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Abstract: Arbuscular mycorrhizal fungi (AMF) are an important biotic factor that influences tropical ecological
succession and differently affect the woody species belonging to different successional stages. However, little is known
about the influence of AMF on growth and reproduction of herbaceous and shrubby species of early phases of tropical
succession. Thus, we assessed the effect of AMF on the development of 27 heliophilous herbaceous and shrubby
tropical species. Plants were grown in greenhouse, in low- and high-fertility soils, with or without AMF, for 100
d. Most species grown with AMF exhibited high root infection intensity (�80%), irrespective of soil fertility. In the
low-fertility soil, non-mycorrhizal plants exhibited about 88% less shoot dry mass (SDM) than mycorrhizal plants, and
AMF were crucial for the survival of most species. Non-mycorrhizal plants also had lower relative growth rate (RGR),
total leaf area (TLA), leaf area expansion (LAE) and total root length (TRL). Six species flowered in the low-fertility
soil, and flowering increased with AMF in one plant species and four species only flowered when mycorrhizal. In the
high-fertility soil, non-mycorrhizal plants exhibited about 13% less SDM than mycorrhizal plants and also exhibited
lower TLA, LAE, and nutrient concentrations in shoots. On the other hand, no major changes were observed for RGR,
TRL and root dry mass for most of the species. Sixteen plant species flowered in the high-fertility soil, but most had
earlier (11) and more abundant (10) flowering when mycorrhizal. Thus, AMF have different influences on the survival,
growth and flowering of herbaceous and shrubby tropical species, depending on soil fertility: in low-fertility soil, AMF
especially affect the survival, growth and flowering, whereas in high-fertility soil, AMF mainly influence the shoot
nutrient concentrations and flowering.
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INTRODUCTION

Heliophilous herbaceous and shrubby species typically
colonize and dominate early successional sites in the
tropical region. Over time, these plants are replaced by
woody species that have a short lifespan, are shade-
intolerant and which will also be reduced in abundance
in the community when shade-tolerant species start to
get established. These latter species typically have a
long lifespan and predominate in the late stages of the
succession (Guariguata & Ostertag 2001). According

1 Corresponding author. Email: wzangaro@uel.br

to Zangaro et al. (2000), arbuscular mycorrhizal fungi
(AMF) are one of the main biotic factors involved in the
establishment of plants during succession in the tropics.
These fungi establish symbiosis with more than 80% of
terrestrial plants (Smith & Read 2008) and their hyphae
increase considerably the amount of surrounding soil
that can be explored for nutrient acquisition (Smith et
al. 2011). As a result, mycorrhizal plants produce more
biomass, flowers and seeds than non-mycorrhizal plants
(Koide & Dickie 2002, Stanley et al. 1993). In return,
AMF receive photoassimilates from the host for their
metabolism, production of internal and external hyphae
and propagation structures (Smith & Read 2008).
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Plant species belonging to different successional groups
have different relationships with AMF, since higher
densities of spores in soil (Mangan et al. 2004, Stürmer
& Siqueira 2011) and higher intensity of root infection
(Zangaro et al. 2012a, 2013, 2014) have been found
in sites colonized by plants at early successional stages,
like herbaceous and shrubby species, compared with
sites colonized by woody species at later stages. Such
high maintenance of AMF by early-successional plant
species can be a crucial condition for sustaining their high
nutritional demands, survival and growth especially in
low-fertility soils (Zangaro et al. 2013). Although low-
fertility soils are common at the beginning of tropical
succession, this process can also occur in fertile or fertilized
soils, such as abandoned agricultural fields, where
plants may not be reliant on AMF for their nutritional
requirements. When plants colonized by AMF grow in
high-fertility soils, the energetic cost of the symbiosis
can be greater than the nutritional benefits, leading to
plant growth depression (Johnson et al. 1997). Many
studies have shown that plants grown in high-fertility
soils, especially phosphorus-rich soils may decrease AMF
root infection (Grman 2012, Johnson 2010, Johnson et al.
1997) to reduce the C expense. However, Zangaro et al.
(2013) quantified high AMF infection intensity (about
90%) in roots of herbaceous and shrubby plants that
grew spontaneously in a tropical abandoned agricultural
field, which contained high levels of phosphorus and
where soybean was cultivated 5 y before. It is possible
that this high maintenance of AMF in roots may provide
nutritional benefits to this plant functional group even in
fertile soils, since AMF increase mineral nutrient transfer
in roots that provide high amounts of carbohydrates
(Kiers et al. 2011).

Several studies have been conducted assessing the
importance of AMF on the growth and reproduction of
herbaceous and shrubby species of temperate regions,
which predominate in several stages of the succession
in prairie and grassland ecosystems (Busby et al.
2011, Klironomos 2003, Koide & Dickie 2002, Wilson
& Hartnett 1998). However, little is known on the
importance of AMF for vegetative and reproductive
development of heliophilous herbaceous and shrubby
tropical species that occur in the early-successional stages
in both low- and high-fertility soils. Therefore, a trial was
carried out to assess the influence of AMF on the growth
and flowering of 27 herbaceous and shrubby early-
successional species grown in a low- and high-fertility soil.
We hypothesized that (1) plants exhibit high levels of AMF
root infection in both soils; (2) mycorrhizal plants exhibit
higher shoot dry mass than non-mycorrhizal plants in
low-fertility soil, but lower or not different shoot dry mass
in high-fertility soil; (3) AMF are crucial for plant survival
in low-fertility soil, but not in high-fertility soil; (4) AMF
increase plant flowering in both levels of soil fertility.

METHODS

Plant species

Seeds were collected during 2010, according to their
availability, at sites with a predominance of herbaceous
and shrubby vegetation (e.g. pastures, abandoned fields
under initial succession, border of forest fragments) in the
municipality of Londrina (23°27′S, 51°15′W), Paraná
State, Southern Brazil, then stored at 5 ºC until the sowing,
performed in February 2011. All species were identified
and characterized according to Kranz et al. (2009), Leitão
Filho et al. (1972) and Lorenzi (2000) (Table 1). We
considered the plant species as belonging to the same
ecological group because they naturally occur and grow
at the same time in earlier-successional sites and have
very similar niches.

Soil sampling and preparation

The soil was a clay Rhodic Ferralsol (FAO 1994), collected
at the Universidade Estadual de Londrina (State University
of Londrina), at sites with low and high fertility. The high-
fertility soil was taken from a former garden that received
constant organic manure, had been abandoned for 10
y and had this practice ended prior to abandonment.
Currently, this area is predominantly colonized with
Paspalum notatum Flüggé and other herbaceous species.
The low-fertility soil was collected about 250 m away
from the sample points of high-fertility soil, at a site that
had the A horizon and part of the B horizon removed
25 y ago, resulting in a low-fertility soil now colonized
by P. notatum. At each site, four points, 20 m apart,
were randomly selected and soil samples were taken at
0–10 cm depth, homogenized and sieved (4 mm). These
soils were sterilized with steam for 72 h to eliminate
AMF propagules. After that, the soils were transferred
to plastic pots (1500 cm3), rewetted and kept moist and
without plants for 150 d. To restore the original microbial
flora of the sterilized soils, we added 100 mL of a filtrate
obtained from each of the original fresh soils, without
AMF propagules, every 30 d until planting. The soils were
chemically analysed for mineral N according to Keeney &
Nelson (1982), for micronutrients according to Defilippo
& Ribeiro (1997) and for other attributes according to
Pavan et al. (1992) (Table 2).

AMF inoculum preparation, inoculation, sowing and early
growth

A mixture of spores of AMF native species was obtained
from the rhizosphere of P. notatum and other herbaceous
species in the lawn of State University of Londrina to
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Table 1. Habit and lifespan of the studied tropical plant species commonly found at early
successional sites in southern Brazil.

