6TH INTERNATIONAL TRITICALE SYMPOSIUM

Proceedings
of
oral and poster
presentations

3 – 7 September 2006
Stellenbosch, South Africa

Organized and hosted by
Stellenbosch University Plant Breeding Laboratory (SU-PBL)
and
International Triticale Association (ITA)
Sponsors

The ITA and the organizing committee of the 6th International Triticale Symposium would like to thank the following companies for sponsorships:

Platinum: Wintersteiger, Stellenbosch University Plant Breeding Laboratory - Welgevallen
Gold: Allens Real Estate, BASF SA, UAP Crop Care
Silver: SSK, Afgri Seed

International Triticale Association

Executive

President H. Roux
Treasurer/Newsletter R. Jessop
Honorary President N. Borlaug

Executive Secretary N. Darvey
Past President E. Arseniuk

Country Representatives

Algeria A. Benbelkacem
Brazil A. Nascimento (Jr.)
China S.Y. Shu
India S. Dhindsa
Poland E. Arseniuk
South Africa H. Roux

Benelux Canada Germany Mexico Romania U.S.A.

G. Haesaert D. Salmon G. Oettler I. Ortiz-Monasterio G. Butnaru R. Myer

6th International Triticale Symposium

Organizing Committee
H. Roux (Chair)
L. Snyman
G.F. Marais
W.C. Botes K.W. Pakendorf

Editorial Committee
W.C. Botes D. Boros
N. Darvey P. Gustafson
R. Jessop G.F. Marais
G. Oettler D. Salmon

Edited by SU-PBL, Welgevallen Experimental Farm, Stellenbosch, South Africa
Phone: +27-21-808-4660, Fax: +27-21-808-3767, E-mail: wcb@sun.ac.za
Website: http://www.sun.ac.za/genetics

Copyright © 2006 Stellenbosch University Plant Breeding Laboratory & International Triticale Association

ISBN 9-620-37008-4
Table of contents

In memorial

In memoriam of Professor Tadeusz Wolski 2

Oral presentations

The association of managed drought stress regimes in Mexico with global triticale yield evaluation environments
R. M. Trethowan, K. Ammar, M. P. Reynolds and J. Crossa ... 7

Aluminum tolerance in Triticale as compared to its parental species
A. Aniol ... 15

Pollen grain expression for osmotic adjustment in triticale genotypes
M. Barary, N.W.M. Warwick, A.M. Taji and R.S. Jessop ... 19

Thinopyrum distichum – can it be used to improve the salt tolerance of triticale?
G.F. Marais, A.S. Marais and M. Ghai ... 25

Occurrence and relative importance of triticale diseases in Poland
E. Arseniuk, T.Oleksiak, A. Strzembicka, E. Reszka and W. Poznan ... 28

Geomyza tripunctata in Belgium
V. Derycke, G. Haesaert, J. Latré and B. Heremans .. 33

An approach to developing a marker assisted selection system for tolerance to pre-harvest sprouting in Triticale

Creation of new initial material for triticale breeding
U. K. Kurkiev, K. U. Kurkiev .. 45

Genetic mapping and marker assisted breeding in Australian triticale
J.L. Reinheimer, R.L. Fox and H. Kuchel .. 48

Evolution of disease pressure on triticale under Belgian growing conditions: overview of the last 20 years
G. Haesaert, V. Derycke, J. Latré and B. Heremans ... 53

Triticale fodder and grain production by small-scale dairy farmers in North West Bangladesh
Z.I. Sarker, S.R. Waddington, M.A. Sufian, M.E. Haque and M.A. Hoque 59

Developing a hybrid seed production system and evaluation of heterosis levels in hybrids from CIMMYT’s spring triticale germplasm
K. Ammar, J. Crossa, W.H. Pfeiffer and G. Alvarado ... 65

The Pampa rye cytoplasm as a male sterilizing agent for hybrid breeding of triticale
B. Łapiński and J. Fryczkowski .. 68

Progress in CMS development for hybrid triticale
R. Warzecha and K. Salak –Warzecha .. 72

Microspore regeneration system for triticale transformation via agrobacterium
S. Oleszczuk, S. Sowa and J. Zimny .. 76

Isolated microspore culture in a cyclical breeding system for the production of inbred lines and hybrids
N.L. Darvey, X. Zhao and R. Trethowan .. 77

The South African Triticale breeding programme: current status
H.S. Roux, G.F. Marais, J.E. Snyman and W.C. Botes .. 80

Canadian Triticale Biorefinery Initiative
F. Eudes .. 85

Genetic variation for ethanol production in winter triticale
E.M. Thiemt, T. Senn and G. Oettler .. 89

Proceedings of the 6th International Triticale Symposium
Evaluations of triticale grain in pig diets
R.O. Myer and M.J. Azain .. 94

Triticale is a quality fodder, feed and food for small-scale farmers in Bangladesh

Triticale production and possible use as milk for small ruminants in Algeria
A.Benbelkacem, Y.Dib and K.Ammar .. 104

Triticale fodder and grain utilization by dairy cattle and poultry in Bangladesh
N.R. Sarker, M.E. Haque, K.S. Huque, Q.M.E. Huque and S.R. Waddington ... 108

Antioxidants in triticale grains
L. Bona, N. Adányi, D. Hussein, R. Farkas, E. Szabó, Gy. Hajós, E. Acs and L. Purnhauser 113

Triticale of high end-use quality enhances opportunities to increase its value in world cereals market
D. Boros ... 118

