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AAbbssttrraacctt 

The thesis Preface first introduces the overall research context of Precision Agriculture (PA) 

and the specific aims of this work. Aims are particularly related to aspects of the opportunity 

for the adoption of Site-Specific Crop Management (SSCM) technology, which underline 

assumptions of efficient production management and environmental-economic principles. The 

body of the investigation is structured in three parts concerning the background information 

on Decision Support Systems (DSS) for SSCM, the proposal of methods supporting SSCM 

decisions, and the general impact of this work with appendices.  

A historical data set (1996-2006) of yield monitoring, crop reflectance imagery and soil 

electrical conductivity (ECa) was gathered from 80 broad-acre grain crop fields across three 

agronomic regions in Australia. These are 5 farms in South Australia, 3 in the Riverine and 8 

in Northern New South Wales, which form part of a non-profit growers network built on the 

cooperative sharing of information and experience on the promotion, development and 

adoption of PA as a means for profitable and sustainable farming. In total, 218 field-year 

samples over a decade of intensive monitoring include several grain crops. 

 Part I includes a literature review identifying aspects and requirements concerning the 

structure of agricultural decision support, trying to understand “how it should be” and “what it 

is composed of”. Further attention is given to current system solutions potentially leading to 

limited technological adoption. The first chapter presents a literature review identifying 

aspects, concepts and typical components to be considered in the development of DSS for PA, 

according to the research context and aims as further introduced. A broad analysis of past 

experience is addressed, analysing how they may have influenced present DSS standards for 

SSCM. A complementary chapter extends the review, with system development aspects for 

decision tools for PA. It reports on a wide range of Web-based decision support applications 

closely related with SSCM decision-making, also including a technical survey on the 

implementation and the design aspects specific to current PA DSS developments. 

Part II initially addresses the lack of analytical and integrative capabilities in available 

decision support tools by introducing a new method of application for a DSS conceptual 

framework for SSCM. This system design uses object-oriented diagrams to describe processes 

for the quantitative assessment of within-field crop variation and the associated opportunity 

for the segmentation of management zones. It considers a knowledge intensive support to 

management processes, which would theoretically facilitate an integrated access to agronomic 
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models directly available to farmers. Further research is to populate this framework with 

quantitative assessments of spatio-temporal within-field production variability. For this, a 

numeric opportunity index for the merits of investment in PA is suggested considering 

components of crop production variation magnitude and spatial structure, as observed with 

different intensive monitoring devices (i.e. crop yield, soil electrical conductivity, and 

remotely sensed imagery). The use of alternative indices appears to support more dynamic 

crop production variability analysis, which could account for pre-season, in-season, and post-

season observations and decisions. The introduction of a parametric method rendering the 

degree of management-responsive crop variability proved robust and could provide a simple 

ranking mechanism to identify fields of greater potential for further investment in differential 

crop management. It is hypothesized that the availability of several indices could support a 

more efficient step wise SSCM adoption via parameters that are less dependent on 

management practices. Summing up the use of opportunity indices (Yi, Ii, & Si), a decision 

model is proposed systematizing the use of index benchmarks for decision pathways using the 

most appropriate monitoring technology according to the individual stage of SSCM adoption. 

Finally an economic evaluation is proposed to estimate the financial advantage from zone 

management using variable-rate application of inputs. The model uses a net worth analysis for 

a single intervention for within-field differential Nitrogen management, which is conducted as 

a simple way of comparing segmentation methods applied to zone management. The 

evaluation of segmentation methods has considered object-oriented image processing 

algorithms based on spectral and morphological relationships, which proved effective through 

the hybrid segmentation approach proposed. The combined use of multiresolution 

segmentation with a hierarchical watershed transformation and region grow algorithms 

appears to provide a favourable partitioning of within-field management zones.  

Part III presents a concluding chapter that includes closing remarks regarding the specific 

research aims, general conclusions and major issues concerning future research, as well as 

appendices with extended methodological references and detailed experimental outcomes. 

The final chapter complements the detailed discussion provided in each chapter by 

highlighting general aspects of the context of exploring simple means to characterize the 

opportunity for the adoption of site-specific differential crop management. A concluding 

evaluation of the applicability of the proposed methods is provided. This evaluation adds 

general points about the implications of this thesis work in the development of automated 

methods for spatio-temporal analysis of site-specific data. 
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PPrreeffaaccee  

This thesis aims to investigate foundations for a semantic bridge between realms of agronomy 

and computer sciences within operational and tactical decision processes in SSCM. For this 

purpose, recently established standards from Information Technology (IT) are suggested as a 

means to facilitate the representation and the implementation of effective and accessible 

decision tools. This approach is based on the fact that IT methods appear to be little 

considered beyond site-specific monitoring instrumentation, which may influence a 

recognized PA technological gap in the development of DSS. However, the core investigation 

concerns quantitative models for agronomic and economic spatial relationships, which are 

formalized, prototyped and documented within a system developments point of view.  

Although this approach may impose a system-development jargon, the contents are aimed at 

agronomic related audiences and focus on the spatial and temporal aspects in crop production 

variation. Biophysical and production management comments are limited to the specific 

observations in this research and based on ad-hoc production system expertise reports. Still, 

the system perspective is introduced in order to call the attention of agronomic users and 

model developers to the importance of using basic system concepts that may promote more 

effective implementation of tools directly available to farmers. For this reason, extended 

concepts for system development processes are given in appendices 2 and 3. 

From an electronic engineering and computer science mixed background, it is evident a great 

technological mismatch between current PA standards for data gathering and data usage. A 

lack of automated spatial analysis and integration of production data to generate meaningful 

information is seen to contrast with advanced robotics used for within-field monitoring and 

operational control. However, after a more in depth examination of site-specific agriculture it 

became less clear as to whether the comprehensive use of software development technologies 

will suffice for bridging the present gaps in agronomic knowledge and spatial reasoning. 

Looking 20 years into the future, I can foresee field-scale operational practices that would 

regularly apply nanotechnology-based mechatronic worms capable of remotely reporting soil 

biophysical and structural conditions, along with root development stages, hopefully using 

sustainable energy sources. However, an intelligent farm management and control system that 

matches the current standards of accessibility and security provided by retail automated 

banking systems, is difficult to predict. 
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RReesseeaarrcchh  CCoonntteexxtt  

  

The fine tuning of farm management decisions has always faced challenges of balancing 

production requirements, knowledge and applied technology. In the past, decisions towards 

short-term benefits from broad-acre and uniform management practices may have delivered 

environmental costs as they were often taken up without a full understanding of long-term 

risks. The recent information revolution has been helpful in shaping more efficient farm 

management through the adoption of technology. This process has become more evident as 

farming uncertainty increases and new market and environmental standards have been 

imposed on managers. However, the uptake of technology has been restrained due to a lack of 

clear scientific evidence and proven benefits for new tools. 

Advantages in the adoption of information-intensive agriculture practices, referred to as PA, 

can be positively interleaved in the tripod of sustainability aspects (Figure 1). PA has already 

been pitched as a solution to counteract deleterious consequences such as input waste, long 

term yield reduction, and soil, water and atmospheric degradation, even though a localized 

short term history of outcomes is still limiting more conclusive investigations. Therefore, 

questions can be raised about the relatively limited spread of this technology given the 

potential of IT to support farm management.  

This investigation context is limited to questioning the current situation in terms of available 

technology supporting the form of PA denoted as SSCM. The present situation shows fast 

advances in firmware and wireless communication bringing into common practice a 

comprehensive set of tools for intensive field monitoring and operational management. In 

decision making, often the outcome of this adoption of fine resolution data gathering 

technology has been an overwhelming amount of information to feed into traditional 

management approaches. Moreover, the recursiveness and density of data sets have not easily 

answered management questions by themselves. This contrast supports the notion that 

gathering technologies are not matched by appropriated developments of complimentary 

analysis tools which can promote analysis and informed reasoning for effective decision 

support.
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Figure 1: General aspects of SSCM towards sustainable agriculture. 

Ideally, analysis and understanding of this data should match the speed at which it has been 

generated. But, even if yield maps can immediately display variability patterns of a specific 

crop season, the analysis and understanding of this variation is still dependent on both 

quantitative methods and spatio-temporal association rules. The proper development and 

management of this analytical knowledge is important for the adoption of SSCM, supporting 

managers to justify investments in technology and determine when, where and how to 

optimize differential management practices. Research is still far behind in the development of 

these tools, but their construction is crucial if farm managers are to be convinced that PA 

techniques have a potential payoff. This process is fundamental to proving PA to be the new 

agricultural standard. 

It is understood that the development of DSS to answer questions in PA is still a critical 

research gap, which potentially dims the adoption of SSCM technology. The use of the DSS 

acronym is mostly associated with standalone tools of dissimilar typology and proprietary 

data structures, lacking spatial reasoning functionality and software development standards. It 

appears that there is still no proper knowledge on the basic decision questions and system 

development requirements necessary to supply pragmatic within-field management tools.  
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This work argues that the use of appropriate development methods and standards for system 

analysis and design can potentially facilitate the generation and re-use of tools that use 

quantitative and spatial crop management models. Development methods can be further used 

to embed agronomic models and practical knowledge in knowledge management frameworks 

that could increase the efficiency of traditional crop management practices. Methods 

supporting more flexible and open software developments are already maturing and could be 

applied to address the overall context of SSCM decision-making processes.  

Clearly, adaptive farm management can be facilitated through a framework enabling decision 

support via interactions of several interoperable modelling tools with outcomes being swayed 

by knowledge of individual farm management systems. Tailored solutions could be 

individually composed, providing outcomes that are simply to understand and interpret by 

managers. New trends in PA development are already reflecting a more mature understanding 

of how to model the diversity in SSCM decision making, including: i) participatory 

approaches to model practical decision-criteria factors; ii) simpler mathematical 

representation and autonomic data handling and analysis addressing simplicity in human 

interactions; and iii) tools in conformity with Service-Oriented Architectures (SOA). 

The focus of research in this work is to investigate and summarize the contextual and practical 

issues about within-farm crop management decision-making processes using SSCM 

technology and data. Aspects influencing the adoption of PA technology are explored with 

conceptual system development methodologies. In addition, methods addressing spatial 

agronomic knowledge gaps are focused on quantifying complex yield variability while 

providing easy to understand assessments. The general hypothesis is that the use of 

knowledge management tools could provide a pragmatic way to complement knowledge 

assets (scientific and tacit), thereby increasing the usefulness of management support tools 

and leading to increased production efficiency with the appropriate adoption of SSCM 

technology. 
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AAiimmss  

  

The aims in this investigation are itemized below according to an overall objective of 

exploring simple quantitative and automated methods for characterizing within-field 

variability. Experiments are conducted within a “building a bridge” perspective, between 

system development methods and agronomic modelling, when addressing practical decision 

questions in the adoption of site-specific crop management. 

� To examine the literature from different domains related to the philosophy, logic and 

development of decision support systems to identify and understand minimum 

requirements towards a conceptual framework and implementation in SSCM. 

� To provide a thorough literature review of SSCM software to identify methods, 

functionalities, and missing requirements. 

� To propose an object-oriented conceptual design of a DSS framework supporting 

questions on the adoption of SSCM technologies. 

� To model the magnitude and the spatial structure in yield data variability to propose a 

normalized variability index that can be applied for general grain crop production in 

decisions involving investments in technology. 

� To apply the proposed normalized yield-based variability index in remote and proximal 

sensing data sets to evaluate less invasive monitoring methods. 

� To define a decision tree using variability indices from different monitoring technologies 

to support SSCM decision processes. 

� To optimize the number of potential management zones, while modelling the spatial 

segmentation of within-field agronomic attributes, to determine where and how to 

apply differential management. 
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DDeecciissiioonn  ssuuppppoorrtt  ffoorr  ssiittee--ssppeecciiffiicc  ccrroopp  mmaannaaggeemmeenntt  ((SSSSCCMM))  
 

 

Summary 

This chapter presents a literature review identifying aspects, concepts and typical components 

to be considered in the development of Decision Support Systems (DSS) for Precision 

Agriculture (PA), according to the context and aims in the introductory chapter. A broad 

analysis of past experience is addressed, analysing how they may have influenced present 

DSS standards for Site-Specific Crop Management (SSCM). 

Issues regarding the limited adoption of SSCM technology are subject to more specific 

analysis, as they have been strongly associated with ineffective developments of decision-

support tools. Previously proposed system approaches, agronomic models, and software 

requirements are discussed and summarized through a critical analysis of functionalities 

offered by commercially available tools, also considering human-related aspects favouring 

farmer’s adaptive learning. As a result, this review aims to build up a reference on general 

aspects of farm decision-making that influences the adoption of SSCM technology. 

In PA, the DSS acronym has been mostly associated with standalone tools of dissimilar 

typology and proprietary data structure, which usually requires advanced computer literacy 

from agronomists, consultants, and farmers. There is also a lack of knowledge on how to 

integrate scientific and practical crop management knowledge in order to supply effective 

decision support. 
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1.1 - Introduction 

Profitable agricultural production systems are most likely to consider aspects beyond on-farm 

operational activities, usually involving strategic decisions about a compliant adoption of new 

technologies. Basic adoption questions traditionally regard the appraisal of a short term 

increase in production against machinery or input investments. The adoption of new farm 

technologies has been historically slow, due to decisions that often involve perspectives other 

than agronomic reasoning, such as stock market variation, environmental polices, and 

computer literacy. The present dynamics in the agribusiness sector has contributed to an 

increase of influencing factors, suggesting that decision processes need to be systematically 

revisited in order to provide guidance as new questions are imposed to farm managers. 

