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Abstract – The objective of this work was to develop, validate, and compare 190 artificial intelligence‑based 
models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and 
intensities of thermal challenge. The experiment was conducted inside four climate‑controlled wind tunnels 
using 210  chicks. A  database containing 840 datasets (from 2 to 21‑day‑old chicks) – with the variables 
dry‑bulb air temperature, duration of thermal stress (days), chick age (days), and the daily body mass of chicks 
– was used for network training, validation, and tests of models based on artificial neural networks (ANNs) 
and neuro‑fuzzy networks (NFNs). The ANNs were most accurate in predicting the body mass of chicks from 
2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a 
standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial 
decision‑making, and they can be embedded in the heating control systems.

Index terms: animal welfare, artificial neural network, broiler, modeling, neuro‑fuzzy network, thermal comfort.

Predição da massa corporal de pintinhos por meio de modelos  
baseados em inteligência artificial

Resumo – O objetivo deste trabalho foi desenvolver, validar e comparar 190 modelos baseados em inteligência 
artificial, para predizer a massa corporal de pintinhos de 2 a 21 dias de vida, submetidos a diferentes períodos 
e intensidades de estresse térmico. O experimento foi realizado com 210 pintinhos, em quatro túneis de vento 
climatizados. Um banco de dados com 840 conjuntos de dados (de aves de 2 a 21 dias) – com as variáveis 
temperatura de bulbo seco do ar, duração do estresse térmico (dias), idade das aves (dias) e a massa corporal 
diária dos pintinhos – foi utilizado para treinamento de rede, validação e testes dos modelos baseados em redes 
neurais artificiais (RNA) e redes “neuro-fuzzy” (RNF). As RNA mostraram-se mais precisas para se predizer a 
massa corporal de pintinhos de 2 a 21 dias de idade, submetidos às variáveis de entrada, e apresentaram R² de 
0,9993 e erro‑padrão de 4,62 g. As RNA propiciam a simulação de diversos cenários, que podem auxiliar na 
tomada de decisões em relação ao manejo, e podem ser incorporadas nos sistemas de controle de aquecimento.

Termos para indexação: bem estar animal, redes neurais artificiais, frango, modelagem, redes neurais difusas, 
conforto térmico.

Introduction
The poultry industry is facing several challenges 

to its sustained productivity and profitability. Among 
these challenges are environmental conditions, 
diseases, economic pressure, feed availability and 
other ones. Renaudeau et  al. (2012) stated that 
climatic factors are among the main limiting factors 
for the growth of livestock production in developing 
countries. Although weather is tropical in the most 
part of Brazil, which favors the grown of chicks in 
the country, broiler houses are opened and slightly 

thermally isolated. This makes it difficult to maintain 
the proper thermal environment within the facilities.

Data on the thermal comfort for chicks have been 
commonly cited in the literature, showing that both 
heat and cold stress can cause reduced growth rate, 
body mass loss, and other damage to the health, and 
expression of anomalous behaviour of chicks during 
the first three weeks of life (Mujahid & Furuse; 
2009; Chowdhury et  al., 2012). Damages occur 
because broiler growth rate is sensitive to extreme 
environmental temperatures (Zhang et al., 2011).
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According to Mujahid (2010), newly hatched 
chicks are poikilothermic animals, which means that 
their thermoregulatory mechanisms are still poorly 
developed. Therefore, these birds are not especially 
resistant to environment temperatures outside their 
comfort range. During the first week of life, air 
dry‑bulb temperatures (tdb) ranging from 32 to 34°C are 
considered comfortable for chicks (Cony & Zocche, 
2004). For the second week of life, the tdb should be 
between 30 and 32°C and, in the third week, should be 
maintained within the interval of 26 and 28°C (Cony 
& Zocche, 2004). Air velocity should be maintained 
within the interval of 0.15 and 0.3 m s‑1 until chick is 
fully feathered.
Predicting responses, such as daily body mass 

of broilers, allows producers to infer the thermal 
environment effects on this variable, which assists in 
decision‑making related to the thermal control of the 
production area. Among many predictive methods, 
artificial neural networks (ANNs) and neuro‑fuzzy 
networks (NFNs) models have been applied to various 
fields of study, and their use is generally linked to 
a search for patterns and techniques of temporal 
predictions for the decision‑making process, such as in 
poultry production, and animal environments, among 
others. ANNs are made of a simple interconnected 
group of cells known as artificial neurons, which 
are distributed in layers and used to calculate 
mathematical functions (Matin et  al., 2012). These 
models are inspired by the structure of the brain, and 
aim to simulate human behaviors, such as learning, 
association, generalization, and abstraction, after being 
subjected to training (Ferreira et al., 2011). NFNs have 
emerged as a promising tool because they combine 
the benefits of learning and the computational power 
of ANNs with the capacity for representation and 
reasoning of fuzzy logic (Jang, 1993). A combination 
of the positive attributes from both techniques produces 
systems with an ability to learn and adapt to solving 
real‑world problems, which is ideal for applications 
such as identification, prediction, classification, and 
control (Rutkowski, 2008).

