P74
Detailed expression analysis of maize Psto11 homologs in contrasting genotypes for phosphorus efficiency
(submitted by Sylvia M de Sousa <sylvia.sousa@embrapa.br>)
Full Author List: Negri, Barbara F1 2; Azevedo, Gabriel C1 3; Lana, Ubiraci GP1; Barros, Beatriz A1; Guimarães, Claudia T1; de Sousa, Sylvia M1
1 Embrapa Maize and Sorghum, Sete Lagoas, MG, Brazil, 35701970.
2 Universidade Federal de São João del-Rei, USJ, São João del-Rei, MG, Brazil, 36307-352.
3 Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, MG, Brazil, 31270-901.

Maize is generally considered to have a high fertility soil requirement, so the development of phosphorus-efficient maize genotypes would be beneficial in low-input agroecosystems and would improve the sustainability of high-input agroecosystems. Plants developed several mechanisms to adapt to low phosphorus (P) conditions, indicating that this is a complex trait. The main mechanism that has been implicated with increased P acquisition efficiency involves changes in root morphology. In this context, Phosphorus-starvation tolerance 1 (Pstol1) was identified as the gene underlying the Pstol1 locus, which is responsible for enhanced early root growth, P uptake and grain yield in rice and sorghum. Recently, we performed comprehensive QTL mapping in maize recombinant inbred line population (RIL) in nutrient solution under low-P conditions and pointed out candidate genes as maize homologs (ZmPSTOL1, ZmPSTOL4, and ZmPSTOL6) to the rice PSTOL1 (OsPSTOL1) based on QTL co-localization with root and P efficiency traits. In the present study, we aimed to verify the spatial and temporal gene expression of these maize Pstol1 homologs in two P contrasting maize genotypes (L3 – efficient and I22 – inefficient). First, the temporal expression revealed that all genes start to express in nutrient solution, at 7 days after germination (DAG) and had their peak of expression at 17 DAG. Expression profile of the candidate genes was assessed in different maize tissues (tassel, leaves, stem, seeds and roots) that were harvest during flowering, revealing that ZmPSTOL1 and ZmPSTOL6 were more expressed in roots and tassel of the inefficient line (I22) while ZmPSTOL4 was more expressed in these same tissues but of the efficient line (L3). We also harvested different root parts (primary, lateral, non-embryonic seminal, embryonic seminal, crown) of L3 and I22 grown in nutrient solution at 17 DAG. These results showed that ZmPSTOL1 and ZmPSTOL6 were more expressed in all root types of I22 line and ZmPSTOL4 was more expressed in L3 primary root, especially at the differentiation zone. Finally, we correlated gene expression from contrasting lines with root morphology traits. These results shed a light on the elusive Pstol1 pathway, however, further functional studies are required to comprehend the actual pathway leading to root system modulation by Pstol1.

Funding acknowledgement: Embrapa, CNPq, Fapemig, Capes, GCP

P75
Determining Heat Tolerance via Chlorophyll Readings and Electrolyte Leakage
(submitted by Ross Zhan <rzhan@purdue.edu>)
Full Author List: Zhan, Ross R1
1 Purdue University; West Lafayette, IN 47906

With global climate change predicted to cause increases in temperatures in many parts of the world, it has become increasingly important to study the effects of heat stress on plants. Excessive heat, along with other abiotic stresses, is known to be detrimental to crop yields which could endanger future food security. We have initiated a project to study heat stress in maize with the eventual goal of developing heat tolerant maize germplasm for the developing world. We have done field trials for the NAM founders in India to determine heat tolerance of the various lines and found B97, Mo17, and CML 322 to be among the most heat tolerant while B73 is most susceptible. Based on a literature search and availability of transposon insertions, we have selected certain maize mutants potentially involved in heat stress tolerance. We have measured chlorophyll readings for these mutants in a growth chamber under heat stress as well as taken electrolyte leakage data. We found that three mutants: lipid transfer protein, carbohydrate transporter, and fatty acid desaturase had consistently lower chlorophyll readings than W22, their wild type counterpart. We also found that the electrolyte leakage data for B97, Mo17, and CML322 matches well with the field phenotypes thus potentially providing an accurate, simple assay to test for heat tolerance.