Questions such as: How can I know if the spatial variation of my crop yield shows 

opportunity for investments in PA? How to evaluate if I have environmental credits for a 

carbon trade market? How to measure the sustainability of my production system? 

PA is a knowledge domain demanding significant support from Information Technology (IT). 

In particular, information systems that could help manipulate dense datasets with multiple 

variables to put decision-making on a more rational basis regarding agricultural and 

environmental management. Requirements for a greater integration of technological, 

environmental, market and political factors demand computational management tools 

conceived to target specific questions and to be also understood as interoperable components 

of multilevel and cooperative Knowledge Based Systems (KBS). There is a need for 

integrating diverse data sources, software modules and whole systems, because the lack of 

effective decision support tools has been a critical limitation for a wider adoption of PA. 

Twenty years of PA have brought great improvements in auto-steering, continuous 

monitoring and timely delivered datasets, contrasting with available software solutions which 

are still inappropriate for routine decision reasoning. The ability of intensive field monitoring 

has generated extra information layers from which no clear evidence of improved 

management has often been given. Tailored experiments facing methodological uncertainties 

and high investments have shown a great variance in economic returns (Lambert & 

Lowenberg-DeBoerg, 2000; SPAA, 2008). 

Evaluation methods supporting agronomic and economic crop management generally impose 

a great deal of learning from agronomy consultants and/or farmers to induce decision 

knowledge. DSS also require time from farmers to deal with data management, system 

maintenance and human-computer interface issues. This contrasts a lot with the traditional 
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farm management knowledge mostly based on relatively simple rule-based tools and intuitive 

decision making. Still, investments in technology have not yet given evidence of effective 

analysis capabilities. In a domain relying on georeferenced monitoring, PA tools rarely offer 

some kind of spatial pattern analysis capabilities. Analytical functionalities are still missing to 

facilitate multi-scale, spatial, and temporal relationships. 

Intensive monitoring may not have changed the agronomic knowledge behind field activities, 

but the lack of effective interpretation of the observed crop variation may have imposed new 

challenges for the abstraction of useful information. It is also not clear whether limitations of 

available DSS tools have been increased by relatively limited attention to system development 

methods. Reason why further discussions in this work (Chapters 2 & 3) concern on IT 

methods currently used in PA software development and recent system modelling standards 

not yet considered. Still, the main focus of research should be the incorporation of agronomic 

knowledge and practical farm management into spatial systems that could facilitate decisions 

through scientifically based simulations as a test mach tool of farmers’ experience. This new 

generation of decision tools should make use of new IT approaches that could facilitate the 

design of a single decision tool that could answer questions such as: Should I invest in 

SSCM?; Which monitoring tool is most appropriate to my field?; When should I use it?; and 

How do I interpret the yield spatio-temporal variation?. Overall aims should address the use 

of simple quantitative methods and system design architectures that could offer a means to 

transform intensive monitoring datasets into more informed decisions. 

In the long run, integrated and accessible software could promote the adaptive learning of 

individual farm management, assembling field information into management knowledge. A 

generic knowledge management infrastructure supporting local farm management decisions 

should be designed for interoperability and composability of system components to facilitate 

the sharing and integration of knowledge assets. As single perspectives can not support 

modern farm management, the broad integration of analytical methods through composable 

tools is expected to address knowledge gaps to blend operational, biophysical and socio-

economic actors.  

This literature review further analyses the role of recent IT trends supporting new perspectives 

of knowledge support for decision-making, considering the use of unified modelling methods 

and Web of knowledge architectures. These approaches have already been adopted by the 

software industries of several knowledge domains (e.g. e-Commerce, urban planing, forestry, 

and bioengineering) but so far mostly disregarded in agricultural tool developments. They 
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may provide foundations for the proper development of decision support tools that could meet 

unfulfilled requirements from farmers and researchers, supporting data integration, system 

interoperability, and knowledge management for an improved PA decision-making. 

1.2 - Agricultural decision support systems (aDSS) 

1.2.1 – To what extent are DSS still relevant to agriculture? 

A twenty-five year collection of reports claiming the ineffectiveness or failure of agricultural 

decision support systems (Brook & Hearn, 1983; Gelb & Parker, 2006; Matthews et al., 2008) 

may lead to questions of how relevant these computational tools still are to agricultural 

research and farm management. Matthews et al. (2008) term agricultural decision tools as 

“aDSS” and argue, following McCown (2002), that they are subject to cyclic phases from 

unrealistic expectations to disbelief or evident abandonment. Several articles have stressed 

alternative system approaches (McCown & Parton, 2006); soft system (McCown et al., 2006; 

Fountas et al., 2006), human learning (Loevinsohn, 2002; Seppänen, 2002), and user 

participation aspects (Lynch & Gregor, 2004) over computational perspectives (Lynch et al., 

2000; Nguyen et al., 2008; Matthews et al., 2008), perhaps characterizing period of 

disappointments. Although addressing important aspects, they may reflect some degree of 

unrealistic expectations from system developments. The European Federation for Information 

Technology in Agriculture (EFITA) has addressed similar questions in trying to respond to: Is 

Information and Communication Technology (ICT) Adoption in Agriculture and Rural 

Development still an issue (Gelb & Parker, 2006)? 

Contemporary reviews on aDSS still sustain positive expectancies for the future of new 

applied technology (Massey et al., 2008; Lamb et al., 2008), even given a history of 

unfulfilled projections and disappointments with limited impact in rural computer use 

(McCown, 2002; Lamb & Bramley, 2002). Most reviews try to re-appraise the role of 

decision support in a whole-farm management research context (McCown, 2002a; Lynch, 

2003; Fountas et al., 2005; Lamb et al., 2008), the appropriate approach to reinforce farmers 

participation and farm management knowledge (Lynch & Gregor, 2004; Robinson, 2004; 

Fountas et al., 2005; Nguyen et al., 2008), or feasible frameworks for software development 

(Gorddard et al., 2001; Öhlmér, 2006; Murakami et al., 2007; Nash et al., 2006). 

Initial expectancies were, in part, promoted by projections of increasing computer use in rural 

areas and decades of abundant research in process-oriented agronomic modelling (Zadoks, 
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1986; Boote et al., 1989; Jones et al., 1991; Hoogenboom et al., 1994; McCown et al., 1996). 

Investments in simulation models and expert systems have promoted major process-oriented 

software (Hoogenboom et al., 1989; Uehara & Tsuji, 1993; Ten Berge, 1993; Jones, 1993; 

Bouma et al., 1996) and collaborative networks for systems approach (Ritchie & Bouma, 

1995), contributing to a wider understanding of agricultural production systems (Jones et al., 

2000; Bouma & Jones, 2001). However, a contrasting situation exists between a rich 

experience in quantitative process modelling and a limited availability of effective tools and 

limited technological adoption by farmers. Therefore, this is the knowledge gap that DSS are 

required to bridge, where precise simulation models are often divorced from real-farm 

situations. Walker (2002) suggests that the contrasting situations involve limited knowledge 

representation and irrelevant decision processes, also reflecting great diversity in objectives of 

system development paradigms. 

A software perspective is given in the paper by Gelb et al. (2006), which analyses a decade of 

major changes in farm management technology adoption and summarizes factors limiting the 

use of IT by farmers and extension services. Gelb et al. (2006) include results of an EFITA 

survey (Gelb et al., 1999) and findings from commercial software reviews, which were 

considered as indicators of the content and level of adoption. There is now a consensus 

indicating that despite the abundant agricultural modelling experience, practical tools are still 

a major issue and potentially a critical concern (Griffin et al., 2004; McBratney et al., 2005; 

Fountas et al., 2006; Matthews, 2007).  

It can be argued that explanations for the lack of success of aDSS may have been premature, 

if limitations have been mostly imposed by poor agronomic knowledge or inappropriate 

system developments. These reviews would stand on premises where either software 

development technologies were not actually available, or agronomic models were not 

comprehensive for the proper abstraction of the agronomic and managerial processes. It is not 

clear whether the timely and tangible technology was actually available in order to support 

knowledge gaps accounting for farm management and/or knowledge representation methods 

not yet exploited.  

It is also possible to argue that limitations in aDSS could be related to common issues of 

human-computer interactions (Smith & Green, 1980). Ineffective DSS tools are likely to have 

structural issues (Rus et al., 1993), characterizing contrasts between hardware and software 

developments. A similar analysis may be drawn for the cyclic process of SSCM between the 

gathering/application and the interpretation steps, where great advances in monitoring sensors 
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(King & Wall, 2001; Lamb & Brown, 2001; Selige & Schmidhalter, 2001; Eigenberg et al., 

2002; Bramley & Lamb, 2003; Sudduth et al., 2004; Vrindts et al., 2003; Adamchuck et al., 

2004) can be perceived during disappointment phases of aDSS (Robert, 1999; McCown, 

2002; Dobermann et al., 2004). 

1.2.2 - When technology plays its role 

Often, the lack of conclusive economic-environmental evaluations and effective DSS tools 

has frustrated the expectations of early users, potentially restraining broader adoption. The 

proper design, functionality and user participation in farm decision tools have been 

extensively discussed, perhaps pointing to renewed expectations on alternative development 

paradigms (Fountas et al., 2006; Matthews, 2007; Nguyen et al., 2008). Reviews on the user’s 

perception for the adoption of computational decision tools across time have not questioned 

whether the strategic importance and usefulness of knowledge-based DSS for farmers and 

advisors still remains (Hochman et al., 1994; Stone & Hochman, 2004; Gelb & Parker, 2006). 

These general aspects may also be inherited by new technology in PA. 

Ten years after initial SSCM evaluations pointing to limited adoption and inconclusive 

benefits (Lowenberg-DeBoer & Boehlje, 1996; Lowenberg-DeBoer & Swinton, 1997; 

Lambert & Lowenberg-DeBoerg, 2000; Stafford, 2000), recent experiments on trade-offs 

from intensive technology farming (Thorp et al., 2008; Brennan et al., 2007) may be still 

reinforcing the fact that an inability to properly quantify the fiscal value of technology is a 

restriction to wider PA adoption (McBratney et al., 2005). Although quantitative estimations 

are difficult to make, the technology has mostly reported positive benefits (SPAA, 2008). 

In contrast to the questionable adoption results at field level, the world-wide efficiency of 

agribusiness has as a common trend regarding new technology when facing market and 

environmental constraints. As an example of economic pressures, the Australian grains 

industry is suffering from increasing fluctuation in market prices and production outcomes 

due to stronger and more dynamic variations in trade and climate. Wylie (2001) reports in this 

industry of a decline in the terms of trade factor of 3% per annum and 60% of large grain 

farms not making a profit (ABARE, 2001). Still, indications are that IT will remain the main 

driver of productivity growth in Australia for the next 20 years (DCITA, 2006). 

It is also a common aspect, that losses due to climate conditions could be bigger without the 

use of today’s farming technology. Strong growth in technology-based productivity has been 

averaging between 3% and 4% per year over the last 10 to 15 years in the US, Brazil, and 
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European Union (Umbers, 2006), suggesting it as a major reason for grain producers 

remaining in business.  

However the overall situation is not stable or showing great benefits over different periods 

and production systems. In the late 90’s, Australian improvements in performance have 

shown profits of 3.2% for two years in grain farms over two decades to 1998-99 (ABARE – 

Productivity Growth in the Australian Grains Industry, 2000), slightly overtaking the decline 

in terms of trade for the same industry. In another moment, the average production expenses 

per farm in the USA have increased by 14.1% in the period from 2002 to 2007 (USDA, 2007) 

where average production cost increased 3% per annum in the same period (total of 15%).  

While new varieties have increased their share of research investments, it is understood that 

better farming practices have done the most to improve productivity while preserving natural 

resources. Even if not yet characterized by great profits, long term projections have shown 

highly variable, but significant, PA returns. From 14 broad-acre fields across Australia, the 

median annual benefits from PA is estimated in AU$ 20 per ha (SPAA, 2008), ranging from 

$10 to $37 per ha for several types of grain crops. Other studies in sugar beet have shown 

estimated returns from PA varying from US$ 0.01 to $48.25 per acre (Lambert & Lowenberg-

DeBoerg, 2000) for different management systems (e.g. N, lime, weed) and median wastage 

from uniform fertilizer application of AU$ 33.00 per ha on 17 field experiments (Whelan, 

2007). New PA technologies have contributed to overall figures of yield improvements, with 

an average increase from 5 to 8 tonnes/ha over 30 years (Wylie, 2001), and reduction of 

fertilizer losses in the grains industry, which accounts for total estimated N losses ranging 

from AU$ 55 to $ 138 million (Grace, 2006). 