Species Habit Lifespan

Amaranthaceae
Amaranthus hybridus L. Herbaceous Annual

Asclepiadaceae
Asclepias curassavica L. Herbaceous Annual

Asteraceae
Baccharis sp. Shrubby Perennial
Hypochaeris brasiliensis (Less.) Hook. & Arn. Herbaceous Annual
Porophyllum ruderale (Jacq.) Cass. Herbaceous Annual
Vernonia cognata Less. Subshrubby Perennial
Vernonia polyanthes Less. Shrubby Perennial

Bignoniaceae
Tecoma stans (L.) Juss. ex Kunth Shrubby Perennial

Cucurbitaceae
Momordica charantia L. Herbaceous Annual

Fabaceae
Chamaecrista nictitans (L.) Moench Herbaceous or subshrubby Perennial
Crotalaria incana L. Herbaceous or subshrubby Annual
Indigofera hirsuta L. Herbaceous Annual
Mimosa invisa Mart. ex Colla Subshrubby Perennial
Senna obtusifolia (L.) H.S. Irwin & Barneby Subshrubby Annual

Lamiaceae
Hyptis spicigera Lam. Herbaceous Annual
Leonotis nepetifolia (L.) R. Br. Herbaceous or subshrubby Annual
Leonurus sibiricus L. Herbaceous Annual

Malvaceae
Sidastrum micranthum (A. St.-Hil) Fryxell Subshrubby Perennial

Poaceae
Cenchrus echinatus L. Herbaceous Annual
Chloris elata Desv. Herbaceous Perennial
Digitaria insularis (L.) Fedde Herbaceous Perennial
Eragrostis pilosa (L.) P. Beauv. Herbaceous Annual
Melinis minutiflora P. Beauv. Herbaceous Perennial
Melinis repens (Willd.) Zizka Herbaceous Annual
Pennisetum purpureum Schumach. Herbaceous Perennial
Sorghum arundinaceum (Desv.) Stapf Herbaceous Annual

Solanaceae
Solanum viarum Dunal Herbaceous Annual

preparation of AMF soil inoculum. These spores were
removed from soil by wet sieving, inoculated in roots of P.
notatum and cultivated for 5 mo in pots with previously
sterilized soil.

Each plant species was grown in the combination of soil
fertility (low and high) with mycorrhizal condition (with
and without AMF), in five replicates. The cultivation pots
had a volume of 1500 cm3. In half of the cultivation pots
containing low- and high-fertility soils, 2 g of fresh AMF
soil inoculum (with approximately 1430 spores, along
with colonized roots and hyphae) were added in a hole in
the centre of the pot, 2 cm below the surface. In the other
half of the pots, 2 g of the AMF soil inoculum previously
sterilized (control group) were added in the hole. About 20
seeds of each plant species were sown in the hole on top of

the soil inoculum and covered with 1 cm of the respective
soil. Three days after emergence, five seedlings from each
pot were collected for evaluation of the initial dry biomass
to be used in the estimation of the relative growth rate.
Seedlings were thinned to one per pot and kept in a
greenhouse for 100 d, under 75% sunlight, without air
temperature control and received water daily. During the
growth period, the time to flowering was recorded.

Plant growth, flowering and nutrient concentration

After 100 d of growth in the greenhouse, plants were
separated into shoot and root. The total root length
(Tennant 1975), number of flowers and total leaf area
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Table 2. Mean (± SD) for chemical attributes of the substrates used
for plant growth from low- and high-fertility soils. Means followed
by the same letter do not differ by Student’s t-test at P < 0.05 (n =
4). Mineral N = ammonium + nitrate. w = Walkley–Black method;
x = extraction with 2 M KCl; y = extraction with Mehlich-1; z =
extraction with 1 M KCl.

Low-fertility soil High-fertility soil

pH (CaCl2) 4.90 ± 0.08b 5.20 ± 0.06a
H+ + Al+3 (cmol (+) L−1) 4.78 ± 0.20b 5.45 ± 0.20a
C (%)w 0.66 ± 0.42b 2.02 ± 0.14a
Mineral N (mg kg−1)x 9.72 ± 4.11b 19.1 ± 1.91a
P (mg L−1)y 0.89 ± 0.10b 36.0 ± 3.01a
K (cmol (+) L−1)y 0.34 ± 0.01b 0.88 ± 0.15a
Mg (cmol (+) L−1)z 2.00 ± 0.18a 1.97 ± 0.14a
Ca (cmol (+) L−1)z 3.09 ± 0.10b 8.22 ± 0.31a
Al (cmol (+) L−1)z 0.08 ± 0.01a 0.04 ± 0.02b
Cu (cmol (+) L−1)y 16.0 ± 0.96a 17.4 ± 0.87a
Zn (cmol (+) L−1)y 32.5 ± 1.37a 16.7 ± 1.31b
Fe (cmol (+) L−1)y 104 ± 17.2a 60.1 ± 5.84b
Mn (cmol (+) L−1)y 219 ± 13.7b 277 ± 12.7a

were recorded for the fresh material. All leaves of each
plant were collected, scanned and the total leaf area
was calculated using Digital Areas Determiner software,
except for Poaceae species, in addition to Chamaecrista
nictitans and Mimosa invisa. The five most expanded leaves
were used for determination of the response to AMF in
terms of leaf area expansion by the equation 100 ×
(AMFA – NAMF)/AMFA, where AMFA represents the
leaf area of the five most expanded leaves from each
mycorrhizal plant, and NAMF corresponds to the area of
the five most expanded leaves from each non-mycorrhizal
plant. Roots and shoots were oven-dried at 65 ºC, weighed
and the root/shoot ratio was calculated. The dry weight
of flowers was recorded separately. The relative growth
rate (RGR) was determined according to Hunt (1982),
using the equation RGR = (ln Wt2 – ln Wt1)/t2 – t1,
where W is the average of total plant dry mass and
t is the time measured in days (t1 = 3 d after plant
emergence, and t2 = days elapsed after plant emergence
until the end of experiment). The specific root length was
the ratio between total root length and root dry mass.
The concentrations of P, K, Ca and Mg in the shoots
were quantified in nitric-perchloric digests, while N was
determined in sulphuric acid digests (Silva 1999). Due
to the small amount of biomass, it was not possible to
analyse the nutrients in the shoots of plants grown in the
low-fertility soil.

Mycorrhizal infection intensity and plant biomass response
to AMF

Before drying roots, subsamples of fine roots were collected
from each plant and mycorrhizal root infection intensity

was determined after clarifying (10% KOH), acidifying
(1% HCl) and staining (0.05% trypan blue) according to
Brundrett et al. (1996). Then, the intersection method
on gridded plates (McGonigle et al. 1990) was employed,
considering the presence of fungal structures (coenocytic
hyphae, arbuscules and vesicles) at ×100 magnification.
Plant biomass response to AMF was calculated by the
equation 100 × (SBAM – SBNM)/SBAM, where SBAM
represents the shoot dry mass of mycorrhizal plant, and
SBNM corresponds to shoot dry mass of non-mycorrhizal
plant (Plenchette et al. 1983).

Data analyses

Data were first tested for normality by Shapiro–Wilk’s
test and homoscedasticity by Levene’s test. The chemical
attributes of soils and the mycorrhizal effects within each
level of soil fertility were compared by Student’s t-test.
Mycorrhizal infection intensity, plant biomass response
and leaf area expansion were transformed to arcsine
(×/100) before analysis. The averages of plant biomass
response to AMF, mycorrhizal infection intensity and leaf
area expansion considering all species in the low- and
high-fertility soil were calculated and compared between
each soil fertility level by Student’s t-test. In all tests, P <

0.05 was considered significant.