The objective of this work was to develop, validate, 
and compare 190  artificial intelligence‑based models 
for predicting the body mass of chicks from 2 to 21 days 
of age subjected to different duration and intensities of 
thermal challenge.

Materials and Methods

This experiment was conducted at the Laboratório 
de Construções Rurais e Ambiência, Departamento de 
Engenharia, Universidade Federal de Lavras (Ufla), 
which is located in Lavras, MG, Brazil. All procedures 
used in this experiment were approved by the Ethics 
Committee on Animal Use (Comissão de Ética no 
Uso de Animais ‑ Ceua) of the Ufla protocol number 
001/12.
Four environmentally‑controlled wind tunnels with 

air recirculation and air partial renewal were used. 
Each wind tunnel was built with steel frames, steel 
sheets, and PVC pipes. The control, measurement 
and storage of the thermal environment variables 
in the wind tunnels were performed at one‑minute 
intervals using a control and measurement data logger 
CR1000 (Campbell Scientific, Logan, Utah, USA) 
with accuracy within 0.3°C, 0.5% and 0.1  m s‑1 for 
tdb, relative humidity (RH), and air velocity (V), 
respectively. Air heating and humidification within the 
tunnels were automatically done through the operation 
of electric heaters and humidifiers controlled by the 
data logger and the associated electromagnetic relays.
Inside each wind tunnel, broiler chicks were housed 

in a 0.40 x 0.60 x 0.50 m cage, which was divided into 
three equal compartments of 0.08 m² each. The cages 
were built with steel square tubes and wire netting 
with 1x1  cm mesh. In the first week, fifteen chicks 
were lodged in each cage, with five chicks per cage 
compartment, setting up a replicate for each treatment. 
One chick from each compartment, with a body mass 
having the greatest deviation from the median of the 
same replicate, was removed at the eighth day. Another 
chick from each replicate was removed again at the 15th 
day of life, leaving three animals per replicate. This 
method was used to maintain an appropriate animal 
density throughout the entire experimental period and 
replicate breeding conditions similar to commercial 
broiler breeding production (Cobb‑Vantress, 2008).
Throughout the experimental period, 210  Cobb 

broilers of both sexes were used. All the chicks 
were originated from the same hatchery, and they 
were vaccinated against Mareck´s disease, Gumboro 
disease and fowl pox. Chicks were included in the 
experiment soon after hatch, and remained until they 
reached 22 days of age. During this period, water and 
commercial feed were provided ad libitum to chicks, 
in order to meet their nutritional requirements. The 
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same feed was used for all the chicks throughout the 
experimental period, with no changes in its formulation, 
with a continuous light regime (Abreu et al., 2011).
Chicks were maintained at 33, 30, and 27°C during 

the first, second, and third week, respectively, as 
recommended by Menegali et al. (2013). Throughout 
the experimental period, the relative humidity (RH, 
%) inside the climate‑controlled wind tunnels was 
maintained at approximately 60%, as recommended by 
Lin et al. (2005). However, each group of fifteen chicks 
was subjected to both cold and heat stress‑inducing 
temperatures (27, 30, and 36°C), for periods ranging 
from one to four days, starting on the second day. After 
being subjected to stressful conditions, chicks were 
re‑subjected to their preferred temperature. 
A database containing 840 datasets was collected 

during the experimental period and used to train, or 
adjust, validate, and test models based on ANNs and 
NFNs. Each dataset consisted of 3 levels of tdb (27, 30, 
and 36 °C), 4 D periods (1, 2, 3, and 4 days), 20 days 
of measurement (from 2 to 21‑day‑old chicks), and 
three replicates, totalizing 720 datasets. For the control 
treatment (tdb of 33°C), 20 days of measurement, and 
six replicates were used, adding 120 more datasets to 
the database. Two groups of fifteen chicks each were 
kept in a state of comfort throughout the experimental 
period. Each group of chicks was subjected to a 
treatment only once. Each morning, at 7:00 a.m., chick 
body mass was recorded individually.
For the ANNs and NFNs, the dry‑bulb air temperature 