1.2.3 - The context of PA and SSCM 

A vast amount of literature is available defining PA through several different aspects 

(Verhagen et al., 1995; Stafford, 2000; Zhang et al., 2002; Bramley & Janik, 2005; 

McBratney et al., 2005; Brennan et al., 2007). These aspects are compliant with principles of 

sustainable production systems, as shown in Figure 1 (Research Context), and directly 

related to major components (i.e. spatial referencing, resource monitoring, attribute mapping, 

decision support, and differential action) of the SSCM adoption process (Stafford, 1996; 

Whelan, 1998). In this research, PA will be broadly understood as extending the categorical 

levels of traditional farm management (e.g. strategic and tactical (Kay et al., 2004)), which 

independently consider the three common farming functions (e.g. planning, implementation, 
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and control) to generate new managerial information at different levels (Kay et al., 2004; 

Doye, 2008). From farm to field level an operational management requires fine scale 

decision-making capabilities when based on several field intensive monitoring technologies. It 

is relevant to consider that this new management level not only supports a fine tuning of 

operational crop management within a field, but it may also brings new means to integrate 

different levels of information abstraction into a broader and new perspective in farm 

management (Bouma et al., 1999). 

At the field level, the overall goal of SSCM can be considered to be the precise application of 

variable-rates of precise amounts of inputs to within-field production zones to achieve 

efficient management through maximizing net returns and minimizing environmental impacts 

(Batchelor et al., 2002). This type of precision farming demands intensive field data 

acquisition and interpretation as a key to understand production variation, where sensors and 

information networks are expected to provide real-time field management capabilities. 

15 years of applied PA has brought great improvements on mechanization, automation, data 

gathering, and simulation (Zhang et al., 2002). However, expected outcomes from the 

interpretation phase following intensive monitoring investments have not developed as fast as 

new agribusiness standards have been imposed to farmers (McBratney et al., 2005; 

Dobermann et al., 2004), perhaps reflecting a significant lack of analytical support to 

characterize spatio-temporal yield variation (van Es et al., 1999; Pringle et al., 2003) and the 

delineation of management zones (Fridgen et al., 2000; Whelan & McBratney, 2003). 

This contrasting situation may also be related to design and development of practical farm 

management processes in which individual manager considerations can be underpinned by 

common scientific knowledge via intelligent software (Zhang et al., 2007) in order to 

facilitate human aspects as self-learning and adaptive learning. It is understood that a common 

knowledge management framework facilitating the integration of knowledge assets could 

address basic questions like: How can I evaluate if my production system is sustainable?; 

How to measure the opportunity for the adoption of SSCM technology?; How to optimize the 

management of within field production zones?; and How to incorporate the current 

knowledge into pragmatic decision trees guiding the effective adoption of technology? 

1.3 - Decision support in differential crop management 

Historically, the system approach perspective in the development of agricultural decision 

support systems is based on process-driven simulation models; for crop (Jacobson & Jones, 
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1996; McCown et al., 1996; Hoskinson & Hess, 1998), climate (Audsley et al., 2001), and 

canopy stress (Jones et al., 2000; Jones et al., 2003); mostly taking into account point 

estimations as average values of geo-objects (e.g. polygons) or sampling approaches (grid 

points or cells). Although they have been successfully used for PA evaluations and agronomic 

reasoning (Shaffer et al., 2000; Hargreaves & Hochman, 2004; Matthews et al., 2008), 

tailored field trials (Carberry et al., 2002; Hunt et al., 2006) and spatial analysis (Hartkamp et 

al., 1999; Wu et al., 2005) they are not easily reproduced on the broad scale. They require 

cumbersome methods and data management to be adapted for analysis of spatio-temporal 

production variation (Batchelor et al., 2002; Ahuja et al., 2002; Brennan et al., 2007), 

differential management systems (Braga & Basso, 2003; Jones et al., 2004), and ecologic-

economic assessments (Thorp et al., 2008).  

Major claims for proper capabilities for PA tools were compiled in Robert (2000) from 

thirteen Decision Support Tools (DST) workgroups in the 5th International Conference for 

Precision Agriculture, where several requirements where reported and are further discussed 

here (Subsection 1.3.3). The amplitude of issues reported may indicate that a wider 

perspective of what system approaches actually mean is missing, and that alternative solutions 

other than process-based models may have had limited follow up (Hodges et al., 1992; 

Gauthier, 1992; Gauthier & Néel, 1996; Sonka et al., 1997; Saraiva et al., 1997; Whelan & 

McBratney, 2001; Pringle et al., 2003; Griffin et al., 2004; Nakamori et al., 2007). Therefore, 

an evolutionary system development perspective needs to be extended in order to facilitate the 

proper use of software methods that may promote a composable and user driven knowledge 

management systems. 

1.3.1 - Available DSS solutions 

The DSS acronym in agriculture has been overwhelmingly used for dissimilar frameworks 

and modelling methods which have not yet routinely supported SSCM analysis of the vast 

number of new, intensive observations of major factors in production systems. On the other 

hand, the spread of solutions does resemble the broad scope of processes to be considered in 

the overall adoption of SSCM technology. This overall context of farm decision-making 

processes actually requires the consideration of different aspects (McBratney et al., 2005) 

(e.g. agronomic, economic, environmental) from several sampling frequencies in space and 

time (Sadler et al., 2007) (e.g. within field, whole farm; daily, and annual) at distinct 

managerial levels (Fountas et al., 2006) (e.g. strategic, operational). 
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General categorizations of the decision-making process have been suggested at either two 

levels (McCown, 2002a, Blackmore, 2007), management control and strategic planning, or 

three levels (Bouma, 2000; Hayman, 2004; Fountas et al., 2006), namely operational, tactical 

and strategic. The strategic level generally considers overall farm development plans, 

reduction of inputs, social and public regulations, human health and development, and market 

driven production. Tactical decision-making involves ecological control (e.g. 

pesticide/fertilizer optimization, water use efficiency/contamination), soil management (e.g. 

fertility, storage capacity, erosion, compaction, and contamination), weed and tillage 

management, and crop yield and quality. Operational decisions target improved tracking and 

steering; machinery maintenance, monitoring/sampling, irregularities in production areas (e.g. 

boundaries, gates, accessibility, protected areas), payroll, and improved performance. The 

abstraction of these management levels follows a generalization hierarchy that aims to 

facilitate the search for simpler indicators of production systems (Hayman, 2004). 

According to Meinke et al. (2001), a DSS can describe any normative information-based 

system, including software products and dissemination of such information via printed or 

web-based media. Lynch (2003) called these systems ‘intelligent support systems’. Hayman 

(2004) noted that the use of DSS in Australian broad-acre farming has been reviewed from 

several human related perspectives. In this context, studies have included a soft systems 

approach (Macadam et al., 1990; Power et al., 2008), designs that are less dependent on 

computational solutions (Cox, 1996; Cox et al., 2008), and the degree of end-users’ 

involvement (Lynch et al., 2000; Mackrell, 2006). Robinson (2005) reviewed various 

guidelines for designing a DSS. These guidelines were compiled from several authors, 

increasing the number of key factors for the development of a successful DSS. 

An overall IT development contrast (hardware vs. software) may, in part, explain the inability 

of PA tools to deliver resilient and meaningful information supporting crop management. It is 

suggested that the underdevelopment of farm management DSS has hindered the fine tuning 

of dense datasets into efficient actions (Dobermann et al., 2004; McBratney et al., 2005). 

Conceptual and methodological considerations of DSS tools available for Australian farming 

systems research are suggested in Robinson (2005) and Nguyen et al. (2008). The research 

presented by Robinson (2005) uses twenty-four criteria compiled from prior studies (Dillon, 

1979; Malcolm, 1990; Hamilton, 1995; Cox, 1996; McCown, 2001; Lynch et al., 2000; and 

Lynch, 2002), in order to evaluate the usefulness of agricultural DSS applied to 6 case studies 

of farming system research. Robinson (2005) focused on the weighing of decision alternatives 
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for a better understanding of farmer’s models of decision making. Although pointing to 

relevant aspects from cognitive decision-making, Robinson (2005) only outlines conceptual 

guidelines for an effective re-engineering of DSS tools (e.g. a decision-oriented development, 

motivated and committed audience, thorough understanding of the decision context, contrasts 

between research and farm cultures). As a matter in fact, some of these aspects given by 

Robinson (2005) simply characterize typical system requirements already known from 

knowledge-based engineering methods. They should never have been separated during 

development. Still, Robinson (2005) correctly concludes that improvements in farm decision 

tools will be evolutionary rather than revolutionary, additive rather than competitive. Nguyen 

et al. (2008) conducted a survey among agricultural scientists and leading practitioners aiming 

to understand DSS adoption patterns, from which only subjective guidelines are summarized 

in relation to soft system approaches, which stress the user’s participation. Analysis of these 

surveys can be considered biased in terms of system design and development methods as both 

authors have restricted the understandings of DSS to crop growth analysis and simulation 

tools (McCown, 2002a).  

1.3.2 - Enabling technology 

The enabling technology for SSCM can be broadly divided into two main processes of data 

gathering and data use, which have been to date mostly applied for agronomic 

experimentation and operational management efficiency. In the overall process, IT has been a 

key factor for the growth of SSCM methods, which have been mainly focused on real-time 

data gathering and storage. Intensive field monitoring and auto-steering capabilities have had 

the support of fast advances in mechatronics, leading to the development of proximal sensors 

and record keeping tools. Data use and interpretation processes, in contrast, have yet to 

respond to challenges such as the non-stationary aspect of crop variations and the multi-scale 

integration of agronomic and spatial reasoning. Emphasis on data gathering has generated an 

overload of information layers that usually are not ready for direct analysis or data integration. 

Tactical and strategic evaluations have been mostly based on averages, avoiding a great deal 

of analysis of these high resolution datasets which could supply proper information to turn 

data into effective decisions (McBratney & Whelan, 2001). 

Still, a great potential is available for SSCM technology to favour the integration of   bottom-

up and top-down system development approaches. Bottom-up approaches provide the 

opportunity to explore massive and diversified monitoring datasets using neural networks, 

machine learning and agent based models. Top-down approaches provide the opportunity to 
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apply the existing agronomic knowledge to spatial databases and crop growth simulation to 

evaluate causes in yield variations. The integration of the different approaches into a common 

information system for decision support has been suggested through several architectures 

(Hartkamp et al., 1999; Bechini & Stöckle, 2007). 

This section does not intend to cover a comprehensive list of equipment, methods, services, or 

costs of the SSCM enabling technology, but to briefly discuss major aspects and issues that 

could provide an overall picture of technological gaps affecting a wider PA adoption. 

Generally speaking, agronomic and environmental decision support tools should involve three 

basic components: a Geographic Information Systems (GIS), quantitative methods (statistics 

and spatial structures), and process simulation models (empirical and mechanistic). Specific 

components of the SSCM technology are next introduced, according to major research 

developments for farm management tools, as no single solution is available simultaneously 

addressing all the required functionality (Symanzik et al, 2002). 

GIS 

Some publications consider the integration of GIS, statistical tools and crop simulation 

models as the ultimate solution to solve the agricultural DSS gap (Symanzik et al, 2002; Wu 

et al., 2005). However, customized farm GIS tools for the PA market are predominantly 

supported by stand-alone, proprietary, and incomplete packages (Paz, 2009), which require 

farmers and advisors to invest time to learn and maintain various pieces of software 

(Hartkamp et al., 1999; Paz, 2009). In fact, analysis related to spatial dependency of 

production factors is still unavailable in commercial software. Farm GIS products are of 

limited functionality addressing the spatio-temporal production variability and the integration 

of results with practical decision making processes (Bouma & Jones, 2001, Matthews et al., 

2008).  

Specific to DSS use for precision viticulture in Australia, Taylor (2004) has pointed to the 

strong product tracking, winery quality assurance and sales management slant of current tools, 

while lagging far behind basic GIS functionalities. In this sense, the application of GIS in 

SSCM has been to add visual interpretations and manual management of boundaries, through 

cumbersome handcrafted user interactions. Often, their use may be understood as a 

sophisticated geographic record keeping tool, mostly serving for the overlay of several data 

layers generated by commercial monitoring systems (e.g. yield monitors, Farmstar, remote 

imagery, Yarra N-Sensor, Veris, EMI-31, EMI-38, Greenseeker, Crop Circle, AccuHarvest) 

and advisory services (e.g. Terrabyte, Silverfox, AgreView, FarmGIS, CropView, Aster). 
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A greater attention to the coupling of GIS and robust quantitative methods to increase spatial 

reasoning is missing (Berry, 1995). This mixed methods approach has been now referred to as 

Quantitative GIS (Cope & Elwood, 2009) and could favour a better spatial cognition 

explaining factors and suggesting solutions for changing patterns in yield maps. Equipping 

spatial analysis tools with mathematical description languages and quantitative models may 

facilitate the implementation of stochastic and deterministic crop models in the same spatial 

resolution as the monitored data.  