RESULTS

The soil’s chemical attributes were markedly higher in the
high-fertility soil, except Mg and Cu, which were similar,
and Al, Fe and Zn, which were higher in the low-fertility
soil (Table 2). Plant biomass response to AMF (Figure 1a)
changed according to soil fertility. In the low-fertility soil,
17 out of 27 species exhibited 100% biomass response
to AMF, given that the non-mycorrhizal plants died
between 50–70 d after emergence. Amaranthus hybridus
exhibited negative biomass response to AMF, while
Leonotis nepetifolia did not survive in either treatment. The
other species exhibited high biomass response to AMF, but
below 100%. The average plant biomass response to AMF
in the low-fertility soil was 88% (n = 26). On the other
hand, in the high-fertility soil, plant biomass response
to AMF varied according to plant species. Eight species
had negative response, between −44% and −4%; eight
had positive response, between 2% and 19%; nine had
response between 21% to 50%; while only L. nepetifolia
and Leonurus sibiricus had response of above 60%. The
average plant biomass response to AMF in the high-
fertility soil was 13% (n = 27), which significantly differed
from the average response of the plants grown in the low-
fertility soil (Figure 1a).
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Figure 1. Difference in shoot biomass production between mycorrhizal and non-mycorrhizal plants expressed as a percentage of biomass for
mycorrhizal plants (plant biomass response to AMF) (a) and AMF root infection intensity (b) of herbaceous and shrubby species of early stages of
tropical succession grown in low- and high-fertility soils. Vertical bars indicate the standard error (n = 5). Dashed lines represent the average of
plants response to AMF and mycorrhizal infection intensity considering all species in the low-fertility soil (n = 26); dotted lines represent the same in
the high-fertility soil (n = 27). Means followed by the same letter do not differ from each other by Student’s t-test at P < 0.05. ∗ Indicates significant
differences in mycorrhizal infection intensity between soil fertilities within species by Student’s t-test (∗P < 0.05; ∗∗P < 0.01). † Represents death
of the plants in the treatment. Species: AH = Amaranthus hybridus, AC = Asclepias curassavica, BC = Baccharis sp., HB = Hypochaeris brasiliensis,
PR = Porophyllum ruderale, VC = Vernonia cognata, VP = Vernonia polyanthes, TS = Tecoma stans, MC = Momordica charantia, CN = Chamaecrista
nictitans, CI = Crotalaria incana, IH = Indigofera hirsuta, MI = Mimosa invisa, SO = Senna obtusifolia, HS = Hyptis spicigera, LN = Leonotis nepetifolia,
LS = Leonurus sibiricus, SM = Sidastrum micranthum, CE = Cenchrus echinatus, CH = Chloris elata, DI = Digitaria insularis, EP = Eragrostis pilosa, MM
= Melinis minutiflora, MR = Melinis repens, PP = Pennisetum purpureum, SA = Sorghum arundinaceum, SV = Solanum viarum.

Mycorrhizal root infection intensity was generally high
(Figure 1b), except in A. hybridus, which was between
7% and 11%. All the other species had more than
50% infection intensity, including more than 80% in 16
species, in both soils. Nine species differed in mycorrhizal
infection for the two levels of soil fertility. Four species had
higher AMF root infection in the low-fertility soil and five
species exhibited higher values in the high-fertility soil.
The average mycorrhizal infection across the two levels
of soil fertility was about 80% (Figure 1b). Plants grown
without AMF inoculation did not exhibit mycorrhizal
infection in roots.

Non-mycorrhizal plants grown in the low-fertility soil
had markedly lower shoot dry mass than mycorrhizal

plants, except A. hybridus, which did not respond to
the absence of AMF (Appendix 1). In the high-fertility
soil, the majority of species did not respond to non-
AMF condition; only nine species had reduced shoot
biomass with non-mycorrhizal treatment. One species,
Senna obtusifolia, displayed significant increase in shoot
dry mass when non-mycorrhizal. Regarding root dry
mass, except A. hybridus and Cenchrus echinatus, all
species showed decreases in response to the non-AMF
treatment in the low-fertility soil. On the other hand,
most species did not respond to the absence of AMF in
the high-fertility soil; five species responded negatively
and three species responded positively to non-AMF. The
root/shoot ratio changed with non-AMF in 11 species
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in both soils. In the low-fertility soil, M. invisa and C.
echinatus exhibited an increase in the root/shoot ratio
under the non-mycorrhizal condition. In the high-fertility
soil, only S. obtusifolia had a decreased root/shoot ratio
with non-mycorrhizal treatment, while eight species had
an increased root/shoot ratio. The relative growth rate
was reduced in the absence of AMF for most species
grown in the low-fertility soil, while only A. hybridus and
Momordica charantia exhibited no difference. In the high-
fertility soil, most species displayed no effects of non-AMF
treatment on relative growth rate. Only seven species had
a decreased relative growth rate, while S. obtusifolia and
M. invisa had a higher relative growth rate when non-
mycorrhizal.

Total root length was increased without AMF for the
majority of species grown in the low-fertility soil, except
C. echinatus, M. charantia and A. hybridus, which exhibited
no difference (Appendix 1). In the high-fertility soil, most
of the species exhibited no change with the non-AMF
treatment, eight species displayed an increase, whereas
Eragrostis pilosa and L. sibiricus exhibited a decrease with
no AMF. The specific root length was increased in the
absence of AMF for most species grown in the low-fertility
soil, except A. hybridus, M. charantia and Tecoma stans,
which exhibited no difference. In the high-fertility soil,
11 species had increased specific root length with non-
mycorrhizal treatment, with no effect in the other species.

Only six species flowered in the low-fertility soil, four
of which only flowered with mycorrhizal treatment
(Figure 2). Senna obtusifolia and A. hybridus flowered in
mycorrhizal and non-mycorrhizal conditions, but the first
species produced fewer and later flowers under the non-
mycorrhizal condition. In the high-fertility soil, 16 species
flowered, three of which (Hypochaeris brasiliensis, Hyptis
spicigera and M. charantia) only flowered when associated
with AMF. Amaranthus hybridus, S. obtusifolia and E. pilosa
flowered equally under mycorrhizal and non-mycorrhizal
conditions, while 10 species had fewer flowers under the
non-mycorrhizal condition. Among the 13 species that
flowered in both conditions, eight flowered later under the
non-mycorrhizal condition. Only Indigofera hirsuta and
Sorghum arundinaceum flowered simultaneously under
mycorrhizal and non-mycorrhizal conditions. However,
A. hybridus, Digitaria insularis and E. pilosa flowered earlier
without AMF (Figure 2). The non-mycorrhizal condition
decreased the total flower dry weight (Appendix 1) of S.
obtusifolia grown in the low-fertility soil, but there was
no effect for A. hybridus. In the high-fertility soil, among
the 13 species that flowered under mycorrhizal and non-
mycorrhizal conditions, six had lower total flower dry
weight with non-AMF treatment, whereas the remaining
seven displayed no difference.

The non-AMF treatment decreased the total leaf area
for the majority of species grown in both soils, except
A. hybridus and M. charantia in the low-fertility soil,

and 11 species in the high-fertility soil that exhibited no
differences (Appendix 1). On average, leaf expansion was
58% (n = 6) and 26% (n = 17) reduced due to non-AMF
condition in the low- and high-fertility soils, respectively,
and these values are significantly different (Figure 3). In
general, the nutritional status was negatively affected
in the non-mycorrhizal plants. N decreased significantly
in the shoots of 16 species, P in 24, K in 12, Ca in 6,
and Mg in 10 species (Appendix 2). However, the non-
AMF condition increased the nutrient concentration in
some species, like Mg in M. invisa, E. pilosa and Melinis
minutiflora, and Ca and Mg in I. hirsuta, Chloris elata and
D. insularis.

DISCUSSION

Mycorrhizal root infection

The high values of mycorrhizal root infection in both
levels of soil fertility suggest that the plant’s habit can be
more important in determining the intensity of AMF root
infection than soil fertility. Previous studies have found
high intensity of mycorrhizal root infection in herbaceous
and shrubby species all over the tropical region (Kalinhoff
et al. 2009, Lekberg et al. 2008, Muthukumar & Prakash
2009, Zangaro et al. 2008, 2012b, 2014). Irrespective
of soil fertility, herbaceous and shrubby species that
predominate at the initial stages of tropical succession
were highly receptive to AMF. Busby et al. (2011) and
Wilson & Hartnett (1998) have shown that temperate
prairie and grassland herbaceous and shrubby species
usually exhibit AMF root infection less than 50% and
the variation range of mycorrhizal infection between
these species is high. We contend that such differences
may be a result of the combination of plant habit and
climatic characteristics typical of the tropics, like high
light incidence, temperature and soil moisture (Zangaro
et al. 2013, 2014). These characteristics improve plant
photosynthetic capacity (Khurana & Singh 2006, Lusk
et al. 2008, Poorter & Rozendaal 2008, Reich 1998)
and the amount of photoassimilates exported to the
roots (Lynch & Ho 2005) for the maintenance of
AMF. However, the mycorrhizal condition differentially
affected plant growth, depending on the soil fertility
level.

