Potential inoculant strains of Brazilian endophytic bacteria for maize (Zea mays L.) growth promotion

Vivian J. Szilagyi-Zecchin*, Ana C. Klosowski†, Angela C. Ikeda*, Mariangela Hungria†, Lygia V. Galli-Terasawa†, Vanessa Kava-Cordeiro*, Chirlei Glienke†, Átila F. Mógor†

1Department of Plant Science and Crop Protection, Federal University of Paraná, Brazil
2Department of Genetics, Federal University of Paraná, Brazil
3Embrapa Soja, Londrina, Paraná, Brazil

Article published on October 28, 2015

Key words: Auxins, Siderophores, Plant growth promotion, Bacillus, Pseudomonas.

Abstract

The maize (Zea mays L.) is one of the most important cereals as a source of energy for human nutrition and animal feed. And the cultivation of maize to be improved with the use of lower-impact resources for the environment and more profitable for farmers. Therefore the use of endophytic bacteria promoting plant growth comes against these ideals. Seven bacteria isolated from maize roots were identified and verified for their ability to promote plant growth under greenhouse conditions. In addition, mechanisms of plant growth promotion were investigated in vitro. Sequencing analysis of the 16S rRNA gene revealed five bacterial genera: Achromobacter, Enterobacter, Pseudomonas, Stenotrophomonas and Bacillus. Among the isolates, Bacillus sp. (LGMB227) promoted root length (65.1%), stimulated the aerial part development (39.4%) and Pseudomonas sp. (LGMB205) increased the root volume (22.7%). Here we demonstrate that in vivo data were corroborated by in vitro data, where the largest producer of IAA (63.1 mg/mL) was detected in Bacillus sp. LGMB227 that showed as well siderophore and pectinase activity. Pseudomonas sp. had the second largest production of IAA (56.1 mg/mL) and was also siderophore positive. Identified that strain LGMB227 of Bacillus sp. showed the best performance, with potential use as inoculants for plant growth promotion.

*Corresponding Author: Vivian J. Szilagyi-Zecchin vivian.szilagyi@gmail.com
Introduction

Maize (Zea mays L.) occupies an outstanding position in agriculture, being one of the most important cereals as source of energy for human nutrition and animal feed, besides being one of the main crops for grain production worldwide (FAO, 2009). The world production of maize in 2014/15 was estimated at 988.07 million tons, remaining above the consumption that increased from 944.91 to 968.90 million tons; in this scenario Brazil contributes with 78.4 million tons (CONAB, 2015). Several studies highlight the use of alternative nutrient sources for plants and/or alternative phytopathogens control methods to increase production, and many of them focusing on endophytic microorganisms (Barretti et al., 2008), which are found inside plants without causing diseases (Azevedo, 1998).

To leave inside the tissues gives to these microorganisms the advantage of having higher protection from environmental limitations, increasing the possibilities of a successful response to inoculants (Sharma and Novak, 1998). Endophytic bacteria, presenting potential as growth promoters in maize plants, may contribute to development of technologies aimed to sustainable production. Thus, this study aimed to identify the bacteria isolates and verify their ability to promote corn plant growth in vivo, in greenhouse conditions, and to investigate in vitro the action mechanisms of bacteria related to growth promotion.

Material and methods

The study comprised seven endophytic bacterial isolates from maize roots previously obtained by Ikeda et al. (2013), root samples were surface-sterilized according to Glienke-Blanco et al. (2002), in which roots were washed with running water and then treated with 70% ethanol (v/v) for 1 min, NaCIO 3% (v/v) for 4 min, 70% ethanol (v/v) for 30 s, and rinsed three consecutive times in sterile water. Then aseptically cut, and transferred to Petri dish plates containing solid culture media. Several controls confirmed that the sterilization procedure was effective. The isolates are deposited at the collection of endophytic bacteria belonging to the Laboratory of Genetic of Microorganisms (LabGeM).

Bacterium identification by analyzing the 16S rRNA gene

The DNA extraction and 16S rRNA sequencing was performed according to Szilagyi-Zecchin et al. (2014). Quality verification of bases and assembling of fragments were performed with the Phred Phrap Consed program (Ewing, 1998). Identity of 16SrRNA partial sequences was obtained by comparison with sequences available in the GenBank database, available at NCBI (https://www.ncbi.nlm.nih.gov/genbank) using the BLAST®N 2.2.29 program (Basic Local Alignment Search Tool, Nucleotide). The 16S rRNA gene sequences were deposited to NCBI GenBank with access numbers from KP276221 to KP276227.

Assay in greenhouse conditions

The experiment was conducted under greenhouse conditions at the Center of Experimental Stands of Canguiri belonging to Federal University of Paraná. Seeds of the commercial maize hybrid SX2530 were supplied by the company Empresa Semília Genética e Melhoramento Ltda. Surface disinfection of seeds was obtained according to the methodology of Glienke-Blanco (2002). Bacteria were cultivated in King B liquid medium at 30 °C for 24 h (150 rpm), with adjusted concentration of 10⁸ cells/mL (Hernández-Rodríguez et al., 2008). One-mL of the resulting suspension was used to inoculate 100 maize seeds. Two plants were maintained per pot with 3 kg of capacity filled with vermiculite. Irrigation was performed using a temporized micro-sprinkler system. Hoagland nutrient solution modified by Gondim et al., (2010) was applied three times a week.

The experiment was conducted with a completely randomized design, where each treatment consisted of two vases, and four replicates. Treatments included seven endophytic isolates, besides the control which was not inoculated. Assessments were performed in two steps. Half of the plants were harvested 15 days after emergence (DAE) and the others at 30 DAE.
Assessed morphometric variables were done according to Szilagyi-Zecchin et al. (2015) and the chlorophyll content was measured with a portable chlorophyll detector, as described in Mőgor et al. (2013). Data were tested for normality using the Kolmogorov-Smirnov test and for homogeneity of their variances by the Bartlett test. Then they were subjected to analysis of variance, and when there was a significant difference, the averages were compared by Duncan test at 5% significance in Assistat® 7.6 Beta program (Silva and Azevedo, 2002).

Results

After sequence comparison of the gene 16S rRNA we identified five genera of endophytic bacteria: *Achromobacter* (LGMB176); *Enterobacter* (LGMB232 and LGMB248), *Pseudomonas* (LGMB205 and LGMB249), *Stenotrophomonas* (LGMB209), and *Bacillus* (LGMB227) (Table 1). Fifteen days after emergency (DAE), there were no significant differences between the treatments for the assessed variables (data not shown). After 30 DAE, differences could be seen compared to control. *Pseudomonas* sp. (LGMB 205) increased the volume of roots which was 22.74% bigger than in not inoculated plants (Table 2). LGMB 205 was positive to siderophore, and was the second in production of auxin (Fig. 1).

Table 1. Molecular identification of the isolates, using partial sequencing of gene 16S rRNA by comparison of sequences of GenBank database.

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Identity %</th>
<th>Identity (pb)</th>
<th>Access nº</th>
<th>Bacteria species</th>
<th>Identification of the isolated</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGMB176</td>
<td>97</td>
<td>779/799</td>
<td>HF586506.1</td>
<td>Achromobacter insuavis</td>
<td>Achromobacter sp.</td>
</tr>
<tr>
<td></td>
<td>97</td>
<td>779/799</td>
<td>HQ676601.1</td>
<td>Achromobacter xylosoxidans</td>
<td></td>
</tr>
<tr>
<td>LGMB205</td>
<td>99</td>
<td>1039/1051</td>
<td>JN210910.1</td>
<td>Pseudomonas fluorescens</td>
<td>Pseudomonas sp.</td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>1038/1051</td>
<td>KC195894.1</td>
<td>Pseudomonas poae</td>
<td></td>
</tr>
<tr>
<td>LGMB209</td>
<td>99</td>
<td>1429/1459</td>
<td>HQ641452.1</td>
<td>Stenotrophomonas pavani</td>
<td>Stenotrophomonas sp.</td>
</tr>
<tr>
<td></td>
<td>98</td>
<td>1447/1470</td>
<td>JN208898.1</td>
<td>Stenotrophomonas maltophilia</td>
<td></td>
</tr>
<tr>
<td>LGMB227</td>
<td>98</td>
<td>957/978</td>
<td>CP007244.1</td>
<td>Bacillus amylo liquefaciens</td>
<td>Bacillus sp.</td>
</tr>
<tr>
<td></td>
<td>98</td>
<td>955/978</td>
<td>GU826165.1</td>
<td>Bacillus subtilis</td>
<td></td>
</tr>
<tr>
<td>LGMB232</td>
<td>98</td>
<td>1434/1466</td>
<td>JF346886.1</td>
<td>Enterobacter cloacae</td>
<td>Enterobacter sp.</td>
</tr>
<tr>
<td></td>
<td>98</td>
<td>1439/1473</td>
<td>NR042349.1</td>
<td>Enterobacter ludwigi</td>
<td></td>
</tr>
<tr>
<td>LGMB248</td>
<td>99</td>
<td>611/620</td>
<td>KF598982.1</td>
<td>Enterobacter aerogenes</td>
<td>Enterobacter sp.</td>
</tr>
<tr>
<td></td>
<td>98</td>
<td>610/620</td>
<td>KF598981.1</td>
<td>Enterobacter cloacae</td>
<td></td>
</tr>
<tr>
<td>LGMB249</td>
<td>95</td>
<td>710/746</td>
<td>HF545842.1</td>
<td>Pseudomonas putida</td>
<td>Pseudomonas sp.</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>710/746</td>
<td>HE610888.1</td>
<td>Pseudomonas plecoglossicida</td>
<td></td>
</tr>
</tbody>
</table>

Szilagyi-Zecchin et al.
Fig. 1. Biochemical tests on the bacteria strains: production of auxin, and siderophores.

Table 2. Results obtained from the application of the test of Duncan for the comparison of means of volume (cm3) and length of roots (cm), dry mass of roots (g), foliar area (cm2), dry mass of the aerial part (g) and chlorophyll content, for the tested treatments. Means followed by the same letter in the column are not statistically different by the test of Duncan at 5% of probability.