Simulation models 

Process-oriented simulation models have been a great instrument in several areas of research, 

promoting insight, prediction and advisory capacity, and also contributing to a wider 

understanding of agricultural production systems (Jones & Ritchie, 1991; Bouma & Jones, 

2001). Empirical or mechanistic simulation tools have been in use for a long time, for a wide 

variety of purposes, including crop management (Fetcher et al., 1991), climate change impact 

studies (Alexandrov & Hoogenboom, 2001), sustainability research (Quemada & Cabrera, 

1995), and PA (Paz et al., 2001; Paz et al., 2003). However, the support given to PA 

applications has been only based on field average values due to the punctual approach of 

process simulations, lacking behind the spatial aspect of within-field variations. Therefore, the 

non-spatial perspective of simulation tools can not fully support SSCM decisions, even if new 

trends in Web developments considering Principles of Advanced Distributed Simulation 

(PADS; Tolk, 2006) have been, to some extent, considered by online crop simulators (Pan et 

al., 2000; Paz et al., 2004; Hunt et al., 2006a) and agronomic services (e.g. Apollo, 

FarmScape, Yield Prophet, and Whopper Cropper) that also support soft systems approaches 

(Cox et al., 2008). 

Crop-growth simulation models provide a dynamic way to estimate the potential return to 

producers for different variable-rate management strategies, where outcomes from specific 

experiments are often calibrated for a number of other regions and/or crops (Hunt et al., 

2006a). The majority of simulations of climate, crop growth and soil process are abstracted at 

the single process level that only matches point representations in spatial analysis. These 

models generally describe step-wise procedures emphasizing data flows through algebraic 

functions, which often account for questionable parametric parsimony (Cox et al., 2006) and 

massive data input requirements for a single run. However, the required data is not always 

available (Batchelor et al., 2002), and the software has a tendency to become isolated or 
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discontinued, much to the frustration of successful thematic modelling initiatives (Walker, 

2002; McCown, 2002).  

Thorp et al. (2008) describe a legacy agricultural DSS, the DSSAT (Decision Support 

Systems for Agrotechnology Transfer), which serves to illustrate typical structures of 

simulation tools for supporting integrated farm management (Aggarwal et al., 2006). The 

DSSAT includes modules which simulate the growth of 16 different crops and use common 

basic modules for soil–plant–atmosphere interactions. Typical data requirements include 

weather inputs (daily temperatures, rainfall and solar radiation), soil classification, and crop 

management practices (variety, row spacing, plant population, and fertilizer and irrigation 

amounts, intervention dates). 

Agricultural simulation model developments have been mostly target to several areas such as: 

a decision calculus tool for researchers, a learning tool for farmers, and a knowledge transfer 

tool for agronomic advisors. For site-specific analysis however, they must be refined for 

accuracy and non-stationarity in data at smaller scales, interoperability with spatial models, 

and stability across a diverse range of agronomic and managerial contexts (Batchelor et al., 

2002). 

Within-field variability 

An efficient protocol to interpreting variations in crop yield and crop quality is still 

considered a key PA knowledge gap. Yield monitors have shown to producers and researchers 

alike that large yield differences commonly exist within a field, often also documenting 

unexpected changes in yield variability patterns from year to year (Lamb et al., 1997; 

Dobermann et al., 2003; Schepers et al., 2005; Massey et al., 2008). Still, the direct 

measurement of spatial crop productivity by yield monitoring is considered a fundamental 

way to determine field related variability (Stafford et al., 1996). However, yield maps may be 

a reflection of many potential causes of production variability, which are also subject to great 

variation over time (Pierce et al., 1997). Averaging multiple years of yield maps has been 

suggested as one way of establishing stable yield productivity patterns related to soil water 

(Stafford et al., 1996; Kitchen et al., 1995). It is highly possible that high producing areas 

during “dry” years may become low producing areas during “wet” years (Colvin et al., 1997; 

Sudduth et al., 1997). Other aspects of production variation are recorded by monitoring 

devices for protein, soil parameters, and temporal crop imagery. Examples of alternative 

methods to characterize variation in crop production have been the use of a crop simulation 

model for variable rate N-management (Thorp et al., 2004) and an integrated environment 
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composed by simulation models and linear programming approaches for whole-farm planning 

(Recio et al., 2003; Florin et al., 2008). 

Research methods supporting the interpretation of within-field variability are lacking 

definitive analysis of spatial patterns in crop production. Unsolved questions include: the 

quantification of the spatial structure of production variations and their temporal stability (van 

Es et al., 1999; Pringle et al., 2003), the evaluation of the production profitability (Liu et al., 

2005), and tradeoffs for environmental sustainability (Robertson et al., 2008)  

Delineation of management zones 

While real-time SSCM is still a utopian goal, distinct processes for monitoring, analysis and 

action can be conducted in sequential steps for crop management decision-making. The ability 

to apply differential treatments as required across several Management Zones (MZ’s) is 

directly related to the successful implementation of PA to simultaneously achieve maximum 

profits and minimum impacts. To provide this efficiency, it has been proposed to determine 

the optimal subdivision of a field into more homogeneous production zones (Taylor et al., 

2007). It has been suggested that the degree of spatial yield variation is a key indicator for the 

potential use of production zones (Whelan & McBratney, 2000, Pringle et al., 2003).  

The use of continuous soil measurements of apparent electrical conductivity (ECa) has also 

been reported as a potential input for predicting crop production variation caused by soil 

water differences (Jaynes et al., 1993; Sudduth et al., 1995), and therefore potentially useful 

for the delineation of management zones. Remote sensing imagery is another potential 

technology for identifying plant response zones in a field (Haboudane et al., 2007), with the 

advantage of reduced monitoring efforts (Batchelor et al., 2004). For that, Taylor (2004) has 

presented specifications of spectral, spatial, radiometric and temporal characteristics of 

sensors for satellite- and aerial-borne imagery commonly used in Australian agriculture. 

As a tool for decision support, the application of MZ’s has mostly explored yield averages 

using clustering analysis (Lark & Stafford, 1997). Hoskinson & Hess (1998) introduce a 

decision support tool, the Dss4Ag, which considers Artificial Intelligence (AI) methods for 

cluster analysis and has been applied for Potato (Hoskinson et al., 2000) and Corn (Shearer et 

al., 2000) production systems. Van Alpen & Stoorvogel (2000) address a functional 

characterization in support of PA using a fuzzy c-means classifier, which has shown that more 

than 65% of the spatial variation could be accounted by functional properties such as: water 

stress, N-stress, N-leaching, and residual N-content at harvest. Fridgen et al. (2000) used a 
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fuzzy k-means unsupervised continuous clustering algorithm with inputs of soil samples and 

grain yield maps, which explained up to 35% of the variation in grain yields. Shatar & 

McBratney (2001) have subdivided within-field zones based on yield and environmental 

inputs, but constraining the hard k-means cluster analysis to ensure spatial contiguity. Whelan 

& McBratney (2003) provides a process of k-means clustering for delineating potential 

management zones that is based on zonal yield differences from kriging prediction variances 

in yield, soil electrical conductivity and elevation information. Schepers et al. (2005) 

evaluated the use of Principal Component Analysis (PCA) of landscape attributes with 

unsupervised classification of PCA scores, showing the significance of the temporal variation 

altering yield spatial variations even under irrigated crop regimes. Vrindts et al. (2005) also 

uses clustering techniques aiming to characterize correlations between soil compaction and 

yield data. Jaynes et al. (2005) used a cluster analysis of multi-year soybean yield maps to 

partition a field into similar temporal yield patterns. Yan et al. (2007) have mixed a PCA and 

a fuzzy c-means clustering algorithm to optimize the application of inputs.  

Amendments for the standard k-means analysis have been suggested. Shatar & McBratney 

(2001) argue that clustering methods often produce non-contiguous subdivisions, increasing 

the number of small, random management zones in contrast with the highest potential of the 

technology applied to a few, larger areas. Other approaches are also reported: Kitchen et al. 

(1998) use average area-weighted correlations between grain yields and soil attributes, 

classifying sub-fields according to topsoil depth and elevation. Fleisher et al. (1999) have 

mapped the probability of exceeding a threshold with indicator kriging for optimization of 

pesticide applications. The algorithm introduced in Fridgen et al. (2000) provides concurrent 

output for a range of clusters from which the user can select the number of zones to be used. 

Recently, more contiguous delineation approaches using segmentation algorithms have been 

suggested (Roudier et al., 2008). Several image processing applications have shown growing 

attention given to object-oriented image processing and interpretation (Wang, 2008). The use 

of the object concept offers the opportunity of information extraction that can combine 

spectral and shape feature constraints. Due to the fact that associative and behavioural 

functions of spatial objects can be also described through expert knowledge, object-based 

segmentations are expected to have more robust noise reduction capability (Zheng & Sun, 

2008; Wang, 2008). In particular when considered with watershed and region-based 

segmentation algorithms, the object approach has been applied in several areas of research for 

image feature extraction considering spatial relationships. Relative to PA, Roudier et al. 

(2008) introduce a modified watershed algorithm for management zone delineation tested on 
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high-resolution bio-physical imagery in France. An object-oriented watershed algorithm is 

further considered and discussed in Chapter 7. 

1.3.3 - Typical requirements 

A representative analysis regarding the development of DST has been compiled in Robert 

(2000). It summarized goals, issues and requirements from the initial period of PA 

implementation. The resulting outline was formatted to describe DSTs through: main goals, 

DST types, functional requirements, essential data layers, and issues limiting the 

development. The content can be considered comprehensive in terms of expressing several 

aspects of SSCM technology as interpreted by the producer, agribusiness, agronomic 

research, and government views. Under a system perspective however, it is easy to identify 

the lack of proper methodology that could effectively contribute towards standard guide lines 

in system development. Some redundancy in the terminology of requirements can be observed 

and is reinforced by communication issues in multidisciplinary teams, but often it is indicative 

of a weak understanding of the software industry jargon and technological trends.  

As an example, a requirement for “Internet based plug & play systems where different 

components can be added or removed to suit different cropping systems, states, countries, 

etc.” is concerned with issues of “usability, complexity (holistic system), compatibility, and 

adaptability”, and they can be now translated to system requirements, such as the need to 

consider both “model composability” (Petty & Weisel, 2003) and “Grid computing 

simulation” (Foster et al., 2001; Pullen et al., 2005). This analysis may indicate two points. 

First, system requirements as given by PA practitioners are, at many times irrelevant, or even 

misleading to system engineers just as much as available DST may have been to farmers. 

Second, system development technologies that can supply long missing functionalities have 

only recently become available and been considered in PA system research (Sørensen, 2008). 

Considering these arguments, it is possible to argue that all DST contributions to date have 

been significantly successful in relation to factual means available for software development. 

Despite the actual lack of DST, failure claims may sound either like: “The death of the 

aborted knowledge-system design” to designers; or “The failure of the never implemented 

decision support code” to system programmers. 

Other important contributions in PA DSS requirements have been made in Saraiva et al. 

(1997), Lütticken (2000), Lynch et al. (2000), Fountas et al. (2002), Sørensen et al. (2002), 

Backes et al. (2003), Korduan (2003), Pedersen et al. (2003), Adrian et al. (2005), Robinson 
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(2005), Mackrell (2006), and Florin (2008). Again, they have been mostly characterized by 

specific farming systems or agronomic related analysis. In particular to the PA context, the 

requirements are compiled below, and suggest 3 groups of requirements according to major 

aspects which are discussed in Section 1.4. Groups are derived from principles of 

sustainability in SSCM, as shown in Figure 1 (Research Context), and the underlying 

technology.  

Requirements reported by the above authors suggest that DST for SSCM should be: 

• According to social & human aspects: Designed to meet the specific needs of the farmers 

(e.g. inexperienced with software; simple user-interface and analysis methods; training; 

data security; perceived usefulness; women participation; whole-farm PA analysis; 

operational accountability; SSCM cost-benefit analysis; selection of crops; practices and  

technologies; complete process and simulation control; improved technical support; 

customizable to different management profiles; easy local or remote access to data; 

storage and mining of user-defined rules; links with market and services information). 

• According to environmental and economic aspects: Designed to meet applied research and 

development needs supporting an improved knowledge and evaluating site-specific, field-

specific and whole-farm management (e.g. to accommodate legacy systems; seamless 

integration of simulation packages; distributed and heterogeneous open database access; 

use of unified modelling methodologies; collaborative on-line libraries of experimental 

algorithms and source codes; multidisciplinary developments; expert and managerial 

knowledge representation; opportunity to fine-tune models to local conditions; platform 

independent models; composable environments with GIS, geostatistics, quantitative 

methods and visual modelling extensions). 

• According to system development aspects: Designed to meet data interoperability, system 

integration and composability, and optimized development (e.g. low cost; automated data 

processing; fast performance; open architectures, integrated systems; inclusion and 

programming of new methods; scalable and distributed systems; open standards; software-

interfaces and protocols; intelligent DSS; Web DSS; and reduced need for technical 

support). 

It is unlikely that a single proprietary system will ever meet all of these requirements because 

of their complexity and comprehensiveness. That is why an open platform applying system 

behaviour modelling seems more appropriate to address the problem (Saraiva et al., 1997; 

Lütticken, 2000; Murakami et al., 2002; Nash et al., 2006; Sørensen, 2008). An important 
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point in open-structure component-based solutions is that the practice of precision agriculture 

still has many uncertainties that are the subject of ongoing research. New design and 

development methods need to be incorporated into PA information systems research by 

means of sound software engineering techniques and concepts. Available tools should 

conform to simple quantitative and spatial reasoning models. Consequently, two broad 

subjects of study may require further attention during empirical investigations of this thesis; 

(a) new methods of application for standardized modelling languages and (b) simple 

quantitative methods for the assessment of crop yield variability and the optimization of 

within-field management zones. 