Influence of AMF on plants grown in the low-fertility soil

Plant growth was limited in the low-fertility soil, especially
in the absence of AMF, resulting in a lack of plant growth
and death in a few weeks. The few plant species that
survived without AMF in this soil exhibited a severely
limited shoot growth, but had high root/shoot ratio,
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Figure 2. Number of flowers per plant and days elapsed for appearance of the first flower buds after plant emergence (number in brackets) of
herbaceous and shrubby plant species of early stages of tropical succession grown in low- and high-fertility soils, with or without AMF. Vertical
bars indicate the standard error (n = 5). Means followed by the same lowercase (low-fertility soil) or uppercase (high-fertility soil) letter do not
differ by Student’s t-test at P < 0.05. Species: Amaranthus hybridus (a), Hypochaeris brasiliensis (b), Porophyllum ruderale (c), Momordica charantia (d),
Chamaecrista nictitans (e), Crotalaria incana (f), Indigofera hirsuta (g), Senna obtusifolia (h), Hyptis spicigera (i), Leonotis nepetifolia (j), Leonurus sibiricus
(k), Cenchrus echinatus (l), Digitaria insularis (m), Eragrostis pilosa (n), Melinis repens (o), Sorghum arundinaceum (p).
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Figure 3. Difference in leaf area expansion between mycorrhizal and non-mycorrhizal plants expressed as a percentage of leaf area expansion for
mycorrhizal plants (leaf area expansion response to AMF) of herbaceous and shrubby species of early stages of tropical succession grown in low-
and high-fertility soils, without or with AMF. This variable could not be calculated for Chamaecrista nictitans, Mimosa invisa and the plant species of
Poaceae. Vertical bars indicate the standard error (n = 5). Dashed lines represent the average of leaf area expansion considering all species in the
low-fertility soil (n = 6); dotted lines represent the same in the high-fertility soil (n = 17). Means followed by the same letter do not differ from each
other by Student’s t-test at P < 0.05. Plant species abbreviations as in Figure 1.

and fine roots with high specific length. These changes
in root morphological traits represent an investment of
photoassimilates in roots, aimed at better soil exploration
for nutrients (Comas & Eissenstat 2004, Zangaro et al.
2007). Herbaceous and shrubby species typically have
a short lifespan (Lorenzi 2000) and high metabolic and
growth rates (Reich 1998). To meet their high nutritional
demands and reach the reproductive stage before the
end of their short lifespan, these species developed a
fine-root system morphologically adapted for a high
potential for acquisition of water and nutrients, exhibiting
high total and specific length, low diameter and high
incidence of absorbing hairs (Zangaro et al. 2008, 2012a,
2014). In this study, such root morphological traits were
not enough for these plants to meet all the nutritional
requirements for shoot growth in the low-fertility soil.
Nevertheless, except L. nepetifolia, all plants in symbiosis
with AMF survived, and exhibited moderate growth due
to the hyphal net associated with the fine-root system
(Smith et al. 2011). The increase in nutrient uptake
via AMF enabled plant survival and growth in the low-
fertility soil. Under this condition, most of the herbaceous
and shrubby species were highly dependent on AMF for
survival and growth. Amaranthus hybridus was the only
species in which we observed a negative biomass response
to AMF in the low-fertility soil. This may be due to the
low mycorrhizal infection intensity exhibited in its roots.
When mycorrhizal, plants may have the P uptake by root
epidermis partially or totally inhibited, and AMF become
the main way by which plants obtain P from soil (Li et al.
2008, Smith et al. 2009). Therefore, A. hybridus plants,
that had low mycorrhizal root infection, exhibited growth
depression in the low-fertility soil because they may have
been unable to absorb P via root epidermis and AMF in
suitable amounts.

Considering that these herbaceous and shrubby species
typically predominate in the early tropical succession in
low-fertility and degraded soils (Zangaro et al. 2012a,
b, 2013), and that the cost of C for the maintenance
of the hyphal net is at least two orders of magnitude
smaller than producing the same length of fine roots
(Smith & Read 2008), the investment in C for the
maintenance of high intensity of AMF infection can be
understood as a highly attractive option for these species
to more efficiently acquire nutrients from low-fertility
soils. Moreover, mycorrhizal root infection intensity is
correlated with the number of spores in soil (Zangaro et
al. 2012b), which are the main AMF propagules (Smith &
Read 2008). As seen, the herbaceous and shrubby species
at the early tropical succession are efficient multipliers
of AMF, enriching the soil with propagules, which may
help: (1) their own growth; (2) the establishment of
their offspring; (3) the further establishment of woody
pioneer and early-secondary species in the succession,
which are highly responsive to AMF and structure the
initial phases of the tropical secondary forest (Zangaro
et al. 2000, 2007, 2012b). The crucial importance of
AMF for survival and growth of herbaceous and shrubby
species that occupy the same early-successional stages
in the tropics places them as obligate partners to help
plants to colonize sites with low-fertility or degraded soils,
commonly found in tropical environments. In the absence
of AMF, the early stages of succession may not occur,
negatively affecting the subsequent successional stages.

Among the few species that flowered in the low-fertility
soil, most of them did so only in the presence of AMF,
which was attributed to a better nutritional status of
mycorrhizal plants. For species with a short lifespan,
flowering is quick and the investment in terms of energy
in the reproductive organs is high (Newell & Tramer
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1978). Thus, species grown in low-fertility soil, besides
obtaining benefits from AMF, may also have a stimulated
photosynthetic rate (Yolanda et al. 2012) that allows
better allocation of photoassimilates and nutrients for
producing flowers (Stanley et al. 1993).

Influence of AMF on plants grown in high-fertility soil

In the fertile soil, the high intensity of mycorrhizal root
infection had only slight effects on plant growth, shoot
and root biomass, total and specific root length, and
root/shoot ratio. Only a few species had high response
to AMF, whereas the response was low or negative for
the majority of plant species, resulting in low average
biomass response of the plants in the high-fertility soil, as
previously observed by Peng et al. (1993), Perner et al.
(2007) and Veiga et al. (2011). The slight accumulation
of plant biomass was probably a consequence of a C
sink under high AMF root infection intensity (Lynch &
Ho 2005, Ryan et al. 2005). In this fertile soil, most of
the plant species that had a low biomass increase under
the mycorrhizal condition also had an increase in the
total leaf area and leaf expansion, providing a probable
increase in photosynthetic potential compared with non-
mycorrhizal plants. Thus, the increase in leaf area and
photosynthetic rate can be a plant’s response to the
increased demand for C due to high intensity of AMF
root infection, as observed for Trifolium repens (Wright
et al. 1998). Despite the low plant biomass response to
AMF in the high-fertility soil, there was an increase in
nutrient concentrations in the shoots, which might have
compensated the C sink.

The better nutritional status of mycorrhizal plants may
result in further benefits beside the increase in biomass,
like resistance to pathogens (Wehner et al. 2010) and
drought (Augé 2001). However, it is possible that the
improvement in the nutritional status of herbaceous and
shrubby species, at the expense of dry matter production,
may be related to a better performance in flowering.
In the high-fertility soil, some species flowered only
when associated with AMF and the majority of plant
species had earlier and more abundant flowering with
AMF. Moreover, in some species, the total dry mass of
flowers was also increased when associated with AMF.
As a result, AMF may influence at least three features
of the sexual reproduction of herbaceous and shrubby
tropical species in fertile soils: (1) earlier flowering; (2)
higher allocation of biomass to flowers; (3) increase in
the number of flowers per plant. Previous studies have
shown a positive influence of AMF on the flowering of
fast-growing herbaceous species (Gange & Smith 2005,
Lu & Koide 1994, Perner et al. 2007, Stanley et al. 1993),
which has been attributed mainly to the increase in P
and K uptake (Koide & Dickie 2002, Perner et al. 2007).

Thus, AMF modulate the pattern of C use in herbaceous
and shrubby tropical species. Lower C accumulation in
shoots makes more C available to AMF in roots, improving
the plant’s nutritional status, which results in earlier and
more abundant flowering.

