16th WORLD FERTILIZER CONGRESS OF CIEC
TECHNOLOGICAL INNOVATION FOR A SUSTAINABLE TROPICAL AGRICULTURE

PROCEEDINGS
16th WORLD FERTILIZER CONGRESS OF CIEC

TECHNOLOGICAL INNOVATION FOR A SUSTAINABLE TROPICAL AGRICULTURE

October 20-24, 2014
Rio de Janeiro, RJ - Brazil

PROCEEDINGS

Vinicius de Melo Benites
Adilson de Oliveira Junior
Paulo Sergio Pavinato
Paulo César Teixeira
Milton Ferreira Moraes
Regina Maria Villas Bôas de Campos Leite
Ronaldo Pereira de Oliveira
Editors

Rio de Janeiro, RJ
2014
Introduction

Biochar is a name for charred organic material (charcoal - carvão vegetal in Portuguese) when it is used as a soil amendment. Different methods of pyrolysis is used to make charcoal. In the Amazon the traditional way is the called "caiera", that consist in earth kiln is digged and fulfilled with vegetal debris (mainly trunks of trees) its is covered with soil. Some opening vents in the soil allow to control the flux of oxygen into the kiln. Another traditional technique is the called hot tail (rabo quente) which is still a simple technique using a kiln made with bricks. After the kiln is filled a small fire is ignted at the kiln entrance then the door is sealed with soil and the vegetal residues is left to undergo incomplete combustion, creating charcoal and some ammount of ash (Swami et al. 2009). Charcoal as soil amendment is traditionally used by the population in the Amazon to enhance soils to cultivate some horticultural crops as medicines and spices. Moreover in the Amazon ash from burned vegetation is the lime and the fertilizers used in the traditional slash and burn or shifting cultivation, a system of land clearing practiced by several thousand of small farmers in the Amazon. In spite of potential agronomic benefits to enhance soil quality (Teixeira et al., 2010) biochar has also the potential to reduce carbon emissions (Lehmann et al., 2005). Many publications sad that biochar can increase soil fertility, increase agricultural productivity, and provide protection against some foliar and soil-borne diseases. Furthermore, adding biochar can prolongate the time of cultivation it may reduces pressure on forests areas to agriculture as happens in Amazonian Dark Earth sites (German, 2003).

The Amazon soils comprise a large spectrum of soil with different potential to be used in the agriculture, in the Central Amazon the soils of the upland areas are mainly dystrophic Ferralsols and Acrisols (Teixeira et al., 2011). However in the floodplains of many rivers, rich in sediments, the predominant soils are eutrophic Gleysols and Fluvisols. In the upland area in the Central Amazon, the only fertile soil (eutrophic) were the pretic Anthrosols (Amazonian Dark Earths), called regionally as Terra Preta de Índio, this type of soil has many good agronomic qualities (Teixeira et al., 2010) and can be considered the source of inspiration to apply biochar in soils (Benitez et al., 2010; Steiner et al., 2010; Steiner et al., 2009). The TPI shows normally a high concentration of P, Ca, Mn and large stocks of carbon. Moreover a large amount of the carbon in this type of soil seems to be of pyrogenic origin (Glaser et al. 2001 ) and has large amount of charge (CEC) (Liang et al., 2010). This article summarize result of many experiments conducted in 15 years of research with biochar in nursery and field experiments in the Central Amazon.

Material and methods

The material and methods used in the experiments were detailed described in the publications listed in the reference section.

Results and discussion

The results summarize the main results of many experiments conducted by the authors et al during the last decade