1.4 - What counts in SSCM decision support? 

Farm decision-making is by definition an uncertain process. In general terms, farm 

management, as traditionally carried out by farmers, has been defined as “the process by 

which resources and situations are manipulated by the farm manager in trying, with less than 

full information, to achieve his [or her] goals.” (Dillon 1979). This simple understanding 

suggests that new ways to “manipulate” farm resources will only be accepted if focused on 

the farm manager goals, effectively increasing the amount of information for decision 

making. The process by which the farm is managed goes beyond the scientific correctness of 

biophysical models, requiring the basic adoption question to be answered in a simple and 

effective manner. 

Challenges in the development of SSCM decision tools are bigger when extracting simple, but 

relevant, responses from larger amounts of information and related processes. One of the 

priorities cited is to couple several data types and sources, analysis tools, and domain specific 

knowledge (McBratney et al., 2005), while aiming to enable continuous learning and adaptive 

management (Walker, 2002). New PA technology needs to address farm decision processes 

embedded in the scientific assessment process, which should attend to human, environmental, 

and economic aspects as further discussed in this section. 

The proper design of SSCM decision processes can be related to both the modelling of crop 

management knowledge and the associated software development approach, where different 

management processes may require the use of distinct approaches. Underlying IT methods 

should account for linguistic and behavioural abstractions of process-centred developments 

that also consider farmers learning and adaptive management. These semantic models may 

serve as complementary assets of agronomic, spatial, and quantitative models (Priami & 
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Quaglia, 2004) composing a knowledge framework focused on the support of farmer’ 

decisions (Keating et al., 2002). Open evolutionary software architectures seem appropriate to 

integrate several development initiatives. Ramsin & Paige (2008) have suggested the 

suitability of this approach using object-oriented technology towards knowledge-driven 

environments supporting SSCM decisions. This view is also supported in bioinformatics by 

Sorger (2004), stating that networks and open access to models will be more critical than open 

access to databases. 

The review so far has shown that much of the requirements for a pragmatic tool supporting 

SSCM decision processes would involve system development technologies which have not 

yet been extensively investigated by the PA community. Surprisingly, few attempts have 

addressed system modularity and interoperability or data flow optimization (Saraiva et al., 

1998; Murakami et al., 2007; Nash et al., 2006). SSCM decision support conceptually 

involves the integration of modules for adaptive reasoning and management support 

(Robinson, 2005). This pool needs to consider the integration of as many procedures as 

necessary to cover core representations of the agronomic knowledge to support the 

acquisition, management, sharing and reuse of farm management knowledge. Finally, Web 

service technology can serve as a media facilitating inexperienced users and enabling 

dynamic customization of models for a specific management context. This system 

architecture may characterize a knowledge support for learning and increasing flexibility in 

management. The main aspects influencing this customization process are further detailed in 

the next sub-sections. 

1.4.1 - Social & human aspects 

As discussed, the vision of PA as an information intensive practice is changing to a point 

where a more vertical coordination and control of farm assets (Barry et al., 1992) is 

suggested. This involves a multilevel process flow (Fountas et al., 2006) that needs to 

consider new approaches of composable systems (Sørensen, 2008). The shift to an increasing 

mix of traditional concepts and semantically related IT (Rosskopf & Wagner, 2005) 

reassembles the idea in which PA is simply traditional agronomic and whole-farm 

management by means of advance of technology with a subsequent increase in management 

knowledge. It is suggested here that PA has evolved to be a farming approach that relies in 

data-intensive operational agronomic practice, information-intensive tactical field planning, 

and knowledge-intensive farm strategic management. 



 21 

Barry et al. (1992) highlight important linkages between vertical coordination and financial 

structure in agricultural management using classic economic and firm structure theories 

(Jensen & Meckling, 1976; Williamson, 1979; Grossman & Hart, 1986). This theoretical 

management approach highlights farm manager centred systems, increasing concerns about 

issues related to user computer literacy, risk perception, technological adoption, learning and 

adaptive management, and participation in system developments. 

Practical flow management models as suggested in Fountas et al. (2006) have been previously 

standardized through semantic-oriented service frameworks (Nakamura et al., 2002), 

reinforcing the modelling of tacit farmer’s production knowledge. Initial SSCM developments 

using integrated control and simulation technology for knowledge-base farm management 

(Sørensen, 2008) agrees with recent standards from military command-control systems, as 

suggested in Tolk (2006) for “Grid computing” PADS (further discussed in Section 1.5.3). 

There autonomous software agents capable of simulating learning and human reasoning are 

applied to facilitate human-computer interfaces in real time monitoring-analysis-action 

activities. 

Computer use & literacy 

It is suggested that farm managers may have gained a better understanding of the potential 

benefits of technological adoption (Rosskopf & Wagner, 2005) due to a greater proliferation 

of on-farm personal computers and Internet access to shared resources (Gelb et al., 2005). 

Öhlmér (2006) argues that even if the general computer literacy has somewhat improved, it 

has not affected the ability to understand the information content. It is also well accepted that 

farmers have become more aware of issues relating to direct economic benefits (Rosskopf & 

Wagner, 2005; Fountas et al., 2005). 

Major barriers to computer ownership may still be related to the belief that the use of 

computer systems would not justify investments, as given by early surveys (Taylor et al., 

1991). Farmers appear to invest more in standard applications and field recording programs 

(Ascough et al., 2002; Hayman, 2003; Offer, 2006), believing that learning a specialized 

agricultural software is difficult and time consuming (Offer, 2006; Öhlmér, 2006). In 

addition, the technology has not been regarded by farmers as becoming more user friendly in 

the last decade (Rosskopf & Wagner, 2005), also indicating that a long term lack of technical 

training has mostly prevented them from adoption (Taylor et al., 1991; Gelb et al., 2005) 
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In 2005, a total of 60 percent of U.S. crop farms had computer access, but only around half of 

them (33%) used a computer for farm business (NASS-USDA, 2005). Although Ascough II et 

al. (2002) suggest that computer adoption rates have steadily grown in the last two decades 

and now equals the general population use in the US Great Plains, recent overall US figures 

shown a slower increase in ownership, 2% in relation to 2003, has been seen (NASS-USDA, 

2005). 

In Australia, an increase from 5% to 75% of computer ownership on grain farms over the last 

two decades (Hayman & Easdowne, 2002) may explain better figures reported by Linacre 

(2006) on ownership of computers for business operations. 56% (72,828) of the 129,934 

Australian farms with an Estimated Value of Agricultural Operations (EVAO) of $5,000 or 

more used a computer as part of their business operations in 2005. From this total, 53% 

(69,362) of farms had used Internet access, 22% being connected through broad band access. 

Impressive Australian numbers do not show however that a slower growth in adoption from 

2003, in that year accounting for 54% (71,936) of farm computer ownership with 46% of the 

total connected to the Internet (ABS, 2003). 

In Brazil, Lowenberg-DeBoer & Griffin (2006) show a evidence that computer use in farm 

offices is lower than in the US, Australia or Argentina. A PA market survey in São Paulo 

State found that adoption rates are even lower and slower, only accounting for a 1% growth in 

three years (from 13% in 2001 to 14% in 2003 of farms having a computer). Finally, global 

figures show that software applications are primarily used for taxes, record keeping, word 

processing, and spreadsheets (Rosskopf & Wagner, 2005), while tools of applied research 

methods show a general low ownership and use (Ascough et al., 2002; Hayman, 2003; 

McBratney et al., 2005). 

Low adoption, risk perception & awareness: Does PA pays off ? 

The continual development of new agricultural technologies has always required farm 

managers to stay informed of the latest advances and decide whether or not to adopt them. As 

in traditional farming techniques, low rates of SSCM technological adoption are mostly 

related to the risk of adoption of an unproven technology that may fail to meet management 

expectations or warrant return of investments (Tozer, 2009). On the other hand, the lack of 

awareness or the misperception of risk on the adoption of a profitable new technology may 

lead the agribusiness to a considerable disadvantage in the medium to long term (Foog, 2003). 

However, the unclear message about PA profitability may have increased a critical perception 

of the usefulness and the accessibility of DSS tools, which are classic concerns for user 
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acceptance of computational tools (Davis, 1989). Therefore, issues involving the use of DSS 

as a routine management tool in SSCM may involve several sources of perceived risk. 

Botteril & Mazur (2004) suggest that frequent mismatches between perceived risk and 

measurable probabilities of risk do not consider important factors influencing how people 

understand and respond to risk. Botteril & Mazur (2004) also describe numerous factors 

influencing how risk is perceived that were used to investigate the idea of farmers tending to 

be averse to risk, concluding that it is not clear how different rural management risk 

perceptions are from the rest of society due a dearth of research on these groups and on the 

influence of other socio-demographic factors. 

Specific to the adoption of SSCM technology, Adrian et al. (2005) also report that limited 

research has been conducted on potential users’ perceptions and attitudes toward PA 

technologies. As result of their survey, a multivariate analysis on structural factors has shown 

that factors such as: attitudes of confidence, perceptions of net benefit, farm size and farmer 

educational levels have positively influenced the intention to adopt the technology, where 

perception of usefulness has mostly influenced perception of net benefits. Davis (1989) 

defined perceived usefulness as the belief that using a particular technology will enhance the 

potential user’s job performance, and perceived ease of use as the belief that using a particular 

technology will be free of physical and mental effort. 

Intensive field monitoring technology may have increased the perception of farming as a risky 

business because of clear evidence of the spatial and seasonal variability on crop yields, in 

addition to market uncertainties and stronger environmental regulations (Tozer, 2009). Still, 

in very simple terms, a DSS can be understood as any type of practical solution that can 

facilitate a decision-making processes in face of high management uncertainties utilising any 

additional source of information. Consequently, common risk analysis in agriculture may not 

involve proper agronomic and field operational aspects and mostly account for econometric 

evaluations and policy programs such as: i) credit and portfolio risk analysis; ii) individual 

farm risk program, iii) crop insurance risk program; iv) farm policy analysis; and v) 

econometric modelling. 

In contrast, the improved crop information provided by PA technology may support models 

for risk assessment forecasting in potentially poor growing seasons. The perception of PA 

usefulness and resulting net benefits may increase if areas of likely low yield potential can be 

mapped and removed from production, minimizing potential financial losses. Such 
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assessments would compose decision-support systems guiding management actions of lower 

production or capital risks across the whole farm analysis (Tozer, 2009).  

The characterization of general PA decision-making aspects that may support new risk 

analysis in a way to favour the awareness of technological adoption includes: i) decisions in a 

continuous information environment where consequences are generally not known when the 

decisions are made but can be more precisely estimated; ii) better understanding of variability 

of prices and yields as major sources of risk in agriculture; iii) short term changes in 

equipment, legal and social concerns, and the human factors induced by changes of new 

technological and research standards. 

Learning, adaptive management & soft system approaches  

After historical evidence of low technological adoption rates (Lowenberg-DeBoer & Boehlje, 

1996; Matthews et al., 2008), the improvement of training and learning methods addressing 

the technology transfer of DSS to farm managers and agronomic advisors has been an 

increasing concern (Loevinsohn, 2002; Seppänen, 2002; Robinson, 2005; Mackrell, 2006; 

Llewellyn, 2007; Cox et al., 2008). Loevinsohn (2002) outlines research methods to enable 

adjustments of farm management decision processes.  Seppänen (2002) describes how 

methods creating tools for learning are applied to organic vegetable farming, suggesting the 

construction of non-deterministic pathways for specific activities. Robinson (2005) suggests a 

variation on the action learning cycle (Kolb, 1984) that emphasizes the strengths and benefits 

of research and farmer cultures, and seeks to minimize the negative impacts of each culture on 

the other. Mackrell (2006) presents an ontological study on the knowledge of Australian 

women cotton growers on family farms, associating their management roles with agricultural 

DSS. These case-specific contributions illustrate the variety of human related aspects 

abstracted through soft and adaptive system solutions. 

A broader overview is given in McCown et al., 2006, who discuss the historical experiences 

with the relative failure of farm management models, and summarize lessons on how to make 

theoretical models relevant to farmers. Following this context, McCown & Parton (2006) 

exemplify the relevance of three system approaches to actual farm management economics, 

being: i) crop and animal production simulation models; ii) farming system research; and iii) 

soft-system intervention to facilitate farmer learning.  

Soft-systems methods can yield research and farm management advantages (McCown et al., 

2006). These participative appraisals aim to discuss, acquire and model tacit information from 
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differing perspectives in order to improve information systems (Cox et al., 1993; van Beek & 

Nunn, 1995). They have been suggested to evaluate the required functionality of DSS for land 

managers (van Beek, 1995) and agricultural management (Hamilton, 1995; Matthews et al., 

2002). However, simplified applications of this concept have been mostly conducted by 

means of workshop-based activities, in which business and academic groups are to produce 

qualitative indicators that don’t fully contribute to identify system required functionalities. 

This is the case in which they have been applied to homogeneous land use units (van Beek, 

1995) or plant growth process models (Matthews et al., 1999; Cox et al. 2008; Bellocchi et 

al., 2009).  