Short-lived plants are usually highly prolific, which
increases their competitiveness, especially in already
occupied sites (Aarssen & Taylor 1992, Norris 2007).
In the fertile soil of this study, the herbaceous and
shrubby species survived, grew and flowered even without
AMF. However, when associated with AMF, the plants
accumulated more nutrients in a shorter time, so that
they could bloom earlier in their life cycle (Perner et
al. 2007), and also increase flower production, both
of which can be advantageous in competition at the
beginning of tropical succession. Furthermore, AMF can
also improve reproductive capacity of plants because
they make some floral attributes more favourable to
pollination. For example, tomato plants associated with
AMF had flowers with more pollen, which had a higher
formation rate of the pollen tube (Poulton et al. 2002);
and in two Asteraceae herbaceous species, AMF led to an
increase in the size of inflorescence and sugar content in
nectar, which stimulated a higher visitation of flowers
by pollinators (Gange & Smith 2005). The increased
flowering in mycorrhizal plants can also improve the
efficiency of pollination as well as seed production (Gange
& Smith 2005), whereas the seeds produced by plants
colonized by AMF commonly have a higher nutrient
content (Gange & Smith 2005, Stanley et al. 1993) and
generate more vigorous, competitive and reproductive
offspring (Heppell et al. 1998). We contend that the
mobilization of C to maintain high intensity of AMF root
infection, even resulting in low accumulation of shoot
biomass, which is equilibrated by leaf expansion, can
be an advantage for plants because it improves their
nutritional status, fecundity and seed quality, which
results in offspring that is more effective in colonizing the
environment. Moreover, the lower production of shoot
biomass by plants with AMF, in some cases, may not
be a competitive disadvantage, because the herbaceous
and shrubby heliophilous species, with low height and
short lifespan, have a tendency to compete more for space
among them than for light.

In summary, herbaceous and shrubby heliophilous
species make a functional group in tropical succession
that has high association with AMF. However, the
influence of AMF root infection intensity in these
species depends on soil fertility. In low-fertility soils,
the mycorrhizal symbiosis is crucial for plant survival,
growth and reproduction. On the other hand, in fertile
soils the high AMF root infection intensities, despite
not resulting in high plant response, are advantageous
because they improve the nutritional status that results
in early flowering and higher production of flowers. Thus,
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assessing the importance of mycorrhizal symbiosis for this
plant functional group based only on responses in terms of
biomass accumulation may not be appropriate and may
lead to erroneous conclusions in the ecological sense.
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Appendix 1. Mean (± SD) for shoot dry mass (SDM), root dry mass (RDM), root/shoot ratio (R/S), relative growth rate (RGR), total root length (TRL), specific root length (SRL), total flower dry weight
(TFDW) and total leaf area (TLA) of herbaceous and shrubby species of early stages of tropical succession grown in soils with low (L) and high (H) fertility, without (−M) or with (+M) AMF. Means
followed by the same lowercase (for the low-fertility soil) or uppercase (for the high-fertility soil) letter do not differ by Student’s t-test at P < 0.05 (n = 5). #, § and † indicate death of the plants in the
treatment after 50, 60 and 70 d of emergence, respectively.

SDM RDM R/S RGR TRL SRL TFDW TLA
Soil AMF (g) (g) (g g−1) (mg g−1 d−1) (m per plant) (m g−1) (g per plant) (cm2 per plant)

Amarantus hybridus
L −M 0.01 ± 0.01a 0.01 ± 0.01a 1.02 ± 0.52a 31.1 ± 5.57a 4.33 ± 3.10a 426 ± 66.0a 0.01 ± 0.01a 0.74 ± 0.26a

+M 0.01 ± 0.01a 0.01 ± 0.01a 0.53 ± 0.31a 25.1 ± 3.57a 2.20 ± 1.45a 741 ± 494a 0.01 ± 0.01a 0.49 ± 0.28a
H −M 1.31 ± 0.44A 0.29 ± 0.07A 0.20 ± 0.03A 76.4 ± 3.31A 242 ± 44.9A 955 ± 249A 0.38 ± 0.12A 79.0 ± 27.5A

+M 1.48 ± 0.17A 0.38 ± 0.06A 0.26 ± 0.06A 77.6 ± 0.87A 284 ± 54.3A 740 ± 102A 0.47 ± 0.15A 94.7 ± 19.4A
Asclepias curassavica
L −M 0.01 ± 0.01b 0.01 ± 0.01b 0.89 ± 0.40 16.8 ± 1.51b 3.25 ± 1.03b 410 ± 243a - 0.27 ± 0.18b

+M 0.09 ± 0.02a 0.08 ± 0.02a 0.85 ± 0.04a 42.2 ± 3.75a 10.1 ± 2.16a 130 ± 23.0b - 14.4 ± 5.19a
H −M 1.38 ± 0.20A 1.29 ± 0.19A 0.94 ± 0.13A 68.3 ± 2.92B 109 ± 31.6A 84.1 ± 21.0A - 111 ± 12.9B

+M 1.58 ± 0.17A 1.21 ± 0.19A 0.76 ± 0.14A 75.8 ± 5.52A 72.5 ± 8.43B 60.2 ± 4.91B - 145 ± 24.2A
Baccharis sp.
L −M § § § § § § § §

+M 0.14 ± 0.11 0.10 ± 0.11 0.68 ± 0.12 54.9 ± 7.66 28.5 ± 35.2 257 ± 111 - 19.9 ± 12.9
H −M 1.39 ± 0.22A 0.87 ± 0.29A 0.62 ± 0.17A 80.5 ± 1.94A 205 ± 89.6A 229 ± 43.4A - 136 ± 15.3A

+M 1.41 ± 0.55A 0.61 ± 0.11A 0.31 ± 0.07B 77.7 ± 4.96A 51.8 ± 20.4B 127 ± 30.2B - 151 ± 56.1A
Hypochaeris brasiliensis
L −M § § § § § § § §

+M 0.03 ± 0.02 0.03 ± 0.02 1.04 ± 0.46 42.0 ± 7.76 5.10 ± 2.04 186 ± 65.2 - 8.96 ± 8.12
H −M 0.49 ± 0.10B 1.88 ± 0.15A 3.89 ± 0.58A 81.2 ± 0.82A 233 ± 95.1A 125 ± 51.9A - 119 ± 38.1B

+M 0.85 ± 0.30A 1.29 ± 0.21B 1.61 ± 0.64B 79.8 ± 1.41A 130 ± 41.2A 104 ± 24.0A 0.82 ± 0.11 193 ± 56.3A
Porophyllum ruderale
L −M † † † † † † † †

+M 0.10 ± 0.06 0.04 ± 0.03 0.42 ± 0.16 51.4 ± 5.41 9.57 ± 6.10 228 ± 46.5 0.02 ± 0.01 9.73 ± 6.23
H −M 1.36 ± 0.43A 0.43 ± 0.17A 0.31 ± 0.05A 75.5 ± 4.76A 56.4 ± 24.3A 130 ± 18.6A 0.36 ± 0.11B 97.0 ± 28.7B

+M 1.81 ± 0.14A 0.40 ± 0.04A 0.22 ± 0.02B 80.5 ± 1.83A 48.0 ± 9.84A 117 ± 11.3A 0.61 ± 0.09A 128 ± 19.7A
Vernonia cognata
L −M † † † † † † † †

+M 0.09 ± 0.03 0.22 ± 0.09 2.30 ± 0.85 58.5 ± 5.80 15.1 ± 9.16 72.3 ± 31.7 - 15.4 ± 6.19
H −M 3.19 ± 0.40A 0.67 ± 0.12A 0.21 ± 0.06A 86.0 ± 1.02A 120 ± 26.7A 180 ± 42.8A - 145 ± 31.4B

+M 3.05 ± 0.66A 0.87 ± 0.16A 0.28 ± 0.04A 85.0 ± 2.66A 98.1 ± 32.7A 140 ± 30.8A - 202 ± 31.7A
Vernonia polyanthes
L −M # # # # # # # #

+M 0.10 ± 0.04 0.15 ± 0.07 1.39 ± 0.59 47.5 ± 9.59 24.6 ± 11.2 178 ± 44.3 - 20.6 ± 8.53
H −M 1.37 ± 0.19A 1.94 ± 0.29A 1.45 ± 0.31A 55.0 ± 2.18B 207 ± 53.1A 104 ± 13.2A - 139 ± 23.1B

+M 1.72 ± 0.32A 2.02 ± 0.39A 1.21 ± 0.32A 64.3 ± 5.70A 117 ± 24.5B 58.6 ± 11.9B - 231 ± 42.4A
Tecoma stans
L −M 0.03 ± 0.01b 0.03 ± 0.02b 1.35 ± 0.70a 28.3 ± 2.90b 3.55 ± 1.99b 102 ± 24.9a - 1.08 ± 0.19b

+M 0.13 ± 0.02a 0.14 ± 0.05a 1.00 ± 0.16a 41.4 ± 2.87a 10.9 ± 2.57a 81.7 ± 8.54a - 18.8 ± 6.3a
H −M 1.33 ± 0.22A 1.67 ± 0.22A 1.26 ± 0.13A 67.5 ± 1.32A 100 ± 25.2A 60.9 ± 18.6A - 194 ± 20.1A

