Chromium carbochelate dietary supplementation favored the glucocorticoid response during acute inflammation of *Piaractus mesopotamicus*

Marcello Pardi de Castro a, Gustavo Silva Claudiano a, Neida Lucas Bortoluzzi b, Eduardo Garrido a, Rodrigo Yudi Fujimoto b, Marco Antônio Andrade Belo a,c, Marina Tie Shimada a, Julieta Rodini Engracia Moraes a, Flávio Ruas Moraes a,*

a Department of Veterinary Pathology, São Paulo State University (Unesp), Jaboticabal, Brazil
b Researcher from Brazilian Agricultural Research Corporation-EMBRAPA, Sergipe, Brazil
c Laboratory of Animal Pharmacology and Toxicology, Camilo Castelo Branco University, Brazil

ABSTRACT

This study was performed to investigate the effect of food supplementation with chromium carbochelate on cortisolemia, glycemia and unspecific acute inflammation of pacus (*Piaractus mesopotamicus*) challenged by inactivated *Aeromonas hydrophila* in the swim bladder. 120 pacus (80.5 ± 11.3 g) were randomly distributed into 24 tanks (310 L, n = 5). After the adaptation period, the pacus were fed diets supplemented with 0 (control), 12, 18 and 36 mg of chromium carbochelate/kg of dry diet for 90 days (ad libitum). Fish fed diets containing 18 and 36 mg of Cr·kg⁻¹ resulted in a reduction of cortisolemia and glycemia, and in an increase in the inflammatory response, seen through the greater accumulation of lymphocytes and thrombocytes. These results together suggest that food supplementation with chromium carbochelate, at the concentrations of 18 and 36 mg·kg⁻¹ of feeds, brought homeostatic benefits to *P. mesopotamicus*. These benefits were translated, at least partially, as reductions in the consequences from inflammatory stress, with diminished cortisolemia and glycemia, which favored accumulation of lymphocytes and thrombocytes at the affected focus, as an increase in the immune response.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Trivalent chromium intensifies the action of insulin (Mowat, 1997) and reduces the plasma concentration of cortisol in stress situations (Wedemeyer, 1997). The glucocorticoids in high concentrations cause suppression of the inflammatory response (Belo et al., 2005, 2012). On the other hand, trivalent chromium is a glucose tolerance factor (Mowat, 1997), which facilitates the chemical interaction of the insulin with its receptor on cell membranes, thus increasing the sensitivity of the cell to glucose (Fujimoto et al., 2005; Lukaski, 2000; Mertz and Roginski, 1969).

In acute inflammation in Wistar mice induced by carrageenan, insulin and adrenal corticosteroids have antagonistic physiological effects. In the initial phase of the reaction, the properties of insulin provide glucose as the energy source needed for inflammation to develop. 2 h after the inflammatory stimulus, the plasma corticosterone concentration will be more than twice as great as the initial value, resulted by the stimulation of the hypothalamus–hypophysis–adrenal axis, in the sense of limiting the development of the reaction (Moraes and Garcia-Leme, 1982; Moraes et al., 1987). Prado (2014) proved the same antagonistic effect in alloxan-diabetic tilapia submitted to insulin and dexamethasone treatments. Therefore, chromium might act as a boosting agent for insulin action and a glucose tolerance factor, both towards limiting cortisol release (Fujimoto et al., 2005) and favoring the inflammatory response (Castro et al., 2014a), since this hormone participates in the glucose transport mechanism across the cell membrane. The increment in the fish inflammatory response would be useful in defense against infectious agents.

According to Castro et al. (2014a), few studies have analyzed the effect of trivalent chromium on the inflammatory response of fish or the possible effect produced by the interaction of dietary supplementation. Although the intake level of specific nutrients can determine better organic responses and crowding stress can increase disease outbreaks, few concomitant changes in the immunological parameters have been observed on these occasions (Belo et al., 2012, 2014; Garcia et al., 2007; Salvador et al., 2012). The pacu (*Piaractus mesopotamicus*), an emergent species in the world of aquaculture, is a native teleost fish of...
the Parana–Paraguay Basin, and is of importance in the South America for human consumption, angling and aquaculture (Belo et al., 2005). The pacu has proven to be a good bioindicator of water quality, and in accordance with Castro et al. (2014b) this species has been used in ecotoxicity studies for registration of chemicals in Brazil. With this in mind, an in vivo study was performed to investigate the effect of food supplementation with chromium carbochelate on cortisolemia, glycemia and unspecific acute inflammation of pacus inoculated with inactivated Aeromonas hydrophila in the swim bladder.