(tdb, ºC), stress duration (D, days) and age of chicks 
(A) were used as input variables, and the body mass  
(BM, g) of Cobb chicks from 2 to 21 days old was used 
as output variables.
Each dataset was divided into three subgroups 

(training, validation, and tests), which were used to 
model the ANNs and NFNs. The training set is used 
to find the optimal weights which are associated to 
neurons. The validation set is used to achieve the 
optimal number of hidden units, or to determine a 
stopping point for the back propagation algorithm. The 
test set is used only to estimate the performance of the 
final model.
Out of all the data, 70% of the experimental dataset 

(588 independent data points) were used for training, 
and 15% of the data (126 data points each) were used for 
validation and tests, for a total of 840 data points from 
the experimental dataset. The data for the final model 

validation was composed of 42 experimental datasets, 
which is equivalent to the mean BD corresponding to 
the 7th, 14th and 21st days of age for the chicks.
One hundred and fifty models based on ANNs and 

forty models based on NFNs were fitted to predict the 
BM of broilers from the 2nd to the 21st days of life, 
after chicks were subjected to different intensities and 
duration of thermal stress. Among the fitted models, 
one based on ANN, and other on NFN which exhibited 
the highest coefficient of determination (R²) and the 
lowest mean square error (MSE), were selected for 
comparison. The R² and MSE were used for their 
capacity to indicate the precision and measure the 
accuracy of a model, respectively (Tedeschi, 2006).
According to Ravi Kiran & Rajput (2011), layer 

formation is transmitted to the ANN model with the 
aid of a known set of data patterns that the network 
continuously “learns” by adapting its weights and 
deviations through an activation function called A. 
Thus, the network calculates the output in accordance 
with the following equation:

in which: A is the activation function; n is the number 
of neurons in the subsequent layer; wk is the weight 
of the respective connections; xk represents the input 
variables in a k neuron; and β is the bias for the neuron.
The activation or transfer functions are used to 

activate neurons from several layers. These functions 
can be sigmoid, tan‑sigmoid, pure linear, and of other 
types. Thus, the network is formed until the error is 
reduced enough to provide an accurate output for a 
given input dataset. 
The model parameters included the number of 

hidden layers, the transfer functions in each hidden 
layer, the number of neurons on hidden layer (s), the 
learning rate, the moment rate and the neuron weights. 
Models based on ANNs employed tdb, D and A as 

the input variables, and the BM of broilers from 2 to 
21 days old were used as output variables. To develop 
the models based on ANNs, the software Matlab 
(MathWorks, 2011) was used with the neural fitting 
tool (ntool).
These models were trained using 70% of the 

randomly divided experimental data, with different 
numbers of hidden neurons (from 2 to 10, in steps of 1, 
and from 10 to 115 in steps of 5) for testing. The best 
configurations were selected based on the highest R² 
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coefficient and the lowest MSE. These models were 
subsequently validated with experimental data and, 
then, the best model was selected.
In the present study, the tested architectures that 

showed the best BM prediction performance were the 
multilayer networks (multilayer perceptron,  mLP), 
which have been widely used for the development of 
an ANN (Savegnago et  al., 2010; Kaewtapee et  al., 
2011).
Two “feedforward” layers and supervised training 

were employed with the Levenberg‑Marquardt 
backpropagation (LM) training algorithm, which 
is considered the fastest method for training such 
networks (Barbosa et al., 2005).
The root mean square (RMS) error was used for the 

performance function, whereas the activation function 
of the neuron output selected was the tangent sigmoid 
“tansig”.
Three variables, namely, tdb, D and A, were used 

in the input layer for the development of ANNs. The 
initial network parameters were configured as follows: 
hidden layer (1, default value), number of epochs 
(1,000), error tolerance (<0.099), learning rate (0.7), 
and moment rate (1x10‑3); these values – as well as the 
neuro weights – were automatically optimized during 
the network training by the computer application used 
for this process. The model was developed to allow the 
user to independently train and test the network.
A fuzzy system is an approach to computing based 