If linked to SSCM technology through research cooperation programs, soft-systems methods 

may represent a valuable and extended source of both, technical information supporting farm 

manager’s learning, and farm management knowledge models guiding the insertion of 

quantitative analysis in practical farm management. In this last case, either the use of soft-

systems approaches to evaluate the outputs from intensive field monitoring, or vice-versa, will 

address requirements in which decision trees supporting SSCM should mix scientific 

knowledge with best management practices to actually improve management actions 

(McCown, 2002a). 

The term “adaptive management” has become a fuzzy concept due to it being increasing used 

to refer to different actions related to several objectives. Nyberg & Taylor (1995) and Sit & 

Taylor (1998) address possible misinterpretations and suggest that the key procedures of 

adaptive management fall in the following order: acknowledgement of “best” practices; 

careful selection of practices to be applied, implementation of a plan of action, monitoring of 

key indicators; analysis of the outcomes in relation to original objectives, and incorporation of 

previous knowledge into future decisions. 

Under a systems perspective, Díaz-Salís et al. (2009) give a simple definition where adaptive 

management is a strategy composed of a set of decision rules that are clear and meaningful to 

farmers. Sets of managerial decision rules may embed specific agronomic knowledge and 

when structured into decision trees, map an effective information flow to aid management. 

Kuhlmann & Bordesen (2001) suggest that adaptive management blends methods of 

investigation and discovery with deliberate manipulations of managed systems, as a hybrid of 

scientific research and resource management. This approach may be also associated with 

concepts of knowledge-based systems in the technological field of Artificial Intelligence (AI), 

especially when considering the aspects suggested by Kuhlmann & Bordesen (2001) of a 
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cyclic feedback of new knowledge for continuous improvement of policies and field practices. 

The principles are that observations and evaluations on the ways that human interventions 

affect managed systems are expected to provide knowledge gains about system interactions 

and productive capacities. This matches the processes for the adaptive management cycle with 

the SSCM suggested in McBratney & Whelan (2001) when describing key components of the 

SSCM technology cycle. 

In practical terms however, adaptive management has somewhat different goals from 

research. It differs in scope and nature from typical research experiments, and consequently 

involves more than just technological research transfer (Sit & Taylor, 1998). But now 

scientists can play a more effective role in this management approach, which is not new 

(Walters 1986), by means of improved technology to incorporate research knowledge into the 

core of farm management processes. However, if the promise of this concept is to be realized, 

it is local resource managers and advisors who must become the “adaptive managers” (Sit & 

Taylor, 1998). 

User participation in technological development 

In developing process models, there is a tendency to by-pass the perceptions and awareness of 

farmers to adopt these technologies, and whether other attitudes than economic benefits play 

roles in the adoption decision (McCown, 2002; Adrian et al., 2005). More participatory 

approaches considering the user influence in agricultural decision support are not new, and 

have been suggested in Baker & Curry (1976). Other reports aim to explain the role of farmer 

participation in the information system (Hartwick & Barki, 1994) and to evaluate users’ 

attitudes in knowledge-based DSS (Hochman et al., 1994). The user perspective of the 

relevance of the internet for agribusiness is introduced in Ivanic et al. (2001). 

Lynch & Gregor (2004) investigates areas of decision making theory that reinforce the user 

interaction during system development. Lynch & Gregor (2004) have used concepts of 

participative decision making introduced by Locke & Schweiger (1979) to predict 

improvement in system quality and planned organizational change, when investigating the 

relationship between process outcomes for 38 decision support systems in the Australian 

agricultural sector. Results have shown strong patterns between the user influence in system 

design and the impact of agricultural DSS. As an example, the avocado management support 

tool introduced by Mulo et al. (1998), and followed in Newett et al. (1999) and Vock and 

Newett (2001), in which the type of user participation was seen as consensual since the 
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conceptual design phases and has resulted in a significant change of focus in the nature of the 

system.  

It may also be argued that a wise strategy could be to adopt software engineering tools that 

can assist the efficient reuse and customization of experimental system developments, rather 

than trying to involve farmers in early phases of technical analysis. The standpoint of 

minimizing system redesign through a user’s interaction during all stages of the development 

process may be considered relevant in reducing software investments and increasing levels of 

software quality, but it wouldn’t avoid the need for continuous system maintenance and 

adaptation in the long run. For the long term sustainability of DSS tools, system development 

approaches and architectures must be able to cope with the typical dynamics of real life 

management decision processes. In the theory of unstructured decision processes, strategic 

decision making is suggested to be cyclical, informal, flexible, and modified and clarified as 

the decision process progress (Mintzberg, 1978). 

1.4.2 - Environmental & economic aspects 

Several aspects of farm accountability have been considered and mostly adopted from the 

already available management decision tools usually in the form of less expensive spreadsheet 

systems that handle standard data (e.g. budgeting, payroll, financial balance, machinery 

maintenance, stock and logistic) rather than in new PA econometric models (Ancev et al., 

2004; Stoorvogel et al., 2004). The availability and popularity of this type of farm office 

support tool has no equivalent in terms of environmental assessment and valuation methods. 

Farm management decision process modelling is not new, but it has been traditionally related 

to accountability, property, land tenure, infrastructure, and socio-economic attributes. Typical 

designs lean to either general aspects of managerial activities and operational calendars 

(Gauthier & Néel, 1996; Bett, 2004), or detailed record keeping of farm management 

interventions (Shaffer et al., 2000), and do not consider attributes relative to management in 

the SSCM context. 

New DSS contributions to the economic aspect of farm management are now well advanced 

in Web agent technology (Sierra, 2004; Koumboulis et al., 2006). These contributions already 

consider a well recognized opportunity offered by online markets and the key importance of 

agricultural exports in many economies (Ivanic et al., 2001; Hargreaves & Hochman, 2004; 

Abdinnour-Helm et al., 2005; Fernandez & Trolinger, 2007; Masiello-Riome et al., 2008). 

The commodity market chain often involves much inefficiency as the earnings are shared by a 
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multitude of traders and processors, and producers may receive the smaller share of the final 

consumer price (Sierra, 2004). Electronic commerce can allow producers to reach global 

markets at reduced transaction costs, and electronic markets and online auctions offer 

excellent ways of achieving and improving this type of commerce (Masiello-Riome et al., 

2008).  

Information is a key product from PA technology, and does play an economic role in 

productive crop systems. The technology is now becoming available to monitor input/output 

of farm resources at an increasing resolution. Ultimately, data gathered on production output 

would ensure that only sustainable techniques are adopted within progressive research, 

educational and political frameworks. However, the evaluation of environmental aspects in 

farm decision making is a major knowledge gap in the realization of the proper site-specific 

management paradigm (McBratney et al., 2005). At present, the necessary characterization of 

the expected production variability over space and time is pending, compromising evidence 

on the positive impact of site-specific practices. This may have restricted the evolution of 

analysis technology. According to Kuhlmann (2006) the proper knowledge on crop yield 

variations requires the evaluation of probability distributions of non-controllable yield factors, 

so that suitable support tools which clearly lead to economic advantages can be developed. 

Understanding the cause/effect and the evaluation of environmental impacts in money metrics 

at very detailed level will probably take more commitment from research institutions and the 

agricultural industry. At present, spatio-temporal methods for agricultural investigations have 

been mostly undertaken in regional risk analysis, such as the econometrics of pricing crop 

insurance contracts (Ozaki et al., 2008) and the environmental management of pest incursion 

of wheat (Eliston et al., 2004). 

The PA models may suggest a more realistic response based on continuous high-resolution 

field data and simpler automated analysis of less complete or precise set of predictors. This 

analysis reflects the ultimate goals in PA decision support with claims for “greater simplicity 

on the far end of complexity” (Cox, 1996; Hayman, 2003; Blackmore, 2007). In this context 

PA models have the potential to address simple indices which are often used for agricultural 

and environmental impact assessments. Indices supporting decisions may be difficult to build 

due to limited thematic knowledge and the establishment of universal benchmarks.  

Biere (2001) suggests that good information is critical to good business management which 

can properly integrate financial data for logistical decisions. Biere (2001) introduces an 

activity-based method which provides the information needed to make decisions concerning 
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activities within the firm, where benchmarking is suggested as a means of obtaining 

information on performance functions. Benchmarking has become increasingly important as 

margins decline in information markets. Index benchmarking from intensive field data may 

enhance the whole-farm management effectiveness and its associate agronomic, economic, 

environmental, and logistical benefits. 

Keating & Carberry (2008) suggest PA technology as one of the few feasible options to break 

away from the current efficiency frontier, supporting the creation of new production systems 

which can increase returns for little added risk. PA related knowledge may provide a means 

for base line analysis of emerging opportunities in environmental aspects, i.e.: biofuels, 

farming carbon, forest-based carbon sinks, soil carbon sinks and farm resource stewardship; 

and trends such as: climate change and shortage in water supply. 

1.4.3 - Information and knowledge: system development aspects 

The computational support for the integration of field monitoring data has not evolved as 

expected by Whelan et al. (1997). To date, the overwhelming amount of gathered data has 

found no support from analysis technology (McBratney et al., 2005; Matthews, 2007). 

Advanced IT methods applied to SSCM information flow have mostly addressed wireless 

data communication standards (Lutticken, 2000; Wei et al., 2005; Nash, 2006) and control of 

monitoring devices (Blackmore et al., 2002; Arguenon et al., 2006). 

This field level technology standardization has been considered good as a modular design for 

new products (Zhang et al., 2002) and efficient as a data exchange platform for sensors, 

controllers, and software packages from different manufacturers (Stafford, 2000). However, 

this approach has not fully supported so far the development of decision models that are 

relevant to farmers (McCown, 2001a; McCown & Parton, 2006), being only applied in crop 

simulation models (Rivington et al., 2007; Florin, 2008). 

Alternatively, conceptual frameworks have been recently designed for more flexible and 

integrated characterization of management influencing factors, from strategic stakeholder to 

field operational decision flow (Bett, 2004; Fountas et al., 2005; Rivington et al., 2007). From 

a survey analysis on distinctive business innovation patterns, Miles (2008) suggests that farm 

management can be understood as a small-scale, technology-based and knowledge-intensive 

business, in which examples are limited. He concludes that in relation to knowledge system 

designs, only a few business segments conform to the model in which innovation is largely 

organized and led by formal research and development (R&D). Thematic conceptual 



R.P. de Oliveira - Contributions Towards Decision Support for SSCM. 

 

 30 

frameworks can be further implemented through a series of available semantic-driven 

technologies (Gauthier & Néel, 1996; Saraiva et al., 1998), supporting customized 

representations of continuous storage of local knowledge. Currently standardized system 

development architectures have a greater potential to suits several requirements for improved 

socio-cultural and environmental considerations in farm management (Linch et al., 2000; 

Mackrell, 2006), and for intelligent software for agricultural decision support (Kosai & Hoshi, 

1989; Gauthier & Néel, 1996; Matthews et al., 2002; Öhlmér, 2006). Web services may add 

facilitated search and accessibility of technical and managerial data (Fensel et al., 2004).  

Improvements in system design 

Challenges in the development of SSCM supporting tools involve constant technological 

update, while enabling a continuous integration of many knowledge assets (e.g. agronomic, 

economic, ecologic, soil, field operation, farm management, spatio-temporal analysis). 

Improvements in system design are here understood as relating to requirements for increased 

communication by means of standardized protocols, notations, and modelling languages.  

System design methods are associated with models of software and management processes, 

giving a common language for system abstraction and knowledge sharing across domains. 

Several authors suggest that the use of unified languages in design facilitates the integration 

of scientific knowledge and farm management processes by means of knowledge management 

systems (Jones et al., 2001; Hervé et al., 2002; Moore et al., 2005; Papajorgji & Pardalos, 

2005). However, Papajorgji (2007) points to the limited use of modelling methods in 

agricultural research, which can be related to claims of segmented developments (Matthews, 

2007). As a result, the analysis of several specific aspects of crop management requires from 

farmers and agronomic advisors a fair amount of study and several pieces of software. In 

addition, the lack of model integration, sharing and re-use (Papajorgji & Shatar; 2004) may 

have limited the improvement of knowledge and the design of methods of analysis for large, 

heterogeneous, and distributed datasets. To minimize the knowledge gap which indirectly 

influences the low rates of technological adoption, some authors have considered the creation 

of metadata specifications and standard protocols to support the use and exchange of 

information for crop models (Hunt et al., 2001; Bostick et al., 2004), agricultural DSS (Hunt 

et al., 2006), and SSCM (Bramley & Williams, 2001; Abuzar et al., 2003; Wei et al., 2005). 

In fact, no conceptual framework design has been suggested to characterize basic components 

of management decisions in SSCM, such as considering quantitative analysis of crop spatio-

temporal variation within object-oriented architectures. This technological gap is subject of 
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further investigation in this work and encompasses a large number of aspects in both software 

development and quantitative methods. 

Considering the user perception previously discussed (Section 1.4.1), it can be stated that the 

DSS for PA should be more than a collection of narrow scope decision support tools. 