2. Material and methods

2.1. Experimental design

A total of 120 pacus (P. mesopotamicus), male and female, originating from the same spawn, weighing 80.5 ± 11.3 g were used. These were distributed into 24 plastic tanks (310 L, n = 5) that were supplied with chlorine-free running water at a flow rate of 1 L/min., in a recirculation system. Initially, the fish were acclimated for 15 days, receiving commercial feed without chromium. After the adaptation period, the pacus were fed diets supplemented with chromium carbochelate for 90 days, ad libitum. One group remained as an un-supplemented control. The quality of the water was maintained as follows: dissolved oxygen 5.7 ± 0.1 mg·L⁻¹, temperature 28.4 ± 0.8 °C, potential of hydrogen ions (pH) 7.7 ± 0.4, and electric conductivity 192.4 ± 3.6 μS·cm⁻¹ (Boyd, 1990).

2.2. Diets

Table 1 expresses the percentage and chemical–bromatological composition of the baseline feed (26% crude protein and 3800 kcal gross energy) to which the chromium carbochelate (Cr) was incorporated, at concentrations of 0, 12, 18 and 36 mg of chromium carbochelate per kg of feed (Fujimoto et al., 2005, 2007, 2011). The feeds were pelleted, packed and stored at −18 °C. The fish received feed twice a day (ad libitum), with water flow interrupted and aeration added to provide suitable conditions for feeding time. Samples of 50 g of each diet were taken to determine the Cr concentrations through food supplementation with chromium carbochelate on cortisolemia, ecotoxicity studies for registration of chemicals in Brazil. With this in accordance with Castro et al. (2014b) this species has been used in

2.3. Induction of aerocystitis

Inactivated A. hydrophila were used as inflammatory stimulation. The bacterium was isolated from naturally infected fish. The titer of the inoculum was determined through bacterial counting with 4′,6-diamino-2-phenylindole (DAPI). It was diluted in PBS to have \(3 \times 10^8 \) CFU·mL⁻¹, and was inactivated by means of a water bath at 40 °C for 30 min. (Popoff, 1984). An aliquot was plated in a medium appropriate for certification of bacterial inactivity.

After the supplementation period, the fish were anesthetized in benzocaine solution (1:20,000) diluted in 98% alcohol (0.1 g·mL⁻¹) (Sakabe et al., 2013), to apply the bacterial stimulation (Ethics committee no. 017900-08) into swim bladder. The swim bladder is a cavity organ, delimited, with terminal circulation and facilities for inoculation and exudate collection for evaluation of the cellular and fluid components accumulated in the inflammatory focus and has no resident leukocytes (Claudiano et al., 2013; Reque et al., 2010). The choice of swim bladder for this assay was due to the advantage of low influence of contamination by other organs during the application of irritant as emphasized by Martins et al. (2009).

2.4. Blood samples

At the times of 6, 24 and 48 h post-stimulus (HPS) the stimulus to the swim bladder, groups of fish (n = 5) were killed through deep anesthesia and cortisolemia were determined through radioimmunoassay (Gazola et al., 1996) and glycemia using a portable glucometer (“Accu-Chek® Advantage II”, Roche), on total blood samples collected from the caudal vein in the aforementioned times.

2.5. Evaluation of inflammatory exudate

The inflammation was evaluated through differential counting of the cells accumulated at the inflamed focus (Martins et al., 2008, 2009). The swim bladder was washed with 0.5 mL of PBS with 0.09% EDTA, and the exudate was collected for total and differential counting of cells from the inflammation (Bozzo et al., 2007; Reque et al., 2010). The interior of the swim bladder was washed with complete phosphate buffered saline containing 0.01 mL EDTA 5% and cell suspensions were centrifuged at 150 × g for 10 min before staining. The total number of cells was determined with a hemocytometer. Smears were made on microscope slides, air-dried, fixed and stained with Giemsa or periodic acid of Schiff (PAS). From the smears the percentages of macrophages, lymphocytes, granulocytes and thrombocytes were determined to obtain relative and absolute counts of each cell type (Belo et al., 2013).

2.6. Statistical analysis

All data was statistically analyzed using a factorial scheme \([4 \times 2 \times 3] \) [four levels of Cr (0, 12, 18 and 36 mg·kg⁻¹) and two stimuli inoculated into the swim bladder (0.5 mL of 0.65% sterilized saline solution as the control, and \(3 \times 10^8 \) CFU of A. hydrophila carried in 0.5 mL of 0.65% sterilized saline solution] and three periods of analysis (6, 24 and 48 h-post stimulus)], according to Littell et al. (1998). The analysis of variance for comparing the different experimental groups was carried out by applying a General Linear Model (GLM) Procedure (SAS, 2001). Significant differences (\(p < 0.05 \)) were estimated on the basis of Tukey’s test (Snedecor and Cochran, 1974).

