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solar UV readings were integrated over six hours, producing a 
quantitative output in kJ.m-2. This unit was calibrated using the 
equation proposed by Quaite et al. (1992). The average from the 
measurements throughout the experiment was calculated and the 
amount of solar UV-B radiation received by plants was 6.82 kJ.m-2 
per day.  

The plots with UV-B+ were also monitored and the readings were 
integrated over 4 h per day and the average for the whole 
experiment was 11.28 kJ.m-2 per day. Therefore, UV-B+ treatment 
received (in average) 4.46 kJ.m-2 per day above the solar UV-B 
radiation. The plots with UV-B- treatment were also measured and 
showed no UV-B incidence (0 kJ.m-2).  
 
 
Plant sampling 
 
The first sampling was performed 20 days after sowing (stage of 
development - V3), followed by two other samplings, one after fifty 
days (stage of development - V6) and the last one after ninety days 
(stage of development - R1). Samples consisted of five individual 
leaves taken from each replicate (fifteen leaves per treatment). The 
leaves of the same size were randomly chosen from the top of the 
plant and in the center of the structure. Each leaf was placed in a 
sterile plastic bag and transported to the laboratory for immediate 
processing. 
 
 
Isolation of epiphytic bacteria 
 
For the isolation of epiphytic bacteria, 10 leaf discs (1.76 cm2 each) 
were placed in 50 ml of PBS buffer. The flasks were subjected to 
ultrasound (25 kHz) for 30 s and then agitated (100 rpm) at 25°C for 
2 h. Serial dilutions of cell suspensions were performed and were 
plated in culture medium containing Tryptone Soya Broth-Agar 
(TSBA). The plates were incubated at 25°C for 10 days. The count 
of colony forming unit (CFU) per square centimeter of plant tissue 
fresh weight (CFU.cm-2.fw-1) was performed for the estimation of 
bacterial abundance. Bacterial colonies were purified and kept at -
80°C (Araújo et al., 2002). 
 
 
Resistance of bacterial isolates from soybean phyllosphere to 
UV-B 
 
The resistance of individual bacterial isolates to UV-B (peak at 310 
nm) was assessed by determining the minimum inhibitory dose 
(MID) needed to inhibit cell growth on TSBA medium as compared 
to cells grown in non-irradiated plates and also for inhibition of 
Escherichia coli cells, sensitive to UV radiation (Kuhlman et al., 
2005). 

Cell densities were adjusted to an optical density of 0.1 (550 nm) 
which corresponded to a population of about 108 CFU.mL-1. The 
cells were serial diluted in NaCl (0.85%) until the concentration of 
104 cells was reached and 25 μL were plated onto TSBA (10%). 

Lamps (UVB EL-313, Q-Lab, USA) were covered with a 0.1 mm 
thick film of cellulose acetate (Crystal) in order to filter a portion of 
the spectrum of UVC (280-290 nm). Irradiance was measured with 
a spectrometer. Under the conditions used in this study, the 
weighted irradiance value was approximately 0.52 J.m-2.s-1. 

The lamp was turned on fifteen minutes before the use to allow 
radiation stabilization. Bacterial cultures grown on TSBA (10%) 
were exposed for 0, 30, 60, 90, 120 and 150 min. Then, they were 
incubated for 72 h at 25°C in the dark to minimize 
photoreactivation, and CFU was determined.  
 
 
DNA extraction from phyllosphere samples 
 
The bacterial wash solution was centrifuged at 3,000 xg for 10 min 

 
 
 
 
and the cells resuspended in 500 µL volumes of TE (10mM Tris-
HCl, pH 8.0). The cells were added to 0.2 g of beads and shaken in 
a homogenizer (Mine-Beadbeater TM, Biospec Products) for 30 s at 
350 rpm. Subsequently, extraction was performed according to  
Araújo et al. (2002). 
 