However, a comprehensive list of distinct DST requirements for PA (Robert, 2000) was 

followed by persuasive suggestions that the traditional “integrated DSS package” concept 

may need to be broken down into simplified and more specific solutions (McBartney et al., 

2005). Still, this suggestion may be preserved for cooperative knowledge-based designs via 

modular composability techniques. The composability of information artefacts of specific 

scope into an integrated knowledge support environment is suggested as a common topology 

in different categories of generic DSS (Power, 2000). Another question that may still remains 

to be considered is the parsimony of models being composed. 

To achieve the required modularity in SSCM decision tools, solution designs should also be 

considered within an open architecture that uses strong semantic representations. The term 

open architecture is used to refer to a system which can be dynamically built by off-the-shelf 

components and conforms to approved standards, allowing customization of solutions and 

easy connectivity between distributed devices and programs (Papajorgji; 2005). 

Improving the information value chain 

The shift from a technology drive to an adaptive management of opportunities suggests a 

vertical coordination of agricultural firms (Barry et al., 1992), with a balance between human, 

economic and environmental factors. Improvements in the information value chain are here 

understood to be related to requirements of a vertical information flow between different 

management levels by means of system interoperability and semantic Web technology. 

Another dimension of farm management multiscale analysis is suggested by Cox et al. (2008) 

for decision frequency on various time scales, from a single day activities to seasonal field or 

whole farm decisions.  

The information flow across different scales of decision-making (e.g. plant, field, farm, plant 

growth stage, and season) may be supported by new methodological solutions for data, 

system, and model interoperability, platform independent solutions, and ontological mapping 

which have received limited attention in applied PA research. Moore et al. (2007) suggest a 

hierarchical framework for simulation of agricultural and environmental systems. In a similar 

fashion Numrich et al. (2004) reinforces techniques to embed decision-support, control and 

simulation systems for training and testing integrated knowledge management tools. Layered 
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concepts for improvement of the information value chain are suggested by Numrich et al. 

(2004) as: 

• Data Quality - describes the information within the underlying control systems; 

• Information Quality - tracks the completeness, correctness, currency, consistency, and 

precision of the available data items and information statements; 

• Knowledge Quality - deals with procedural knowledge and information embedded in the 

control system (e.g. templates, assumptions, and rules), and it is the first component 

related to the common model of the business operation; and 

• Awareness Quality - measures the degree of using the information and knowledge 

embedded within the cognitive domain of the control system. 

Open developments using semantically rich frameworks are suggested to diminish the 

existing mismatch between data, information, and knowledge of farm management processes 

in commercial DSS tools and scientific methods of analysis (Rosskopf & Wagner, 2005; 

Sørensen, 2008). The improvement of the information flow between management scales may 

be facilitated by intelligent software agents (Gil, 2006), which can emulate typical 

management behaviours across different data aggregation levels. Intelligent software agents 

are also suggested to help understand the decision assumptions and use this knowledge to 

compose services in support of the immediate needs of users (Tolk, 2006). Following these 

concepts, Nakamori et al. (2007) proposes a system for online fresh-food demand 

management and forecasting based on knowledge integration from three distinct information 

systems, being: “purchase behaviour”, “demand forecasting model”, and “managerial 

knowledge”.  

Knowledge intensive management 

Knowledge intensive assets as a “new factor of production” are suggested in Starbuck (1992) 

to overcome the relative importance of capital and labour as business inputs and outputs. 

Improvements in knowledge intensive management are here understood to be related to 

requirements for the exchange of ideas and specific knowledge pools between different farm 

management actors (e.g. farmer, agronomic advisor, operators, and scientists) by means of 

knowledge-based technology (e.g. engineering, management, shearing and reuse). The 

concept of knowledge intensive firms is not exclusive to current technologies for knowledge 

management (Schreiber et al., 2001) and knowledge creation (Tieju et al. 2007), which is 

actually based on the classic epistemological foundations refered to in Starbuck (1992) (e.g. 

Polanyi, 1958; Kuhn, 1962; Collins, 1974). Different contexts for analysis and assessment 
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perspectives have contributed to the notion of an integrated knowledge system 

complementing tacit, scientific, operational and managerial knowledge assets. 

Knowledge management is a traditional concept in computational problem-solving tools 

related to AI research, which has accounted for several contributions on generic evolutionary 

development technologies such as: knowledge sharing (Gruber, 1995; Farquhar et al., 1996); 

Web-based learning (Atolagbe et al., 2001) and coordination (Terai et al., 2003); evolutionary 

components (Oussalah, 2002); ontology mapping (Fensel et al., 2001; Gennari et al., 2003; 

Corsar & Sleeman, 2007) for adaptive control (Wang et al., 2007);  and autonomic 

management (Huebscher & McCann, 2008). 

In agriculture, KBS are computer tools supporting farmer’s behaviour, learning and 

knowledge management, which can be applied for self management of adaptive human-

computer interactions according to individual usage characteristics and functional preferences 

(Pinheiro & Furtado, 2003). Cortés et al. (2000) use AI techniques for the definition of 

environmental DSS based on an architecture suggested in Radermacher et al. (1994), which 

combines several subjects such as AI, GIS, simulation modelling, and user interactions. Other 

related resource management cases include: agent-based GIS for land-use and land-cover 

change (Berger, 2001) and forestry ecosystems (Twery et al., 2005); modular neural nets 

integrating natural phenomena forecasts (Solomatine & Siek, 2006); interaction of agents in 

fresh food management (Nakamori et al., 2007); and metadata ontology for agricultural e-

commerce management (Fu et al. 2007).  

Finally, the reuse of abstract models is a major step towards cost effective and quality assured 

KBS developments. To enhance flexible reuse, these models can be broken down into 

reusable components, containing artificial problem solving methods and ontologies of domain 

models (Schreiber et al., 1999).  

1.5 - What counts for the effective development of SSCM decision tools? 

1.5.1 - Generic DSS typologies 

The concept of DSS is very broad, encompassing several definitions, process approaches, and 

uses due to the wide range of domains involved (Alter, 1980; Power, 2000). A DSS can take 

different forms and be built in many different ways not relevant to this study. Therefore, a 

specific summary on DSS typologies which are specifically related to SSCM decision support 

aspects is presented in this section. A general and synthetic DSS definition that reflects key 
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considerations in this thesis can be stated as: a DSS is a computerized system for assisting and 

validating decisions made by a user, rather than automating decisions.  

References to DSS are usually related to computer applications that perform such a required 

supporting role. In relation to the identification of cognitive processes, DSS relates to an 

outcome of a mental process leading to the selection of a course of action among several 

alternatives (Mintzberg, 1978). Decision processes involve a final choice in the form of an 

action or an opinion. Choice between alternatives based on the analysis of estimates involves 

supporting the monitoring, estimation, evaluation and/or comparison of alternatives. Different 

processes involve different choice analysis such as: complex choice, choice under uncertainty, 

choice of incommensurable commodities, spatial choice, temporal choice, choice of 

competing decision makers, and where the paradox of choice may be promoted by overloads 

of information and tasks. 

For Arnott (2004), DSS constitute a class of computer-based information systems, including 

knowledge management systems, which support decision-making activities. It is clear that 

different knowledge domains emphasize distinct aspects of the decision process. A play on 

the DSS acronym may illustrate this aspect, giving: “Dss” for the decision cognitive 

viewpoint; “dSs” for the methodological support viewpoint; and “dsS” for the system 

engineering viewpoint. Perhaps, it may suggest the lack of a balanced “DSS” development 

that potentially affects the relevance of available tools to farmers. 

A growing contribution of DSS applications, concepts, principles, and techniques can be seen 

in agricultural production. Keating et al. (2003) surveyed systems analysis and interventions 

that have been applied to farming systems, typifying them as: 

• Economic decision analysis using production functions; 

• Dynamic simulation of production processes; 

• Economic decision analysis using simulation of production processes; 

• Decision support systems; and 

• Expert systems. 

Bett (2004) describe decisions by farmers as complex ones involving two stages: one is 

whether to adopt or not, and secondly, to pick the optimum level of the technology. To decide 

whether to adopt or not involves phases of knowledge, persuasion, decision, implementation, 

and confirmation; where adoption relates to the current level of use and intensity of use of a 

technology. Griffin et al. (2004) have reported PA technology trends related to decision 
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support as considering yield monitors, variable rate applications, yield mapping, soil mapping, 

remote sensing, auto-guidance, and on-the-go proximal sensing.  

Problems in decision making take a generic form when considering human aspects as 

previously discussed (Section 1.4.1). Functional aspects influencing the perceived DSS 

usefulness were compiled from Stone & Hochman (2004). They consider that DSS are most 

likely to deliver relevant information to farmers if they: 

• provide information with evident, defined, high and measurable value;  

• integrate analytical methods scientifically validated to impart that information;  

• provide information for farmers own decision, rather than explicit answers;  

• address discrete matters rather than comprehensive or whole-system issues;  

• possess transparent logic, if not autonomic computational processes;  

• are used to acquire rather than implement new skills; and  

• require as little direct use as possible.  

Perhaps a great challenge to DSS development is how they are delivered in conformity with 

new technologies and research areas, the important points being suggested in Newman et al. 

(2000) are:  

• Demonstrations that process simulation can deal credibly with real agriculture, 

• Strategic decision-making using evolutionary computation for action reports; 

• Software in conformity to emerging influences of soft systems approaches, 

• Significant validation of integrated simulation and DSS for policy development, 

• Development of quantitative methods via a WWW in an expedient manner; and 

• Reliance on machine learning techniques for increased access to large databases. 

Boonstra (2003) defines generic decision processes related to operations resource 

management that are often influenced by: 

• limited ability of people to process information; 

• disagreement among stakeholders; 

• change, uncertainty and indistinct objectives; 

• psychological barriers of individuals to adapt information and act rationally; and 

• a tendency towards incrementalism and arbitrariness in decision-making. 

Contributions defining conceptual structures of decision making often follow the description 

of a typical process pathway. The generic decision making process is mostly recognized as 

composed of five steps as: i) recognition of the problem; ii) collecting information (data 
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gathering & interpretation); iii) determine a solution (system modelling and design); iv) 

selecting and engaging a solution (building a method, modelling and implementing a 

software); and v) evaluating the solution (hands on prototyping, automated procedures, 

simulation of scenarios, sensitivity analysis). To a certain extent, these steps preserve close 

relation with the cycle of process for realization of site-specific management as suggested in 

Whelan (1998). When described in terms of crop simulation models, a DSS is often 

understood in three broad phases of action, those being intelligence, design, and choice 

phases. In this case, the intelligence phase may involve field trials and data gathering, the 

design phase in the modelling activity itself, and the choice phase concerns to the selection of 

criteria, the search for alternatives and the forecast of results. 

A taxonomic approach based on 25 strategic decision processes to describe decision pathways 

is given in Mintzberg & Waters (1985) using a structure of 12 elements: 3 central phases, 3 

sets of supporting routines, and 6 sets of dynamic factors. Mintzberg & Waters (1985) 

proposes a generic model to describe classes of interrelationships, suggesting 7 possible types 

of path configurations through the model. Three central phases are: i) identification phase 

(e.g. decision recognition routine, diagnosis routine); ii) development phase (e.g. search 

routine, design routine); and selection phase (e.g. screen routine, evaluation-choice routine, 

authorization routine). The three sets of supporting routines involve decision control routines, 

decision communication routines, and political routines. Dynamic factors are defined as: 

interrupts, scheduling delays, feedback delays, timing (delays/speedups), comprehension 

cycles, and failure recycles. 

More specific to system related categorizations, Adelman (1991) suggests DSS as a diverse 

class of computer technology integrating database information and analytical modelling 

methods that consider general elements related to AI. Power (2000) follows this concept 

categorizing five dominant technology components as communications-driven, data-driven, 

document-driven, model-driven, and knowledge-driven support systems. These components 

have been proposed within an expanded framework (Power, 2000) to classify a large number 

of software packages and systems. The expanded framework aims to help the understanding 

on how to integrate, evaluate and select appropriate means of decision support. Power (2000) 

further highlights the aspect of knowledge-driven DSS by means of Web services. Fields of 

research listed as subfields of AI foundations (Table 1.1) have been discussed in Russell & 

Peter (2003) as directly associated to elements of knowledge-driven DSS (Power, 2000; 

Russell & Peter, 2003) 
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Table 1.1: Subfields of AI research and issues related to knowledge support. 

Field Start Issues Methods 

Philosophy 
428 
B.C. 

Can formal rules be used to draw valid 
conclusions? 

How does the mental mind arise from a 
physical brain? 

Where does knowledge come from? 
How does knowledge leads to action? 

Dualism; Materialism; 
Empiricism; Induction; 
Logical Positivism; 

Observation Sentence; 
Confirmation Theory. 

Mathematics c. 800 

What are the formal rules to draw valid 
conclusions? 

What can be computed? 
How do we reason with uncertainty? 

Algorithms; 
Incompleteness 

Theorem; Intractability; 
NP-Completeness; 

Probability (in terms of 
possible outcomes). 

Economics 1776 

How should we make decisions so as to 
maximize payoff 

How should we do this when others may not 
go along? 

How should we do this when the payoff may 
be far in the future? 