+M 1.29 ± 0.15A 1.52 ± 0.23A 1.17 ± 0.10A 67.6 ± 3.21A 125 ± 19.7A 83.5 ± 17.9A - 217 ± 29.4A
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SDM RDM R/S RGR TRL SRL TFDW TLA
Soil AMF (g) (g) (g g−1) (mg g−1 d−1) (m per plant) (m g−1) (g per plant) (cm2 per plant)

Momordica charantia
L −M 0.20 ± 0.09b 0.09 ± 0.01b 0.54 ± 0.23a 48.0 ± 4.90a 27.9 ± 13.7a 314 ± 190a - 21.5 ± 12.0a

+M 0.39 ± 0.11a 0.13 ± 0.01a 0.34 ± 0.06a 49.0 ± 2.84a 33.8 ± 10.9a 264 ± 72.6a - 34.5 ± 9.43a
H −M 1.01 ± 0.14A 0.37 ± 0.05A 0.36 ± 0.06A 59.3 ± 4.88A 93.2 ± 26.7A 251 ± 51.6A - 152 ± 35.4B

+M 1.15 ± 0.07A 0.42 ± 0.06A 0.36 ± 0.03A 63.7 ± 3.37A 81.9 ± 11.9A 195 ± 35.4A 0.01 ± 0.01 228 ± 19.3A
Chamaecrista nictitans
L −M † † † † † † † †

+M 0.15 ± 0.07 0.10 ± 0.02 0.85 ± 0.44 42.7 ± 4.69 10.7 ± 5.15 99.1 ± 29.4 - 17.5 ± 9.81
H −M 3.32 ± 1.57A 0.66 ± 0.21A 0.21 ± 0.06A 75.1 ± 7.83A 129 ± 43.6A 195 ± 16.3A 0.10 ± 0.02B 240 ± 66.5B

+M 3.88 ± 1.24A 0.65 ± 0.26A 0.17 ± 0.03A 75.8 ± 4.46A 53.1 ± 16.2B 86.9 ± 25.6B 0.18 ± 0.04A 355 ± 42.8A
Crotalaria incana
L −M † † † † † † † †

+M 0.20 ± 0.04 0.13 ± 0.02 0.65 ± 0.05 44.5 ± 1.20 24.6 ± 2.85 189 ± 26.1 - 28.4 ± 5.73
H −M 5.13 ± 0.79B 2.40 ± 0.58A 0.47 ± 0.11A 76.7 ± 4.19B 279 ± 48.3A 120 ± 26.9A 0.56 ± 0.49A 408 ± 45.1B

+M 8.21 ± 1.53A 2.93 ± 0.38A 0.36 ± 0.05A 83.8 ± 3.28A 381 ± 142A 134 ± 61.5A 1.80 ± 1.20A 619 ± 89.2A
Indigofera hirsuta
L −M † † † † † † † †

+M 0.03 ± 0.04 0.03 ± 0.01 1.14 ± 0.15 31.6 ± 1.94 5.79 ± 1.92 184 ± 66.9 - 3.56 ± 0.10
H −M 2.39 ± 0.52B 0.63 ± 0.16A 0.26 ± 0.02A 69.4 ± 4.45B 158 ± 64.9A 240 ± 36.3A 0.14 ± 0.12A 278 ± 40.0B

+M 4.87 ± 0.58A 0.88 ± 0.25A 0.18 ± 0.03B 83.2 ± 5.80A 150 ± 77.7A 165 ± 51.5B 0.36 ± 0.21A 565 ± 74.8A
Mimosa invisa
L −M 0.04 ± 0.01b 0.06 ± 0.01b 1.67 ± 0.56a 32.3 ± 4.07b 6.89 ± 1.91b 110 ± 13.4a - 1.94 ± 0.45b

+M 0.26 ± 0.07a 0.22 ± 0.02a 0.88 ± 0.18b 47.4 ± 4.49a 12.6 ± 1.22a 56.8 ± 6.77b - 20.2 ± 4.10a
H −M 1.14 ± 0.34A 1.06 ± 0.12A 0.98 ± 0.24A 62.9 ± 3.62A 94.2 ± 10.9A 89.5 ± 12.7A - 83.4 ± 26.1A

+M 0.85 ± 0.15A 0.73 ± 0.11B 0.87 ± 0.15A 58.8 ± 1.61B 42.6 ± 7.89B 58.1 ± 6.87B - 54.6 ± 12.2A
Senna obtusifolia
L −M 0.02 ± 0.01b 0.05 ± 0.02b 2.15 ± 1.50a 25.3 ± 2.47b 8.75 ± 4.45b 169 ± 30.1a 0.01 ± 0.01b 1.00 ± 0.27b

+M 0.15 ± 0.03a 0.16 ± 0.01a 1.12 ± 0.31a 35.7 ± 4.13a 17.0 ± 2.68a 104 ± 20.0b 0.02 ± 0.01a 19.6 ± 5.71a
H −M 1.52 ± 0.35A 0.67 ± 0.16A 0.43 ± 0.05B 55.1 ± 3.94A 78.5 ± 29.7A 115 ± 24.1A 0.03 ± 0.01A 87.3 ± 20.1A

+M 1.07 ± 0.13B 0.59 ± 0.12A 0.56 ± 0.08A 50.2 ± 1.65B 74.4 ± 25.1A 123 ± 24.7A 0.04 ± 0.06A 112 ± 15.5A
Hyptis spicigera
L −M † † † † † † † †

+M 0.06 ± 0.01 0.05 ± 0.01 0.79 ± 0.16 45.3 ± 5.10 16.0 ± 5.76 303 ± 63.2 - 8.66 ± 2.54
H −M 1.07 ± 0.13A 1.19 ± 0.12A 1.11 ± 0.08A 68.7 ± 3.83A 206 ± 45.8A 171 ± 23.5A - 96.1 ± 7.74B

+M 1.57 ± 0.45A 1.44 ± 0.51A 0.92 ± 0.31A 74.7 ± 6.71A 209 ± 82.6A 148 ± 28.5A 0.02 ± 0.01 165 ± 22.9A
Leonotis nepetifolia
L −M § § § § § § § §

+M † † † † † † † †
H −M 0.69 ± 0.14B 0.28 ± 0.05B 0.41 ± 0.01A 71.8 ± 2.22B 93.8 ± 40.4A 323 ± 93.0A 0.20 ± 0.08B 61.0 ± 13.2B

+M 1.81 ± 0.16A 0.41 ± 0.05A 0.23 ± 0.03B 80.5 ± 1.01A 112 ± 21.7A 269 ± 38.7A 0.66 ± 0.08A 144 ± 22.0A
Leonurus sibiricus
L −M † † † † † † † †

+M 0.03 ± 0.01 0.02 ± 0.01 0.63 ± 0.17 39.8 ± 2.06 4.91 ± 0.74 307 ± 74.1 0.01 ± 0.01 3.90 ± 0.75
H −M 0.34 ± 0.06B 0.30 ± 0.05B 0.89 ± 0.08A 67.6 ± 1.91B 79.9 ± 12.7B 267 ± 49.2A 0.07 ± 0.03B 39.4 ± 6.40B

+M 1.63 ± 0.28A 0.86 ± 0.07A 0.53 ± 0.07B 81.6 ± 1.39A 113 ± 25.3A 131 ± 25.2B 0.41 ± 0.07A 159 ± 13.3A
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Appendix 1. Continued.