on many‑valued logic, with truth values between 0 
and 1, rather than binary (two‑valued) logic that uses 
0 to be false and 1 to be true. Thus, a fuzzy system 
is a generalized set that can assign various degrees 
of memberships over the interval [0, 1]. Therefore, 
the operation of this type of NFN is the same as that 
of ANN, except that when neural network “learns”, 
it modifies the sets and rules of the fuzzy inference 
system (membership functions) (Jang, 1993). 
When using an NFN to solve a problem, the 

final solution for an NFN can be interpreted as a 
Takagi‑Sugeno type fuzzy inference system (FIS). In 
this system, the input and output structures are based 
on rules; however, the consequences of the rules are 
formed by crisp functions (non‑fuzzy). These systems 
use rules in the following expression by Takagi & 
Sugeno (1985):
If x is A (assumption), then y = f(x) (consequence), in 

which: x and y represent the input and output variables, 

respectively; and A is the linguistic term associated 
with the fuzzy set that describes the variable.
The fuzzy logic toolbox Anfisedit of Matlab software 

(MathWorks, 2011) was used to develop these NFNs. 
The function of this toolbox is to construct an FIS by 
using input and output datasets (for training, validation, 
and testing). The specific parameters to the membership 
function (MF) employed two types of methods (the 
error backpropagation algorithm, either individually 
or in a hybrid form, combined with the least squares 
method). This setting allows fuzzy models to learn 
from the data during the modeling process.
Several neuro‑fuzzy models were developed and 

simulated using different settings. Different types 
of membership functions (Gaussian, triangular, and 
trapezoidal ones), epoch numbers and optimization 
methods (backpropagation or a hybrid) were tested, 
resulting in 40  models. The model with the lowest 
training error and no output internal errors in their 
fuzzy sets (with an amplitude outside the normal 
range or sets with values of zero (0) for the study 
variable BM) were selected. The hybrid training 
method (optimization), which was based on a 0.0 error 
tolerance and 3,000 epochs, was chosen because it best 
fits the dataset (Tahmasebi & Hezarkhani, 2010). The 
training was halted when both training and validation 
errors were stabilized.
The best neuro‑fuzzy tested model consisted of a 

collection of fuzzy propositions, as presented in an 
if‑and‑then form, which was elaborated based on the 
input variables. The knowledge base was composed of 
27 rules, and each rule was assigned a weighting factor 
of 1.
The significance of the ANN and NFN models and the 

coefficients was tested using the F and t tests (p<0.05), 
respectively. The models that exhibited the best fit 
were selected (smallest sum of squared deviations). 
To analyze the models, the statistical software R (R 
Development Core Team, 2011) was used.

Results and Discussion

For the ANNs, the best network architecture 
was obtained with a hundred hidden neurons in the 
intermediate layer and in each trained ANN and an 
output layer consisted of only one neuron (BM). Thus, 
the lowest value of prediction errors was obtained 
with 245.26 training error (MSE), 404.92 validation 
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error, and 327.75 test error for BM. From that stage, 
increasing the number of neurons in the intermediate 
layer led to an increase in the difference between the 
prediction errors, indicating model overfitting. The 
achieved MSE values showed that ANN can adequately 
predict the output variable.
For the selected NFN final model, the input variables 

were represented by triangular membership functions 
(Figure 1) and the “constant” function was chosen for 
the output variable because they best fit the selected 
dataset. Thus, the best model for predicting the BM 
was composed of twenty-seven rules that determined 
the input variable behavior (tdb, D, and A) (Table 1). 

Based on Table  1, the system of fuzzy interference 
rules was created for the input variables and the values 
of the output variable BM (Table 2). 
Despite the similarity of the two models, the 

one based on ANN always showed lower absolute 
deviations, standard deviations, percentage errors, 
standard error, and root mean square error (RMSE) 
than the best NFN‑based model (Table 3). Furthermore, 
ANN models had an intercept value closer to 0 and 
a slope closer to 1, which indicates a better accuracy 
in this model than in the NFN ones (Tedeschi, 2006). 
Thus, the ANN‑based model was superior to the 
NFN‑based one for predicting the BM of broilers from 
2 to 21 days old subjected to thermal stress.
When comparing the BM values simulated with the 