Fields experiments

In Central Amazon many fields experiments were conducted testing different levels of biochar in combination with different treatments (organic and mineral fertilizers). Also the response in productivity in annual crops (rice and sorghum) were studied (Steiner et al., 2007). In experiments with perennial crops, Banana (Musa sp) and Guarana (Paulinia
cupana) the treatments with addition of biochar re-
confirm the previous results of potential enhance in
the productivity for a longer period and to improve
the CEC, respectively the studies of Steiner et al.,
2007, Steiner et al., 2008 and Arruda and Teixiera,
2010 and Arruda et al. 2012. In an field experiment,
with application of charcoal pieces in planting holes
for a banana plantation (Steiner et al., 2009) addi-
tion of charcoal increased the water hold at potential
of 100 kPa that indicate a that charcoal amenda-
ment enhance soil pores with radius of ~ 0.015 mm.
Either biochar promoted the aggregation with soil
pores with pores of this size or biochar’s porosity
itself was responsible for this increase. The experi-
ments with application of biochars in the Central
Amazon show that only mineral fertilizer can also
not guarantee higher productivity for a long period.
Is that necessary to apply some source of organic
matter in combination with the fertilizers and bio-
char is an option. In spite of the difficult to isolate
single mechanism to explain some improvement in
productivity and soil quality in acid tropical soils, the
results are clearly related with reduction of leach-
ing rates and enhancing efficiency of fertilization
management.

Nursery experiments
Experiments were conducted using char-
coal as component of growing media in nurseries for
different plant species: Guaraná (Paulinia cupana);
Crajiru (Arabidace chica) and Brazil Nut (Bertholleti-
tia excelsa) the results are published respectively
in Arruda et al., (2007); Souza et al., (2007) and
Nunes and Teixeira, (2010). The main conclusion
of these experiments is that charcoal pieces can be
a component of growing media in substitution
to A horizon and commercial components (as ver-
miculite, montmorillonite) with similar results and the
advantage to be cheaper and regionally available.
The water holding capacity in lower tension of soil
with adition of charcoal can be similar or higher that
provide by addition of active clays.

In the future more sophisticated technolo-
gies may produce biochar by specific demand com-
bining more stable charred material to reduce emis-
ion or to delivery nutrients and to enhance cation
exchange capacity (CEC). Many benefits of char-
coal application related in the literature are probably
related with the liming effect of ash that “contaminat-
ed” many biochar. Application of biochar with large
amount of ash in alkaline soils some advantages
may change to disadvantages. The most biochar
can not be commercialized in the Brazil as fertilizer
as do not attend the minimum required by legisla-
tion by the most part of nutrients and it should be
referred as soil amendment or conditioner.

Conclusions
Biochar has a potential when combined
with fertilizers (mineral and organic) to enhance
productivity in the dystrophic Ferralsols in the Cen-
tral Amazon.

Biochar has a potential to replace the A hor-
izon in the nursery as a component of the growing media

Biochar from wood residues done in the tra-
ditional ways in the central Amazon (caieras and rabo-
quente) is a mixed of charred material and ash on lim-
ing, fertilizing and enhance water hold capacity.

Keywords: Biochar, tropical soils, CEC, Latossolo Amarelo

Acknowledgements
To Embrapa Amazônia Ocidental and our col-
leagues there (Gilvan Coimbra Martins, Murilo Ar-
ruda) to University of Bayreuth that carried for many
years a cooperation with Embrapa in Brazil con-
cerning Terra Preta de Índio and Biochar applica-
tion (Wolfgang Zech, Bruno Glaser, Johannes Leh-
mann). To Embrapa, University Federal do Amazon
(UFAM), CNPq and Capes for funding the studies
and and scholarships for students and authors.

References
ARRUDA M, MOREIRA A, TEIXEIRA W, SOUZA W,
ATROCH A AND NASCIMENTO FILHO FD. 2012.
Yield, soil fertility, and nutritional status of guarana-
clones cultivated with organic source of nutrients.
Revista de Ciências Agrárias / Amazonian Journal of
Agricultural and Environmental Sciences 55: 311-317.

ARRUDA MRD AND TEIXEIRA WG 2010. Utiliza-
cão de resíduos de carvão vegetal associado a
fontes orgânicas de nutrientes no manejo susten-
tável do solo e do guaranazeiro (Paullinia cupana
var. sorbilis (Mart.) Ducke) na Amazônia Central.
As Terras Pretas de Índio da Amazônia: sua caracterização e uso deste conhecimento na criação de novas áreas, Manaus: Edua / Embrapa, p. 307-314.


Figure 1. Traditional use of charcoal pieces (biochar) to enhance soil to cultivated horticultural crops in the Amazon