SDM RDM R/S RGR TRL SRL TFDW TLA
Soil AMF (g) (g) (g g−1) (mg g−1 d−1) (m per plant) (m g−1) (g per plant) (cm2 per plant)

Sidastrum micranthum
L −M § § § § § § § §

+M 0.06 ± 0.01 0.08 ± 0.05 0.99 ± 0.49 53.0 ± 3.87 17.5 ± 19.1 191 ± 100 - 12.0 ± 2.86
H −M 1.59 ± 0.33A 1.07 ± 0.10A 0.69 ± 0.08A 78.8 ± 6.78A 147 ± 72.3A 133 ± 56.4A - 112 ± 21.4B

+M 1.66 ± 0.13A 1.11 ± 0.09A 0.66 ± 0.03A 75.9 ± 5.62A 135 ± 55.8A 118 ± 39.2A - 155 ± 9.47A
Cenchrus echinatus
L −M 0.02 ± 0.01b 0.04 ± 0.01a 1.89 ± 0.68a 26.2 ± 6.94b 18.3 ± 9.49a 417 ± 102a - 4.58 ± 1.90b

+M 0.20 ± 0.06a 0.07 ± 0.03a 0.39 ± 0.12b 50.3 ± 7.58a 17.0 ± 4.05a 244 ± 72.9b 0.01 ± 0.01 38.6 ± 8.99a
H −M 1.58 ± 0.16B 0.38 ± 0.04A 0.24 ± 0.03A 59.9 ± 3.35A 91.4 ± 10.7A 243 ± 44.6A 0.38 ± 0.05A 80.8 ± 12.5B

+M 2.02 ± 0.25A 0.41 ± 0.13A 0.20 ± 0.07A 65.7 ± 5.77A 93.9 ± 46.0A 275 ± 221A 0.44 ± 0.14A 190 ± 32.8A
Chloris elata
L −M 0.01 ± 0.01b 0.01 ± 0.01b 1.29 ± 0.53a 29.6 ± 4.83b 10.2 ± 4.56b 936 ± 381a - 0.48 ± 0.11b

+M 0.13 ± 0.02a 0.10 ± 0.03a 0.76 ± 0.13a 53.2 ± 5.10a 25.0 ± 3.14a 259 ± 70.8b - 18.7 ± 2.53a
H −M 1.24 ± 0.28A 0.77 ± 0.16A 0.62 ± 0.09A 67.9 ± 8.40A 129 ± 30.4A 168 ± 15.6A - 134 ± 33.1A

+M 1.46 ± 0.42A 0.56 ± 0.16A 0.38 ± 0.02B 67.1 ± 8.11A 66.3 ± 31.3B 114 ± 30.8B - 138 ± 36.5A
Digitaria insularis
L −M † † † † † † † †

+M 0.18 ± 0.06 0.14 ± 0.05 0.78 ± 0.07 57.4 ± 7.72 26.8 ± 5.55 192 ± 56.1 - 21.5 ± 6.32
H −M 1.00 ± 0.11B 0.50 ± 0.15A 0.49 ± 0.12A 75.5 ± 1.84A 115 ± 42.2A 228 ± 37.5A 0.16 ± 0.03B 52.2 ± 16.5A

+M 1.55 ± 0.26A 0.66 ± 0.10A 0.43 ± 0.07A 72.7 ± 5.17A 148 ± 50.3A 220 ± 41.2A 0.32 ± 0.12A 57.3 ± 13.1A
Eragrostis pilosa
L −M § § § § § § § §

+M 0.09 ± 0.06 0.09 ± 0.05 0.99 ± 0.49 53.6 ± 5.30 32.9 ± 20.7 368 ± 100 0.07 ± 0.02 9.89 ± 8.56
H −M 0.69 ± 0.23B 0.19 ± 0.08B 0.29 ± 0.10A 70.4 ± 4.19B 107 ± 29.6B 584 ± 147A 0.27 ± 0.14A 35.7 ± 10.1B

+M 1.36 ± 0.27A 0.50 ± 0.04A 0.38 ± 0.08A 78.7 ± 1.03A 243 ± 79.3A 471 ± 124A 0.41 ± 0.28A 91.4 ± 20.3A
Melinis minutiflora
L −M † † † † † † † †

+M 0.17 ± 0.02 0.19 ± 0.03 1.14 ± 0.19 57.9 ± 5.39 75.3 ± 34.2 387 ± 187 - 32.9 ± 4.65
H −M 2.35 ± 0.55A 1.13 ± 0.28B 0.51 ± 0.20A 73.7 ± 9.47A 381 ± 100A 335 ± 38.9A - 222 ± 59.1A

+M 2.45 ± 0.32A 1.60 ± 0.15A 0.65 ± 0.04A 74.6 ± 7.07A 385 ± 113A 239 ± 62.7B - 251 ± 14.3A
Melinis repens
L −M † † † † † † † †

+M 0.14 ± 0.06 0.15 ± 0.05 1.07 ± 0.18 59.0 ± 3.95 39.6 ± 14.5 268 ± 53.7 - 30.4 ± 11.4
H −M 3.01 ± 1.26A 1.81 ± 0.65A 0.61 ± 0.06A 87.0 ± 4.29A 341 ± 141A 201 ± 88.3A 0.17 ± 0.08A 230 ± 126A

+M 2.41 ± 0.10A 0.97 ± 0.11B 0.40 ± 0.06B 84.2 ± 1.65A 119 ± 35.6B 122 ± 36.7A 0.23 ± 0.06A 208 ± 18.9A
Pennisetum purpureum
L −M § § § § § § § §

+M 0.12 ± 0.05 0.15 ± 0.08 1.22 ± 0.39 55.7 ± 5.89 41.0 ± 18.2 283 ± 66.8 - 25.0 ± 9.52
H −M 2.15 ± 0.44A 1.75 ± 0.71A 0.79 ± 0.20A 81.1 ± 8.07A 358 ± 252A 193 ± 93.5A - 181 ± 30.2A

+M 2.03 ± 0.35A 1.50 ± 0.14A 0.76 ± 0.18A 81.3 ± 3.42A 318 ± 71.2A 210 ± 39.3A - 168 ± 19.1A
Sorghum arundinaceum
L −M † † † † † † † †

+M 0.16 ± 0.06 0.21 ± 0.09 1.26 ± 0.40 45.5 ± 10.4 42.9 ± 19.6 161 ± 42.6 - 35.1 ± 17.8
H −M 2.09 ± 0.49B 0.64 ± 0.09B 0.31 ± 0.05A 73.7 ± 12.9A 200 ± 16.3A 318 ± 61.8A 0.34 ± 0.11B 97.1 ± 22.2B

+M 2.80 ± 0.32A 0.82 ± 0.06A 0.29 ± 0.03A 73.4 ± 10.4A 145 ± 51.2A 174 ± 49.5B 0.63 ± 0.19A 261 ± 14.4A
Solanum viarum
L −M 0.01 ± 0.01b 0.01 ± 0.01b 0.83 ± 0.36a 28.9 ± 4.84b 4.80 ± 0.67b 547 ± 209a - 0.24 ± 0.08b

+M 0.06 ± 0.04a 0.07 ± 0.04a 1.17 ± 0.51a 49.2 ± 5.63a 11.8 ± 3.43A 190 ± 41.4b - 7.29 ± 4.93a
H −M 1.10 ± 0.11A 1.79 ± 0.46A 1.63 ± 0.43A 78.4 ± 6.19A 206 ± 32.4A 119 ± 24.2A - 125 ± 15.6A

+M 0.92 ± 0.16A 1.63 ± 0.22A 1.83 ± 0.53A 78.0 ± 3.47A 137 ± 19.9B 84.6 ± 12.1B - 130 ± 22.7A
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Appendix 2. Mean (± SD) for nutrient concentration in shoots of herbaceous and shrubby species of early stages of tropical succession grown in
the high-fertility soil, without (−M) or with (+M) AMF. Means followed by the same letter do not differ by Student’s t-test at P < 0.05 (n = 3).