experimental values by ANNs and NFNs, the proposed 
models were found to be precise in predicting the 
BM of broilers aged from 2 to 21  days (Figure  2). 
According to Savegnago et al. (2010), the coefficient of 
determination (R²) is an indicator of the goodness‑of‑fit 
between the model and the data. Comparing R² values 
of the two test models showed that the ANN‑based 
model outperformed the NFN‑based one (0.9993 and 
0.9970, respectively). This result indicates that the BM 
values predicted by the models were similar to those 
experimentally observed and that the network learning 
faults during the training process were minimal 
(Ahmadi & Golian, 2010). Besides, when comparing 
the relationship between the observed BM with the 
BM simulated by the linear regression obtained from 
Figure 2 (Figure 3), it is clear that both models showed 
a similar performance.
The occurrence frequency of the absolute deviations 

of BM from 0 to 2 g was 42.0% for the ANN models 
and 31.0% for the NFN ones. ANN showed an error 
occurrence frequency of 2.0%, between 16 and 18 g, 
and for NFN it was 8.0% (Figure 4). Thus, it appears 
that the ANN had the lowest error occurrence frequency 
for this interval. With these data is possible affirm that 

Figure  1. Membership curves of neuro‑fuzzy network 
(NFN) input variables for stress temperature (tdb, °C) (A), 
stress duration (D, days) (B), and age of chicks (A, days) (C) 
observed for chicks.

Table 1. Characteristics of the Sugeno‑type or neuro‑fuzzy 
system (NFS) for body mass (BM).
Membership function tdb (°C) D (day) A (day)
MF1 [23.0; 27.6; 31.5] [‑2.0; 0.1; 2.0] [‑6.5; 4.8; 12.3]
MF2 [26.3; 32.1; 35.9] [‑0.1; 3.0; 4.0] [1.9; 13.9; 21.8]
MF3 [31.6; 36; 40.3] [1.9; 4.6; 6.0] [12.6; 22.1; 31.5]

tdb, dry‑bulb temperature; D, stress duration; A, age.
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for the smaller values of absolute deviations (smaller 
than 6  g), ANN had a better performance. However, 
for absolute deviations bigger than 6 g, NFN showed 
the best results.
In both tested models, the results confirm that ANNs 

could be the best methodology for BM prediction 

in broilers from 2 to 21 days of life, after they are 
subjected to thermal stress. Ahmadi & Golian (2008) 
used ANN to predict the weekly egg production 
rate, and also found the lowest error values and 
highest R² than the prediction by regression models. 
Savegnago et  al. (2010) also found the best results 
using ANN (multilayer perceptron type) to investigate 
the possibility of using mathematical models for egg 
production curves. This performance superiority 
over other types of modeling may occur because the 
relationships between the input and output variables, 
fault tolerance, and interpolation capacity are mapped 
in this type of modeling (Zhang et al., 2007). In addition, 
Bishop (1995) states that ANNs have the ability to 
learn the behavioral patterns of a dataset during the 

Table  2. System of fuzzy interference rules for the input 
variables dry‑bulb temperature (tdb), stress duration (D), and 
age of chicks (A), and the values of the output variable body 
mass (BM) for chicks.
Input variable Output variable Input variables Output variable
tdb D A BM tdb D A BM
1 1 1 BM1 = 46.7 2 2 3 BM15 = 611.4
1 1 2 BM2 =171.4 2 3 1 BM16 = 42.4 

1 1 3 BM3 = 560.3 2 3 2 BM17 = 231.5
1 2 1 BM4 = 24.7 2 3 3 BM18 = 532.0
1 2 2 BM5 =170.0 3 1 1 BM19 =44.0 

1 2 3 BM6 = 421.7 3 1 2 BM20 = 245.9 

1 3 1 BM 7 = 38.5 3 1 3 BM21 = 585.3 

1 3 2 BM8 = 172.5 3 2 1 BM22 = 40.9
1 3 3 BM9 = 513.4 3 2 2 BM23 = 247.6
2 1 1 BM10 = 47.4 3 2 3 BM24 = 556.0
2 1 2 BM11 = 253.1 3 3 1 BM25 = 46.8
2 1 3 BM12 = 589.2 3 3 2 BM26 =224.0 

2 2 1 BM13 = 53.9 3 3 3 BM27 = 592.0
2 2 2 BM14 = 281.9

Table  3. Statistical results of the fitted models artificial 
neural network (ANN) and neuro‑fuzzy network (NFN) for 
output variable body mass (g) of chicks.
Statistical indices Tested models(1)

ANN NFN

Absolute 
deviations

Minimum 0.2 0.0
Mean 3.3 6.6
Median 2.7 4.5
Maximum 16.1 29.6

Standard 
deviations

Minimum 0.1 0.0
Mean 2.3 4.6
Median 1.9 3.2
Maximum 11.4 20.9

Percentage 
error

Minimum 0.1 0.0
Mean 1.2 2.1
Median 0.9 1.8
Maximum 4.4 5.8

R2 0.9993 0.9970
Standard error 4.62 9.80
RMSE 1.63 2.65
Regression coefficients (slopes)(1) 1.0033±0.0041 1.0118±0.0087
Intercepts ‑0.7067±1.4862 ‑4.4432±3.1822
(1)The slope close to 1 and intercept simultaneously close to 0 indicate a 
high accuracy. RMSE, root mean square error.