Funding acknowledgement: USAID
P71 Shangang Jia
<shangang.jia@gmail.com>
Comparative Shotgun Proteomic Analysis of Isogenic Opaque Endosperm Maize Mutants

P72 Kevin Schneider
<kev.snde@hawaii.edu>
Dating Maize Centromere Divergence

P73 Robert Augustine
<ruguistinge@wise.edu>
Defining the SUMOylation System in Zea mays and its Roles in Stress Protection

P74 Sylvia M de Sousa
<sylvia.sousa@embrapa.br>
Detailed expression analysis of maize Pstol1 homologs in contrasting genotypes for phosphorus efficiency

P75 Ross Zhan
<rzhan@purdue.edu>
Determining Heat Tolerance via Chlorophyll Readings and Electrolyte Leakage

P76 Yinjie Qiu
<yinjie.qiu@uflstate.edu>
Developing perennial maize for sustainable agriculture

P77 Hailey Karlovich
<hkarlovich01@hamline.edu>
Developing protocols for understanding abiotic stress response in maize

P78 Maria Angelica Sanclemente
<sanangelma@uff.edu>
Dissecting putative roles of maize Pral1 and Ndkp1 in C-partitioning and energy balance

P79 (Poster withdrawn from abstract book)

P80 Timothy Anderson
<matanderson@danforthcenter.org>
Dissecting the C, Carbon Concentrating Sub-pathway in Maize

P81 Haiyang Wang
<wanghaiyang@caas.cn>
Dissecting the molecular genetic basis of shade avoidance response in higher plants: from model species to crops

P82 Anthony J Studer
<astuder@danforthcenter.org>
Dx mutagenesis and characterization of multiple carbonic anhydrase genes in Zea mays

P83 Maria Guadalupe Segovia Ramirez
<mariasc_sra@hotmail.com>
Dynamic spatio-temporal distribution of non-structural carbohydrates in corn plants (Zea mays) during the reproductive stage

P84 Jiani Yang
<jiani.yang@ufl.edu>
Embryo lethal plastid translation mutants and their genetic suppressors in maize

P85 Stacie Shuler
<sshuler@wise.edu>
Endosperm Carbohydrates During Kernel Development in Pseudostarchy and Extreme-sugary Maize (Zea mays L.) Inbreds

P86 Jose Ramon Planta
<jplanta@scarletmail.rutgers.edu>
Enhanced sulfur assimilation drives expression of the sulfur-rich seed storage proteins in maize

P87 Xia Zhang
<xzhang55@wise.edu>
Evidence for maternal control of seed weight in the Krug Seed Size selection population and derived lines

P88 Yingying Cao
<ycao@danforthcenter.org>
Exploiting Maize Leaf Development to Identify Networks Underlying C4 Differentiation

P89 Brian Rhodes
<rhodesb03@gmail.com>
Fine Mapping and Characterization of Genes Involved in Nitrogen Utilization Efficiency within Maize

P90 Peter J. Keefe
<pkeefe2@mail.msuvt.edu>
Fine-mapping and characterization of carbohydrate partitioning defective47 mutant

P91 Sayuri Tsukahara
<tsukay.sayuri@gmail.com>
Functional consequences of evolutionary changes of CENH3 in maize

P92 Jesbaniris Bas
<jesbaniris@gmail.com>
Functionalization and use of novel nanomaterials in chromatographic separations and imaging

P93 Marianne Emery
<emerymartinae@iastate.edu>
Gametophytic incompatibility in maize: Refining the region of interest

P94 Kayla Allyne Echols
<kae22@psu.edu>
Genetic control of 3-Deoxyanthocyanidins in maize

P95 Saadia Bihmidine
<bihmidines@missouri.edu>
Nut Starch! Decoding the Carbohydrate partitioning defective4 mutant in maize