AMF Phosphorus (g kg−1) Nitrogen (g kg−1) Potassium (g kg−1) Calcium (g kg−1) Magnesium (g kg−1)

Amaranthus hybridus
−M 4.55 ± 0.54a 38.3 ± 1.48a 38.3 ± 1.48a 1.37 ± 0.13a 0.71 ± 0.03a
+M 4.30 ± 0.14a 38.5 ± 0.97a 38.5 ± 0.97a 1.62 ± 0.28a 0.73 ± 0.02a
Asclepias curassavica
−M 1.58 ± 0.11b 26.1 ± 2.29a 26.1 ± 2.29a 1.22 ± 0.08b 0.24 ± 0.01b
+M 4.20 ± 0.06a 29.9 ± 1.01a 29.9 ± 1.01a 1.75 ± 0.10a 0.48 ± 0.02a
Baccharis sp.
−M 1.31 ± 0.05b 30.7 ± 1.08a 30.7 ± 1.08a 2.46 ± 0.16a 0.40 ± 0.02a
+M 2.57 ± 0.15a 29.0 ± 0.94a 29.0 ± 0.94a 2.14 ± 0.28a 0.37 ± 0.01a
Hypochaeris brasiliensis
−M 3.77 ± 0.09b 46.5 ± 0.98a 46.5 ± 0.98a 5.64 ± 0.22a 0.96 ± 0.01b
+M 6.68 ± 0.16a 47.8 ± 0.94a 47.8 ± 0.94a 5.77 ± 0.21a 1.19 ± 0.02a
Porophyllum ruderale
−M 1.41 ± 0.06b 18.9 ± 1.18a 18.9 ± 1.18a 3.25 ± 0.10a 0.53 ± 0.02a
+M 3.04 ± 0.28a 15.8 ± 2.05a 15.8 ± 2.05a 3.34 ± 0.03a 0.53 ± 0.02a
Vernonia cognata
−M 3.97 ± 0.15b 15.5 ± 1.00b 15.5 ± 1.00b 4.42 ± 0.44a 0.34 ± 0.04b
+M 6.39 ± 0.12a 24.3 ± 1.21a 24.3 ± 1.21a 3.77 ± 0.33a 0.40 ± 0.02a
Vernonia polyanthes
−M 1.63 ± 0.10b 14.4 ± 0.94b 14.4 ± 0.94b 5.37 ± 0.13a 0.56 ± 0.01b
+M 2.76 ± 0.25a 18.0 ± 0.71a 18.0 ± 0.71a 5.00 ± 0.31a 0.76 ± 0.03a
Tecoma stans
−M 1.70 ± 0.11b 17.5 ± 0.73b 17.5 ± 0.73b 0.81 ± 0.02b 0.11 ± 0.01b
+M 3.83 ± 0.02a 21.2 ± 0.69a 21.2 ± 0.69a 0.95 ± 0.01a 0.19 ± 0.01a
Momordica charantia
−M 3.07 ± 0.16b 28.2 ± 0.98b 28.2 ± 0.98b 10.4 ± 0.21b 1.07 ± 0.01a
+M 4.66 ± 0.13a 31.5 ± 0.71a 31.5 ± 0.71a 11.4 ± 0.06a 1.14 ± 0.05a
Chamaecrista nictitans
−M 1.15 ± 0.06b 13.1 ± 0.71a 13.1 ± 0.71a 1.31 ± 0.16a 0.17 ± 0.02a
+M 1.68 ± 0.07a 12.5 ± 0.47a 12.5 ± 0.47a 1.10 ± 0.01a 0.17 ± 0.01a
Crotalaria incana
−M 1.09 ± 0.11b 6.70 ± 0.27a 6.70 ± 0.27a 1.90 ± 0.07a 1.03 ± 0.02a
+M 2.30 ± 0.10a 7.02 ± 0.54a 7.02 ± 0.54a 1.83 ± 0.33a 0.96 ± 0.04a
Indigofera hirsuta
−M 3.10 ± 0.26a 9.84 ± 0.27b 9.84 ± 0.27b 3.15 ± 0.25a 0.61 ± 0.01a
+M 2.82 ± 0.17a 11.8 ± 0.27a 11.8 ± 0.27a 2.58 ± 0.03b 0.41 ± 0.01b
Mimosa invisa
−M 1.75 ± 0.02b 4.04 ± 1.28b 4.04 ± 1.28b 4.12 ± 0.14a 0.43 ± 0.01a
+M 5.81 ± 0.16a 9.62 ± 0.64a 9.62 ± 0.64a 3.87 ± 0.19a 0.33 ± 0.01b
Senna obtusifolia
−M 1.93 ± 0.04b 12.1 ± 0.74a 12.1 ± 0.74a 2.49 ± 0.28b 0.19 ± 0.01b
+M 3.31 ± 0.36a 13.4 ± 0.74a 13.4 ± 0.74a 3.10 ± 0.19a 0.24 ± 0.01a
Hyptis spicigera
−M 3.91 ± 0.41b 10.3 ± 0.48a 10.3 ± 0.48a 2.68 ± 0.06a 0.42 ± 0.08a
+M 7.15 ± 0.09a 11.9 ± 1.22a 11.9 ± 1.22a 2.42 ± 0.20a 0.41 ± 0.02a
Leonotis nepetifolia
−M 2.15 ± 0.27b 19.5 ± 2.05a 19.5 ± 2.05a 2.53 ± 0.90a 0.32 ± 0.06a
+M 5.72 ± 0.08a 19.9 ± 0.72a 19.9 ± 0.72a 2.23 ± 0.04a 0.33 ± 0.02a
Leonurus sibiricus
−M 2.43 ± 0.06b 20.9 ± 0.78b 20.9 ± 0.78b 1.72 ± 0.19b 0.49 ± 0.03b
+M 3.88 ± 0.25a 24.7 ± 0.74a 24.7 ± 0.74a 2.40 ± 0.06a 0.64 ± 0.01a
Sidastrum micranthum
−M 4.35 ± 0.02b 15.8 ± 0.47a 15.8 ± 0.47a 9.11 ± 0.23a 0.75 ± 0.01b
+M 7.83 ± 0.29a 16.6 ± 0.54a 16.6 ± 0.54a 9.12 ± 0.08a 0.86 ± 0.03a
Cenchrus echinatus
−M 1.55 ± 0.15b 32.6 ± 0.97b 32.6 ± 0.97b 0.18 ± 0.02a 0.10 ± 0.01b
+M 5.01 ± 0.15a 35.3 ± 0.24a 35.3 ± 0.24a 0.14 ± 0.02a 0.19 ± 0.01a
Chloris elata
−M 1.25 ± 0.17b 14.4 ± 0.74a 14.4 ± 0.74a 0.41 ± 0.01a 0.24 ± 0.02a
+M 2.81 ± 0.45a 15.8 ± 0.73a 15.8 ± 0.73a 0.24 ± 0.01b 0.15 ± 0.02b
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Appendix 2. Continued.

AMF Phosphorus (g kg−1) Nitrogen (g kg−1) Potassium (g kg−1) Calcium (g kg−1) Magnesium (g kg−1)

Digitaria insularis
−M 3.09 ± 0.14b 19.4 ± 0.74b 19.4 ± 0.74b 0.35 ± 0.02a 0.27 ± 0.01a
+M 3.63 ± 0.13a 24.2 ± 1.48a 24.2 ± 1.48a 0.29 ± 0.04b 0.16 ± 0.02b
Eragrostis pilosa
−M 2.19 ± 0.09b 15.7 ± 0.45b 15.7 ± 0.45b 0.23 ± 0.06a 0.22 ± 0.01a
+M 2.72 ± 0.05a 18.4 ± 0.74a 18.4 ± 0.74a 0.18 ± 0.02a 0.16 ± 0.01b
Melinis minutiflora
−M 3.67 ± 0.34a 13.7 ± 0.51b 13.7 ± 0.51b 0.27 ± 0.11a 0.45 ± 0.01a
+M 4.68 ± 0.09a 16.3 ± 0.74a 16.3 ± 0.74a 0.34 ± 0.03a 0.36 ± 0.01b
Melinis repens
−M 3.06 ± 0.05b 14.5 ± 0.21a 14.5 ± 0.21a 0.25 ± 0.01a 0.29 ± 0.04a
+M 4.70 ± 0.21a 15.1 ± 0.98a 15.1 ± 0.98a 0.21 ± 0.02a 0.23 ± 0.03a
Pennisetum purpureum
−M 2.62 ± 0.28a 26.3 ± 1.18b 26.3 ± 1.18b 0.28 ± 0.06a 0.14 ± 0.02a
+M 2.24 ± 0.34a 30.7 ± 0.72a 30.7 ± 0.72a 0.30 ± 0.01a 0.12 ± 0.01a
Sorghum arundinaceum
−M 1.70 ± 0.22b 21.5 ± 2.91a 21.5 ± 2.91a 0.57 ± 0.02b 0.27 ± 0.01b
+M 3.59 ± 0.08a 18.8 ± 3.02a 18.8 ± 3.02a 0.84 ± 0.03a 0.49 ± 0.02a
Solanum viarum
−M 1.72 ± 0.29b 24.4 ± 0.72a 24.4 ± 0.72a 3.56 ± 0.18a 0.42 ± 0.02a
+M 6.75 ± 0.51a 25.5 ± 0.54a 25.5 ± 0.54a 3.19 ± 0.27a 0.45 ± 0.01a
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