Figure 2. Functional relationship between chick body mass 
(BM) values predicted by the artificial neural network 
(ANN) (A) and neuro‑fuzzy network (NFN) (B) models, 
and the observed values.
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training process, providing consistent predictions, or 
the possibility of test generalizations, as confirmed in 
the present study.
The plots of BM were subsequently generated for 

the first three weeks of life as a function of A (days) 
and D (days) for tdb of 27, 30, and 36°C, based on 
the models of ANN a NFN (Figures 5 and 6). In both 
tested models, chicks subjected to 27°C had lower BM 
values than those subjected to 30°C, and both groups 
showed a BM reduction in relation to the comfortable 
temperature (33oC). In addition, irrespectively of the D 
period for the temperatures of 27 or 30°C, when these 

Figure  3. Values of observed and predicted chick body 
mass by coefficients of regression. ANN, artificial neural 
networks; NFN, neuro‑fuzzy networks.

Figure 4. Frequency of absolute deviations between the body 
mass (BM) data for chicks from 2 to 21 days, as simulated 
by models based on artificial neural networks (ANN) (A) 
and neuro‑fuzzy networks (NFN) (B), and the validation 
dataset.

Figure  5. Plot of predicted body mass by artificial neural 
network (ANN), according to the following conditions of: 
dry‑bulb temperature (tdb, °C) to which the chicks were 
subjected at 27°C (A), 30°C (B), and 36°C (C) during 1, 2, 
3, and 4 days of stress.
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chicks reached the 21st day of life, they still showed 
smaller BM values (Figures 5 and 6); this means that 
even for a short period of thermal challenge and after 
being subjected to thermoneutral temperature again, 
the chicks were not able to regain their BM until their 
21st day of life. However, it should be noted that despite 
the small loss, when considering a house of chickens 
for commercial production, this difference in BM 
can result in significant animal losses, and can even 
cause financial loss to the producer. Van den Brand 
et al. (2010) studied feed different concentrations for 
newly‑hatched poultry, and noted that the feed intake, 
especially for feed with a higher energy content, is 
essential for chicks at this age, in order to develop 
their digestive systems and thus maintain their 
homeothermy. However, Mujahid & Furuse (2009) 
studied the physiological responses of chicks exposed 
to very low temperatures (20°C), and confirmed 
that newborn chicks are unable to maintain their 
thermostability under those conditions, even if feed is 
available. Furthermore, the authors observed that these 
chicks did not engage in compensatory feed intake to 
try to maintain heat production. Therefore, it can be 
inferred that if chicks are under cold stress conditions 
(at greater or lesser intensity), the feed intake is 
affected, consequently affecting their digestive and 
body development in addition to their homeothermy, 
thus influencing weight and body mass gain.
For 36°C thermal challenge, the loss related to BM 

was almost negligible or even nonexistent, which 
shows that chicks can adapt well to higher temperatures 
in this age group (Figures 5 and 6). This information 
is in agreement with Abreu et  al. (2012), who stated 
that young chicks show greater resistance to high 
temperatures, and have a greater susceptibility to cold 
stress conditions. Thus, chicks at 36°C could perform 
better than those under 27 and 30°C conditions.

Conclusions

1. The artificial neural networks (ANN) and 
neuro‑fuzzy networks (NFN) are very similar to 
predict the body mass of broilers from 2 to 21 days of 
age subjected to different dry-bulb temperature.
2. The ANN‑based model produces more accurate 

predictions than the NFN‑based one.
3. The ANN model can be embedded in a 

microcontroller‑based system to control aviary heating 
systems.

Figure  6. Plot of predicted body mass by neuro‑fuzzy 
network (NFN), according to the conditions of: dry‑bulb 
temperature (tdb, °C) to which chicks were subjected at 27°C 
(A), 30°C (B), and 36°C (C) during 1, 2, 3, and 4 days of 
stress.
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