 
Effects of UV-B radiation on unculturable bacteria from 
phyllosphere by denaturing gradient gel electrophoresis 
(DGGE) analysis 
 
First, a specific PCR reaction was performed containing 1 µL of 
DNA in thirty-five cycles of amplification with primers selective for 
16S rRNA gene of Bacteria, primers R1378 (5´-
CGGTGTGTACAAGGCCCGGGAACG-3´) and 27F (5’-
AGAGTTTGATC(A/C)TGGCTCAG-3) (Heuer et al., 1997) and 
Class β-Proteobacteria, primers 1492R (5′-
TACGG(C/T)TACCTTGTTACGACTT-3) and  F948β (5’-
CGCACAAGCGGTGGATGA-3’) (Gomes et al., 2001). β-
Proteobacteria was chosen because there are some evidence that 
members of this class are representative in plant surfaces (Andrews 
and Harris, 2000) and Pseudomonas spp. because they show 
tolerance to UV radiation (Sundin et al., 1996; Kim and Sundin, 
2000), probably due to a set of uvr genes that could enhance 
resistance to ultraviolet radiation (Molina et al., 2011). The selective 
primers for Pseudomonas spp. were used as described by Garbeva 
et al. (2004). 

The amplification product of each specific group reaction was 
used in a second PCR amplification with primers for DGGE. These 
reactions were performed in a volume of 50 µL containing 
approximately 20 ng of template DNA and 400 nM of each universal 
primer U968-GC and R1378 using thirty-five amplification cycles 
with annealing temperature of 55°C. The PCR products were 
evaluated by electrophoresis on agarose gel (1% w/v) in 1X Tris-
acetate-EDTA (TAE buffer), stained with ethidium bromide (1 mg.L-

1) and viewed under ultraviolet light. The DGGE was performed 
according to Heuer et al. (1997). 
 
 
Statistical analysis 
 
The DGGE profiles were analyzed and compared using the 
software BioNumerics version 6.01 (Applied Maths, Belgium), 
according to Andreote et al. (2009). 

Multivariate analysis was held in the software Canoco (Canoco 
4.5, Biometry, Wageningen, The Netherlands). The bands were 
considered as species and their relative intensities considered as 
frequency of occurrence. The environmental variables used in this 
analysis were the plant genotype (two cultivars), the stage of plant 
development (three samplings) and the UV radiation (3 dosages). 
 
 
RESULTS AND DISCUSSION 
 
The knowledge on the structure and composition of 
species that make up bacterial communities associated 
with plants is fundamental to understanding how 
biological processes can be influenced by environmental 
factors. The interaction between plants and bacteria can 
occur in several ways, leading to disease or benefits in 
plant development (Ballare et al., 2011). 
 
 
Epiphytic culturable bacteria in soybean leaves 
 
The count of the culturable density of epiphytic bacterial
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Figure 5. Redundancy analysis (RDA) between the profiles of DGGE bands, samples obtained 
from the leaves of soybean cultivar IAC 100 (A, B and C) and BRS 262 (D, E and F), with 
universal primers for Bacteria (A and D); β-proteobacteria-specific (B and E) and for the genus 
Pseudomonas (C and F). The environmental factor marked with * is significant for determining 
the composition of bacterial communities (p < 0,05) according to the permutation test of Monte 
Carlo. SD - Stage of development. 

 
 
 
phyllosphere of peanut leaf was observed. 
 
 
DGGE analysis of bacterial community epiphytic 
soybean 
 
Redundancy analysis (RDA) showed a significant 
correlation between species distribution (bands in DGGE 

profiles) and environmental factors (Figure 5). The main 
factor influencing the epiphytic bacterial community 
composition of soybeans was the developmental stage. 
The lambda-1 values led to the separation of samples on 
the first axis according to their stage of development, and 
in the second axis according to UV-B treatments. 
However, significant values of Monte Carlo permutation 
test were obtained only for the effect of plant stages of

A  D 

1.5 

1.5 

SD*

Irradiation

1.5 1.5 1.5

SD* 

Irradiation 

B  E 

SD*

Irradiation

SD* 

Irradiation 

C  F 

1.5 1.5

1.5 

SD*

Irradiation

1.5 

SD* 

Irradiation

Solar UV – V3 
Solar UV – V6 
Solar UV – R1 

UV‐B increased – V3
UV‐B increased – V6
UV‐B increased – R1

Negative control – V3
Negative control – V6
Negative control – R1

Environmental variables



2922          Afr. J. Microbiol. Res. 
 
 
 

Table 1. Variance explained by each of the environmental variables (solar UV-B, increased 
UV-B and negative control) and stage of plant development, in phyllosphere bacterial 
communities (Bacteria, β-Proteobacteria and Pseudomonas) from IAC 100 and BRS 262 
soybean. Values were obtained by RDA correlating DGGE patterns with environmental 
variables on the basis of Monte Carlo permutation test. 
 