3. Results

3.1. Cortisol

Fig. 1A presents the results from the cortisolemia determinations and shows that fish fed diets containing 18 and 36 mg of Cr·kg⁻¹ of diet presented better response profiles for cortisol levels throughout the entire study, including no significant differences (\(p > 0.05 \)) were observed among the different experimental periods in pacus supplemented with 18 mg Cr·kg⁻¹. On the other hand, control animals showed significant increase (\(p < 0.05 \)) of cortisol levels 6 and 24 HPS. The
response profile of fish fed 12 mg Cr·kg\(^{-1}\) was similar to the control animals, except for fish inoculated with the bacterium which presented lower cortisolemia (p < 0.05) 6 HPS.

3.2. Glycemia

Pacus fed diets supplemented with 12 and 18 mg of Cr·kg\(^{-1}\) presented significant (p < 0.05) variations in blood glucose levels among the periods (Fig. 1B). While fish controls showed a significant increase (p < 0.05) in glucose levels 6 and 24 HPS in animals inoculated with saline and 48 HPS in pacus inoculated with A. hydrophila. Pacus fed diets supplemented with 12 and 18 mg of Cr·kg\(^{-1}\) presented significant (p < 0.05) decrease in blood glucose levels when compared to saline control 6 HPS (Fig. 1B). Fish fed diet containing 18 and 36 mg of Cr·kg\(^{-1}\) and inoculated with A. hydrophila showed significant (p < 0.05) decrease in blood glucose levels 24 and 48 HPS, respectively (Fig. 1B).

3.3. Exudate

The count of total cells accumulated in the exudate showed significant increase (p < 0.05) in fish inoculated with bacterin and fed diet containing 18 mg of Cr·kg\(^{-1}\) (24 HPS) and 36 mg of Cr·kg\(^{-1}\) (6 and 48 HPS). These results were totaling influenced by lymphocyte and thrombocyte counts (Table 2). Regarding the counts of lymphocytes accumulated at the inflammatory focus, at 6 h after stimulation, the fish that did not receive supplementation did not differ (p > 0.05) from the groups that received different stimuli (Table 2). At 24 and 48 h after stimulation, the number of lymphocytes was greater (p < 0.05) in the groups inoculated with the bacterium than in those injected with saline solution, at concentrations of 18 and 36 mg Cr·kg\(^{-1}\), respectively, and there were differences (p < 0.05) between the other treatments at the same times (Table 2).

Table 2 shows that among the supplemented fish at 6 h after stimulation, those inoculated with bacterium presented greater accumulation (p < 0.05) of thrombocytes at the concentrations of 18 and 36 mg Cr·kg\(^{-1}\) than in those injected with saline solution. At this time, the fish injected with saline solution did not differ from each other (p > 0.05), and this continued during the process. At 24 h after stimulation, the number of thrombocytes was greater (p < 0.05) in the group supplemented with 18 mg Cr·kg\(^{-1}\) and inoculated with bacterium than in the saline solution. The counts on other cell types did not present any significant difference between the groups (p > 0.05, Table 2).

4. Discussion

Increased plasma cortisol concentration is a stress indicator in teleost fish (Barton and Iwama, 1991; Belo et al., 2005, 2012). The release time and the amount of cortisol released vary between different fish species and with the type of stimulus applied (Belo et al., 2005, 2012; Mommsen et al., 1999). In farming systems, fish are subjected to various types of environments, diets and stressful procedures that affect the physiological balance.
uptake of plasma glucose and diminished glycemia, as suggested by insulin with its receptor on cell membranes, and produces increased of the insulin, determined by chromium carbochelate. This, as a glucose possible to observe the variation of cortisolemia and glycemia. Variation acute and was evaluated some hours after its induction. This made it the processes of glycogenesis and neoglycogenesis (Mommsen et al., 2012; Fujimoto et al., 2005). This difference can be explained by the effects of glucocorticoids, which are more easily observed under acute stress. In the present study, inoculation of the bacterium or even injection inflammation was seen to have accumulated in greater amount at 24 h after stimulation, thus suggesting that there were some beneficial effects from supplementation for developing the inflammatory function.

The greater accumulation of thrombocytes in the groups supplemented with 18 and 36 mg Cr·kg⁻¹ of feed, at 6 h after stimulation, and with 18 mg Cr·kg⁻¹ of feed, may have been due to the interaction between chromium and insulin carbochelate, at the concentrations of 18 and 36 mg·kg⁻¹ of feed, brought homeostatic benefits to P. mesopotamicus. These benefits were translated, at least partially, as reductions in the consequences from inflammatory stress, with diminished cortisolemia and glycemia, which favored accumulation of lymphocytes and thrombocytes at the affected focus, as an increase in the immune response.

Acknowledgments

To the São Paulo Research Foundation (FAPESP) for the financial support (05/57989-8). The authors thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for financial support to F.R., Moraes and J.R.E. Moraes.

References
