and seed, seed)

Solid sediments recovered after wine decanting

Syrah red wine

High performance liquid chromatography (HPLC) simultaneously coupled to diode array (DAD) and fluorescence (FLD)

Antiradical activity was evaluated by DPPH radical and ABTS radical cation

Calibration curves of ABTS and DPPH analysis using the standard Trolox

RESULTS AND DISCUSSION

The fresh grape skin (GSKIN) was the primary source of the following six anthocyanins: pelargonidin-3-O-glucoside, petunidin-3-O-glucoside, malvidin-3-O-glucoside, delphinidin-3-O-glucoside, cyanidin-3-O-glucoside, and peonidin-3-O-glucoside. Solid sediments recovered after wine decanting (SS) and pomace (skin and skin + seed - PSGSKINSEED) rendered significantly greater anthocyanin contents than the wine.

The skins from fresh grapes (GSKIN) had greater quantities of flavonols, which include isorhamnetin-3-O-glucoside, rutin, myricetin, kaempferol-3-O-glucoside, and isoorientin. In general, grape pomace (skins and skin + seeds - PSGSKINSEED) and the solid sediments (SS) showed higher contents of flavonols than the wine.

The following flavonols were detected: procyanidins (B1, B2, and A2), epicatechin, catechin, epicatechin gallate, and epigallocatechin. Rachis were the best sources of procyanidins A2 and B1. The red wine showed a lower content of flavonols as compared with its by-products.

Seeds from winemaking by-products (PSEED) were good sources of phenolic acids.

Rachis rendered the highest antiradical activity in both methods (ABTS and DPPH) with values up to 10-fold higher than found for wine.

PLS regression showed that peonidin-3-O-glucoside, vanillic acid, (+)-catechin, procyanidin A2 as well as B1 were positively correlated (p < 0.05) with the antiradical activities.

CONCLUSIONS

The present study suggests the industrial application of all test materials as sources of phenolic compounds with antiradical activity.

ACKNOWLEDGEMENTS: