Prosopis Vegetative Propagation through Cuttings

Paulo César F. Lima
Forester, M. Sc., Researcher with EMBRAPA/CPATSA
Petrolina, Pernambuco

Introduction

_P. juliflora_ (Sw) DC is the only species used in the Brazilian semi-arid zone for afforestation programs with financial incentives from the Federal Government. This species, as a result of being cross-pollinated and auto-incompatible, shows extreme variation in shape, presence of thorns and fruit output.

The propagation of plants through cuttings contributes to the establishment of populations that are homogeneous in terms of resistance against pests and disease, fruit output, timber production, or any other characteristic desired. To obtain greater pod output in afforestation efforts with _P. juliflora_, planting of seedlings raised from cuttings is a good alternative.

Vegetative propagation methods have shown that material collection time, auxine type and dosage, temperature, environmental moisture, substratum, phytosanitary treatments, sprouting, size of cuttings and fertilizing all have influence on callosity formation, rooting rate and rooting intensity in cuttings.

Hartney (1980) found variations in the rooting capacity of _Eucalyptus_ spp. cuttings linked to collection time. Campinhos and Ikemori (1983) used the intermediate part of _Eucalyptus_ shoots as cuttings for rooting, leaving two pairs of leaves in each cutting. Ikemori (1975, 1976), with the purpose of finding a method for rooting of _Eucalyptus_ spp. found an effect produced by type of cutting, hormone and combined action of both, as well as by the substratum used and greenhouse conditions.


For the genus _Prosopis_, Felker and Clark (1981) obtained a success rate of over 70% in rooting of _P. alba, P. articulata, P. chilensis, P. glandulosa_ var. _torreyana, P. pallida_ and _P. velutina_, using a mixture of hormones and covering the pots containing the cuttings with polyethylene bags. Their attempts to propagate cuttings of _P. velutina_ in and outside the greenhouse did not succeed outside, even with the added hormone mixture.

Souza and Nascimento (1984), using material from basal sprouts of _P. juliflora_, obtained 70% rooting rate in cuttings 10 to 15 cm in length and 2.37 to 4.39 mm in diameter. Nascimento _et al._ (1985) obtained up to 95% rooting rate with three sprouts, leaving 2 sprouts in the aerial portion. Cuttings with 100% foliar area were used, treated with indolbutiric acid (IBA) at a concentration of 2,000 ppm.

This paper presents the rooting rates obtained with _P. alba, P. chilensis_ and _P. pallida_ in free outdoor growth, and with _P. juliflora_ cuttings taken from plants undergoing vegetative propagation, raised in pots in a greenhouse.

Material and Methods

The trial was carried out at the Agriculture and Livestock Research Center for the Semi-Arid Tropic (CPATSA) in Petrolina, Pernambuco, in a greenhouse with 30° C-35° C temperature and 70%-80% relative humidity.

The layout used was randomized blocks with ten replications, five cuttings per plot, using shoots of 12-month-old _P. alba, P. chilensis_ and _P. pallida_ growing freely outdoors, and from 18-month-old _P. juliflora_ plants undergoing vegetative propagation, cultivated in pots in greenhouse. All cuttings of each species were taken from the same plant.

The cuttings, with 10 cm in length, 3-5 mm in diameter and 4 sprouts, after application of 2,000-ppm indolbutiric acid (IBA), were planted in black polyethylene bags, 6 cm in diameter and 20 cm
long, containing a 4:1 sand-vermiculite mix. Two sprouts were left in the cutting’s aerial portion, with 100% of the leaves. As fungal treatment, 2.0 g of 4% Captan per liter of water were applied. Foliar fertilization was performed at planting, with 2.0 ml/liter of water for 420 cuttings, and weekly during the first three weeks. Thereafter, fertilization with NPK (5–17–3), at a dosage of 0.3 g per plant, was applied weekly with irrigation water until 60 days after planting. After 150 days, rooting percentage, callosity, sprouting, root dry weight and presence of nodulation were evaluated.

Results and Discussion

The data presented in Table 1 show low rooting rate for Prosopis, with 20% for P. juliflora. The highest indices were obtained for P. chilensis and P. pallida, with 54%, not differing statistically from P. alba, with 44% rooting rate.

The number of unrooted cuttings without callosity observed with P. juliflora suggests that the type of material used influences rooting rate, since Souza and Nascimento (1983), using the same method, obtained up to 70% rooting with cuttings from adult P. juliflora. For P. alba and P. chilensis, Balboa (undated) suggests application of low-strength IBA in doses of 6.25 to 100 ppm. Felker and Clark (1981) obtained over 80% rooting with P. chilensis, P. pallida and P. alba using a mixture of several hormones and covering the pots with plastic bags. In uncovered pots, the rates obtained were 30% for P. alba and 100% and 80% for P. pallida and P. chilensis, respectively.

Sprouting was observed only in rooted cuttings. P. pallida and P. chilensis showed the highest indices, with 54% and 48%, respectively. P. alba showed the highest rate of rooted cuttings without sprouts. In unrooted cuttings, the highest callosity indices found were with P. chilensis.

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rooting Rate, Sprouting and Callosity Observed in Cuttings from Different Species of Prosopis</td>
</tr>
<tr>
<td>Species</td>
</tr>
<tr>
<td>With sprouting</td>
</tr>
<tr>
<td>P. alba</td>
</tr>
<tr>
<td>P. chilensis</td>
</tr>
<tr>
<td>P. juliflora</td>
</tr>
<tr>
<td>P. pallida</td>
</tr>
</tbody>
</table>

* Figures followed by the same letter do not differ from each other as per Tukey’s test at 5% probability level.

<table>
<thead>
<tr>
<th>TABLE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values Found for Root and Sprouting in cuttings from Different Species of Prosopis</td>
</tr>
<tr>
<td>Species</td>
</tr>
<tr>
<td>P. alba</td>
</tr>
<tr>
<td>P. chilensis</td>
</tr>
<tr>
<td>P. juliflora</td>
</tr>
<tr>
<td>P. pallida</td>
</tr>
</tbody>
</table>

Shoot length and root dry weight are shown in Table 2 above. P. pallida showed the greatest difference in shoot length, with standard deviation of 20.1 cm from the mean. P. chilensis presented a mean of 1.8 sprouts per cutting. The lowest index was observed in P. juliflora, with one sprout per cutting.
Conclusions

In general terms, the rooting rates obtained with the species studied were low. No conclusions may be derived regarding the use of *P. juliflora* cuttings taken from plants undergoing vegetative regeneration and placed in greenhouse, as no trial was made with cuttings obtained from adult plants under the same conditions.

It is necessary to carry out further studies on hormone mixture and dosage, plant age and cutting quality in order to develop successful techniques for vegetative propagation with *Prosopis*.

Planting of seedlings raised from cuttings is a good alternative for obtaining higher pod output in afforestation efforts with *P. juliflora*. 
References


IKEMORI, Y. K., 1975: "Resultados preliminares sobre enraizamento de estacas de Eucalyptus spp.," Aracruz-ES. Centro de Pesquisas Florestais da Aracruz, 12 p., illust. (Centro de Pesquisas Florestais da Aracruz, Informativo Técnico, 1).


227