Environmental variable 
IAC 100 BRS 262 

Group 
Lambda-1 p value Lambda-1 p value

Stage of development 
0.26 0.002 0.22 0.002 Bacteria 
0.29 0.002 0.17 0.002 β-Proteobacteria 
0.12 0.008 0.2 0.004 Pseudomonas 

      

Irradiation 
0.05 0.142 0.06 0.062 Bacteria 
0.05 0.102 0.04 0.368 β-Proteobacteria 
0.02 0.688 0.04 0.312 Pseudomonas 

 
 
 
development (p < 0.05) (Table 1). 

In general, there was a significant difference in 
epiphytic bacterial community of soybean cultivars 
according to the phenological stage of the plant as 
compared to the increase of irradiation received. This 
becomes apparent when we look at the group of Bacteria 
(Figure 4A and D), unlike the group of β-Proteobacteria 
and Pseudomonas, which has, a unique feature in the 
composition of its community, having no interaction with 
the environmental factors studied, that is, irradiation nor 
stage of development. 

Also, it is possible to observe that samples obtained for 
Bacteria (Figure 5A and D) correlated with the stage of 
development V3 for IAC 10 and R1 for BRS 262. In 
contrast, communities of β-Proteobacteria and 
Pseudomonas showed a more disperse grouping and 
were not significantly influenced by the studied 
environmental factor (stage of development and 
irradiation). 

It was possible to observe that stage of development 
R1 (flowering) in group Bacteria was more clustered than 
the remaining samples in both analyzed genotypes, 
confirming the data from bacterial isolation, in which there 
was a greater wealth of physiological bacterial groups at 
this stage of the host. This may suggest that during this 
phase, bacterial populations are well established and 
under favorable conditions, enabling the microbial 
population to grow faster (Kuklinsky-Sobral et al., 2004; 
Beattie and Lindow, 2009). 

In general, the differences observed on epiphytic 
bacterial community of soybean due to the phenological 
stage were more pronounced as compared to the effect 
of received radiation. This occurs when we look at β-
Proteobacteria and Bacteria, however, Pseudomonas 
showed no significant correlation to any of the evaluated 
parameters. The genus Pseudomonas is widely studied 
in association with plants and it has been described as 
highly competitive in natural environments and known to 
produce antibiotics (De Souza and Raaijmakers, 2003), 

siderophores (Zawadzka et al., 2006; Bakker et al., 2007) 
and others compounds, which may explain this feature of 
high competitiveness and ability to colonize niches 
present in the plant. 

Several studies have shown that different cultivars of 
the same plant species have different microbial popu-
lations in the phyllosphere, for example, between culti-
vars of tomato and pepper (Correa et al., 2007; Rasche 
et al., 2006) and among varieties of potato (Sessitsch et 
al., 2002). Nevertheless, microbial communities selected 
for different genotypes may show similar responses to 
environmental variables (Whipps et al., 2008).  

Although the plant genotype appears to be an 
important factor in determining the structure of microbial 
communities of the phyllosphere, the control mechanisms 
of these interactions need to be elucidated. Different from 
what has been observed in this study, other reports 
indicate that the tolerance to UV radiation is probably 
important in the selection for survival and growth in the 
phyllosphere using culture independent techniques 
(Kadivar and Stapleton, 2003; Stapleton and Simmons, 
2006).  

Despite the progress made in elucidating the structure 
and distribution of microbial communities in the 
phyllosphere, little is known about the functions of its 
community to adapt to different genotypes of plants. In 
this study, cultivation-independent analysis showed that 
the difference in the structure of bacterial communities 
from phyllosphere of soybean, especially for Bacteria and 
β-Proteobacteria, is related to the stage of plant growth 
and does not show a significant influence of different field 
treatments (solar UV-B, UV-B+ and negative control).  

In general, the exploitation of the microbial diversity 
associated with the phyllosphere and their functional 
roles in the ecosystem are essential not only to the 
understanding of the ecology of microorganisms, but also 
for the comprehension of climate changes of global 
importance. This is due to the several environmental 
changes that are being imposed on terrestrial ecosystems, 



 
 
 
 
including the increase in UV-B radiation. With this, it is 
possible to understand the response of microbial 
communities towards this problem (Caldwell et al., 2003). 
Moreover, the knowledge of such biodiversity may result 
in new biotechnology products for medical and 
environmental importance, such as pigments that could 
be further applied in cosmetic products and sunscreen.  
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