<table>
<thead>
<tr>
<th>Strains</th>
<th>Roots</th>
<th>Aerial part</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volume (cm3)</td>
<td>Length (cm)</td>
</tr>
<tr>
<td>-</td>
<td>17.23B</td>
<td>1333.20B</td>
</tr>
<tr>
<td>LGMB176</td>
<td>14.51BC</td>
<td>1105.96B</td>
</tr>
<tr>
<td>LGMB205</td>
<td>21.15A</td>
<td>1333.42B</td>
</tr>
<tr>
<td>LGMB209</td>
<td>16.21BC</td>
<td>1021.08B</td>
</tr>
<tr>
<td>LGMB227</td>
<td>17.18B</td>
<td>2200.97A</td>
</tr>
<tr>
<td>LGMB248</td>
<td>11.15DE</td>
<td>1295.31B</td>
</tr>
<tr>
<td>LGMB249</td>
<td>13.17CD</td>
<td>1354.38B</td>
</tr>
<tr>
<td>LGMB232</td>
<td>7.82E</td>
<td>1184.33B</td>
</tr>
</tbody>
</table>

Discussion

These genera, Achromobacter, Bacillus, Enterobacter, Pseudomonas, and Stenotrophomonas are common to be found endophytically in maize roots (Pereira et al., 2011; Johnston-Monje et al., 2014; Silva et al., 2014). Some studies have reported the benefits to the maize root system by Pseudomonas producing of auxin and siderophores among other substance, like Pseudomonas sp. (LGMB205): P. putida stimulated the increase of roots (Roca, 2013) and P. fluorescens promoted growth of radicles (Montañez et al., 2012).

Roots and aerial part can be stimulated jointly, like done by LGMB227, and Vardharajula et al. (2011), determined the same effect in maize plants applying different bacteria Bacillus spp. in hydric stress conditions. But more frequently, is possible to find Bacillus stimulating shoots or roots: 39% of increases in roots volume of maize (Szilagyi-Zecchin et al. 2014); increments of 47.8% on soybean roots (Araújo et al., 2005); more leaves per plant and biomass production of maize plants (Araújo & Guerreiro, 2010); promotion of shoot growth in two seedlings tomato cultivars with added of 47.7% and 15.5% (Szilagyi-Zecchin et al., 2015).

Those increases in vegetative development of plants may be in relation with cell elongation mechanism promoted by auxins, through which they stimulate synthesis or inhibit the action of the enzymes that act on microfibrils of cell walls, weakening non covalent

Szilagyi-Zecchin et al.
bonds between polysaccharides of the wall. This results in increase of plasticity and greater cell elongations, which reflects in a greater extension of roots (Taiz and Zeiger, 2004). Auxins also stimulate growth of secondary roots, thus increasing specific area of water and nutrient absorption by the plant (Radwan et al., 2004).

Bacteria frequently have more than one property to promote growth of plants, besides auxins, the most common are production of siderophores. Siderophores are important compounds for provision of nutrients, because they are often unavailable to the plant due to their low mobility, thus, organic chelates produced by bacteria may increase availability of nutrients in the region near to the roots (Ahmad et al., 2008).

The strain LGMB 277, which produced pectinase beyond auxins and siderophores, could have an advantage over the rest of the bacteria, because pectinase may have contributed to a better observed performance. Efficiency of bacteria in penetrating the host may be advantageous to their establishment and plant growth promotion. Colonization by endophytic bacteria occurs mainly by wounds created in the emergency of lateral secondary roots (Azevedo, 1998). However, penetration can occur even in the absence of wounds. Enterobacter asburiae enters in the cotton plants (Gossypium hirsutum L.) through active penetration, by enzymatic degradation of the plant cell walls, promoted by cellulases and pectinases (Hallmann et al., 1997). Klebsiella oxytoca, capable to producing pectate lyase, when inoculated in wheat (Triticum aestivum L.) seeds was able to colonize the internal region of the roots, suggesting that penetration occurs through lysis of pectin layers (Kovtunovych et al., 1999).

Strains with best positive results in vitro confirm the effects observed in vivo. Bacillus sp. (LGMB 227) and Pseudomonas sp. (LGMB 205) had good performance in this study increasing length and volume of roots, respectively. But only LGMB 227 produced pectinase and also stimulated the aerial part. So, LGMB227 presented the best performance between the tested strains, showing potential for use in future studies aimed at developing technologies to promote the growth of plants focusing on a more sustainable agriculture.

Acknowledgement
The authors would like to thank Maria Emilia Kudla, for her help in the evaluation of the plants, Dr. Marco Antonio Nogueira of the Soil Biotechnology Laboratory of Embrapa Soja, for the help with biochemical tests, Semilia Genetica e Melhoramento LTDA, in the person of Dr. Francisco Terasawa Junior for supplying the seeds.

References

CONAB (Companhia Nacional De Abastecimento). 2015. Acompanhamento de safra

Radwan TSD, Mohamed ZK, Reis VM. 2004. Efeito da inoculação de Azospirillum e Herbaspirillum na produção de compostos indólicos.