Poster presentations

Effect of genotype (G) and genotype-environment interaction (GE) of yield components in triticale, rye and durum wheat across South Banat conditions
G. Butnaru, I. Sarac and S. Ciulca .. 125

Mitotic analysis of triticale, wheat and rye

Direct somatic embryogenesis and regeneration in triticale: application to genetic engineering
F. Eudes .. 129

Anthocyanin expression in transgenic triticale embryos
K.M. Doshi, F. Eudes, A. Laroche and D. Gaudet .. 131

The influence of D(R) substitutions on uptake and utilization of nitrogen and phosphorus in hexaploid triticale
T. Oracka and B. Łapiński .. 133

Resistance to Fusarium head blight and accumulation of ATP, ergosterol and secondary Fusarium metabolites in kernels of doubled haploid lines of winter triticale cultivar Bogo
T. Góral, M. Busko and J. Perkowski .. 136

Resistance of Polish winter triticale cultivars to Fusarium head blight and accumulation of Fusarium-mycotoxins in grain
T. Góral and P. Ochodzki .. 140

Development of PCR-based DNA markers linked to partial resistance of triticale to Stagonospora nodorum blotch
E. Reszka, E. Arseniuk and P.P. Ueng .. 144

Blumeria graminis sp. – an emerging problem of triticale breeding in Poland
A. Strzembicka, E. Arseniuk and W. Poznań ... 145

Effectiveness of triticale breeding at DANKO
Z. Banaszak and K. Marciniak .. 147

Isolated microspore culture of Canadian 6x triticale cultivars
F. Eudes and E. Amundsen .. 150

BRS Minotauro, the first truly Brazilian triticale cultivar
A. Nascimento Junior, A.C. Baier and A.C.S. Albuquerque 152

Methods for fusarium head blight field screening used at Embrapa, Brazil
M.I.P.M. Lima and A. Nascimento Junior .. 154

Selectivity and efficacy of herbicides for use on winter cereals
L. Vargas, E.S. Roman and A. Nascimento Junior 156

Proceedings of the 6th International Triticale Symposium
Mitotic analysis of triticale, wheat and rye

National Wheat Research Center, Brazilian Agricultural Research Corporation (Embrapa Trigo) P.O. Box 451, 99.001-970 Passo Fundo, Brazil

Roots tip cells of ten octoploid and hexaploid triticale genotypes, four hexaploid wheat varieties and one rye variety were studied employing five glass slides (replications) per genotype. In each replication mitotic cells were studied in batches of 100 so as to provide sample sizes of 100; 200; 300; 400; and 500 cells (for a total of 500 to 2,500 cells / genotype). In every batch of 100 cells, those in prophase, pro-metaphase, metaphase, anaphase and telophase and presenting mitotic abnormalities (chromosome bridges or lagging chromosomes) were counted. The average incidence of abnormalities was 2.16%, ranging from 0.44% to 2.80% for 'Frontana' wheat and 'Embrapa 53' hexaploid triticale, respectively. There was no significant difference among the results obtained using 100; 200; 300; 400 or 500 cells per glass slide, suggesting the possibility of reducing the number of cells to be analyzed per replication. It can be concluded that triticale and its parental genera have low levels of mitotic abnormalities. There were no statistically significant differences among the three genera or between the hexaploid and octoploid triticcales that were evaluated.

Introduction

Aiming to evaluate if the genotypes of triticale and their parental can be differentiated by using the mitotic division frequency of the root tip cell cycle and further correlation can be made with agronomic characteristics, the mitotic cycle of the root tip cells of ten octoploid and hexaploid triticale genotypes, four hexaploid wheat varieties and one rye variety were analyzed.

Materials and Methods

Young roots with ± 1.5 cm were collected from disinfected seeds placed in a moistened germination paper, and fixed in 3:1 (ethyl alcohol: acetic acid). The material was hydrolyzed in 5N HCl for 20 minutes at room temperature. The root tips were later squashed in 45% acetic acid. The slides were air-dried, after rapid immersion in liquid N, and stained with 2% Giemsa solution, pH 6.8. Each slide was made with one root tip and five glass slides (replications) per genotype were employed. In each replication mitotic cells were studied in batches of 100 so as to provide sample sizes of 100; 200; 300; 400; and 500 cells (for a total of 500 to 2,500 cells / genotype). In every batch of 100 cells, those in prophase, pro-metaphase, metaphase, anaphase and telophase were counted, and that presenting mitotic abnormalities (chromosome bridges or lagging chromosomes) also.

Results and Discussion

Lagging chromosomes were observed in 0.08% only in the genotype TcI PFT 305. Anaphasic bridges occured only in four genotypes (Frontana wheat, TcI Embrapa 53, TcI PFT 305 and TcI Octo 71) ranging from 0.04% to 0.16%. For all genotype, cells in interphase were observed in high frequency, ranging from 96.44% (TcI Embrapa 53) to 99.36% (Frontana wheat). The average frequency of
division cells was 2.16%, ranging from 0.64% (Frontana wheat) to 3.56% (Tcl Embrapa 53). There was no significant difference among the results obtained using 100; 200; 300; 400 or 500 cells per glass slide, suggesting the possibility of reducing the number of cells to be analyzed per replication. The general frequency of cellular division was the same (2.2%) in considering all the counting groups. But when 2,500 cells were considered, practically all genotypes differed from each other. It can be concluded that triticale and its parental genera have low levels of cells in division and that the mitotic abnormalities are rare. There were no statistically significant differences among the three genera or between the hexaploid and octoploid triticale that were evaluated.