Utility Theory; Decision 
Theory (Combination of 
Probability & Utility 

Theories); 
 Game Theory; 

Operational Research 

Neuroscience 1861 How do brains process information? 
Neuroscience; Neurons; 

Neural Networks. 
Economics 

Psychology 1879 How do humans and animals think and act? 
Behaviourism; 

Cognitive Psychology; 
Cognitive Science. 

Computer 
Engineering 

 
(Hardware & 
Software) 

1940 How can we build an efficient system? 

Microprocessors; 
Language Compilers; 
Data Management; 
System Analysis and 

Design; System 
Interoperability; Parallel 
Processing; Network 

Protocols. 

Control Theory 
& 

Cybernetics 
1948 

How can artefacts operate under their own 
control? 

Control Theory; 
Cybernetics; Objective 

Functions. 

Linguistics 1957 How does language relate to thought? 

Natural Language; 
Computational 

Linguistics; Knowledge 
Representation. 
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1.5.2 - Designs methods & implementation architecture 

Modelling notations and languages are key constructs to proper system development practice, 

being the core aspect of novel computation theories (Turing, 1937). However, incorporating a 

modelling activity as a necessary step in any system development is often disregarded in 

many projects. Semantic modelling concepts related to object-oriented architecture and new 

service-oriented approaches suitable for agronomic applications, which have been discussed 

(Papajorgji, 2007) and adopted as common specifications (Moore et al., 2005) in a systems 

approach, are summarized in this section. 

Limited experimentation in evolutionary software development approaches has been 

conducted as a standard for analysis of data intensive monitoring. Therefore, a stronger 

formalisation of the modelling approach is suggested, which considers a development 

framework concerning parameters directly influencing the quantitative characterization of 

spatio-temporal production variation. System design modelling methodologies and coding 

notations are central to system development (Papajorgji et al., 2000). There is an evident need 

for more systematic data handling and information management when modelling components 

of agricultural DSS (Papajorgji & Pardalos, 2005; Matthews et al., 2008). Previous 

developments in system biology discussed in Priami & Quaglia (2004) suggest that a stronger 

object modelling formalism yielded a better organization and understanding of behavioral 

properties of cells (e.g. chemical, physical, functional). However, agronomic process 

modelling is mostly done through unstructured procedures (Papajorgji et al., 2004), in which 

greater priority has been recently given to soft-system participative approaches. These 

solutions have proven effective, but localized, technology transfer infrastructure that 

facilitates farmers and scientists learning, although they are difficult to replicate in large scale 

(Matthews, 2007). 

In computational linguistics the definition of a language consists of both syntax and semantics 

(Jacobson, 1986; Booch, 1994; Nierstrasz et al., 2005). Linguistic extensions for GIS 

applications have added uncertainty components to spatial modelling (Molenaar, 1998). A 

semantically rich framework may better assist researchers in problem solving for agronomic 

and spatial reasoning knowledge gaps (Gauthier & Néel, 1996; Öhlmér, 2006). It is 

understood that system designs and developments using a semantically rich modelling 

notation may facilitate knowledge sharing, information flow, data processing and code 

maintenance to better cope with a continuous change of requirements in crop management 

processes (Papajorgji & Pardalos, 2005). For this reason, basic computational concepts 
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relative to the object-oriented programming (OOP) and new service oriented approaches are 

the subject of a more in depth literature review (Chapter 2). 

1.5.3 - Recent technological pathways 

Reports from the United Nations on “E-commerce and Development” (UN, 2003-2006), 

suggest the agribusiness sector is among three priority markets to consider electronic 

commerce technology and semantic Web-services, particularly in developing countries. 

Internet facilities have been indicated as the most important source of information for farmers 

and agronomy consultants in agricultural journals and extension service reports (Rosskopf & 

Wagner, 2005), but knowledge sharing analysis activities are limited.  

Rosskopf & Wagner (2005) suggest agriculture is a knowledge-intensive business, where 

farmers are often not used to managing their knowledge in a very structured way. New 

technologies can help farmers to achieve better knowledge management, potentially 

enhancing their productivity and efficiency.  

Another emerging approach is Agent-Based Modelling (ABM), which is defined in Janssen 

(2007) as the computational study of social agents as evolving systems of autonomous 

interacting agents. Adaptive management agents may support how a macro phenomenon 

emerges from a micro level behaviour among a heterogeneous set of bio-physical interacting 

agents (Holland, 1992), which describe typical behavioural rules and interactions. Agents may 

find navigation means through Global Information Grids (GIG). The GIG technology, or 

simply grid computing, is a globally interconnected, end-to-end set of information 

capabilities, associated processes and personnel through which information is collected, 

processed, managed, stored and disseminated on demand (Numrich et al., 2004). 

The functionality offered by a hybrid solution made from a composable shell of ontotological 

Web services, intelligent agents, and knowledge management can support the facilitated use 

of integrated analytical tools (Ahuja et al., 2002; Ahuja et al., 2005) with a farmers practical 

and intuitive thinking embedded (Öhlmér, 2006). According to Fogg (2003) a user 

knowledge-centred technology should involve aspects of cognitive science which are useful to 

create persuasive technologies for the purpose of influencing peoples attitudes, perceptions or 

behaviours. This last aspect may be relevant when considering the exchange of scientific and 

tacit knowledge for sound decision making.  
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Web services 

According to Berners-Lee (2007), the success of the Web can be understood as result of three 

critical factors: i) unlimited links; ii) open technical standards for continued innovation; and 

iii) network layers enabling independent innovation for transport, routing and applications. 

From a technical perspective, the World Wide Web (WWW) is a collection of electronic 

pages written in standard HTML format (Hypertext Markup Language), where pages can be 

universally linked using the URI standard (Uniform Resource Identifier) and the HTTP 

(HyperText Transfer Protocol) network transfer protocol (Berners-Lee, 2007). Its separation 

into development layers allows simultaneous and autonomous innovation to occur at many 

levels of user interfaces, making great use of the open system design. 

A universal link, the Uniform Resource Locator (URL, an URI type), allows anyone to 

connect with another and so promoting the free exchange of ideas and the creation of a wide 

variety of new services. Better scientific data integration may happen through the use of open 

Web links between commercial and academic initiatives around the world, as knowledge 

assets are mostly spread out across countless databases, spreadsheets, documents, and 

proprietary formats. Specific to agriculture, initiatives known as e-Agriculture were listed as 

priority action lines at the World Summit on the Information Society (WSIS’06), so 

reinforcing information and communication processes rather than technologies and tools 

(Masiello-Riome et al., 2008; Mangstl, 2008). To determine the scope and priorities for these 

initiatives, Masiello-Riome et al. (2008) analyse results of an online global survey on action 

lines for e-Agriculture with emphasis on market access and overall information flow. Mangstl 

(2008) reports e-Agriculture issues, priorities, and commitments from the Food and 

Agriculture Organization (FAO) perspective. Mangstl (2008) core focus is the exchange of 

commercial, managerial, and scientific knowledge assets, where knowledge-based Web-

service developments are considered priority investment for market chains, farm/production 

management information systems, and research and innovation. 

Service-Oriented Architecture (SOA) provides standards to build cost-effective knowledge-

integration infrastructures, creating composable system solutions (Kreger, 2003; Tolk & 

Pullen, 2003). From an enterprise point of view, SOA is a system development approach to 

organizing information resources to meet changing needs of the business by building 

interoperable, robust, and reusable services that models the underling application functionality 

(Bloomberg, 2007; Baer, 2007). In simple terms, SOA involves the use of Web architectures 

to efficiently support business diversity by the integration and management of different 
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decision knowledge assets (Kreger, 2003; Pullen et al., 2005; Bloomberg, 2007). Concepts of 

Knowledge-Intensive Firms (KIF) were introduced in Starbuck (1992), as expanding 

economy concepts of capital- and labor-intensive organizations which do not encompass data-

intensive management aspects. Starbuck (1992) defines the idea of learning by knowledge-

intensive assets as a simple stack of diversified expertise that does not imply technology-

intensive management. In this sense, diversity also means that many of these management 

assets don't concern the same language or problem definition. 

It is now clear that a proper balance between diverse aspects in crop management analysis 

requires information system developments that consider the dynamic composability of 

individual problem solutions (Papajorgji, 2005), while ensuring the transparency and reuse of 

their particular processes, plus secure interoperability of knowledge assets (Priami & Quaglia, 

2004; Baer, 2007). Implementing SOA depends upon exposing information and processes as 

self-contained services that can communicate and interoperate with each other (Baer, 2007). It 

involves techniques for Service-Oriented Analysis (SOA) and Design (SOAD), which grew 

out of efforts in collaboration among heterogeneous systems (Zhao & Cheng, 2005) that are 

closely related to object-oriented architectures. 

Semantic Web 

Lately, ontology mapping has emerged as a prime technique to model system semantics for 

the development of representation languages and ontologies (Bell et al., 2007). Ontology 

mapping makes use of markup languages for defining a semantic system structure using 

terms, the definitions of those terms, and the specification of relationships among those terms 

(Sini et al., 2008). It is a recent computer solution to simplify and improve knowledge reuse 

via the Web. The use of ontologies to build a semantic Web aims to alter the way humans 

may benefit from Internet use, according to Bell et al. (2007), from an active user interaction 

with passive information extraction to a somewhat passive interaction with active (or 

autonomic) information extraction and analysis.  

In a great effort to make new IT approaches available to the whole agroindustry, the FAO has 

already indicated the importance of semantic representations and invested in semantic Web 

frameworks such as the AGROVOC repository (Sini et al., 2008). In the FAO context, Web-

services containing glossaries of terms are already available as distributed databases 

(ftp://ftp.fao.org/gi/gil/gilws/aims/references/flyers/ontologies_en.pdf), and advantages for 

using Web ontologies are detailed in Fisseha et al. (2001). Positive points can be summarized 

as: i) navigation by semantic links; ii) data management indexed by key attributes; iii) user’s 
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query via controlled vocabulary; iv) adaptive query supported by domain natural language; v) 

cross-relational information retrieval; and vi) display of semantically related concepts. 

It can be argued that much of the PA enabling technology has been born from operational 

military technologies (e.g. GIS, GPS, Remote Sensing). This may suggest that the next steps 

towards the interoperability of SSCM decision support components could also mirror new 

military command and control research initiatives. Better integrated farm management may 

require the consideration of primary standards now being investigated for command-control in 

grid computing environments. Page et al. (2004) argues that for the military strategic domain, 

simulation composability has arisen as a longstanding standard of interoperability. Page et al. 

(2004) also support the view of Petty & Weisel (2003), where interoperability covers the 

technical aspects, as for system development, and composability the conceptual aspects, as for 

integrated simulation analysis. Page et al. (2004) support this following categorization when 

dealing with issues of integrated and intelligent simulation system:  

• Integrability contends with the physical/technical realms of connections between systems, 

which include hardware and firmware, protocols, etc. 

• Interoperability contends with the software- and implementation details of interoperations, 

including exchange of data elements based on a common data interpretation, etc. 

• Composability contends with the alignment of issues on the modelling level. The 

underlying models are purposeful abstractions of reality used for the conceptualization 

being implemented by the resulting simulation systems. 

Semantic Web and grid computing researchers are now building common ontologies to bridge 

associations between different semantic and declarative knowledge representations. The 

resulting capabilities could provide a new generation of cognitive grids and distributed 

intelligent systems applied to learning, planning, self-repair, memory organization, meta-

reasoning, and task-level coordination (Deelman & Gil, 2006; Gil, 2006). Dumitrache (2008) 

summarises the ability to share data, information, and knowledge, concluding that trends in 

advanced monitoring control techniques include intelligent agents as well as hybrid systems 

formalism. 

Agent Based Models (ABM) & grid computing 

Agent and Multi-Agent Based Modelling (ABM and MABM) have emerged from software 

engineering techniques to overcome issues of semantic developments in AI. A knowledge 

engineering review on AI theories (Wooldbridge & Jennings, 1995), which considers 



 43 

cognitive, operational, decision-making, and game-theory frameworks previously used in 

automation problems (Smith & Davis, 1980), reports the design and construction of intelligent 

agents through three main branches: agent theory, architecture, and languages (Huesbcher & 

McCann, 2008). 

The basic properties of hardware or software agents were first identified by Wooldbridge & 

Jennings (1995) as being: i) Autonomy - agents operate without external intervention, having 

control over their actions and internal state; ii) Social Ability - agents interact with others via 

an agent-communication language; iii) Reactivity - agents perceive their external environment 

and respond in a timely fashion to changes; and iv) Proactiveness - agents do not simply 

respond to their environment, being able to exhibit goal-directed initiative.  

These techniques have extended semantic concepts from object-oriented approaches towards 

automatic reasoning frameworks for intelligent agents (Inchiosa & Parker, 2002; Buccella et 

al., 2008), enabling the behavioural representation of objects to be modelled through 

interaction strategies and promoting semantic objects into autonomic agents (Jenings, 2000; 

Jackson, 2002). They have recently inspired autonomic computing concepts aiming to 

decrease user involvement in human-computer interactions (Horn, 2001; Huesbcher & 

McCann, 2008). Here the term “autonomic” comes from biology,  referring to the human 

nervous system taking care of our unconscious reflexes (Huesbcher & McCann, 2008), and it 

can be understood as the automatic adjustment of vital organs to constant changes in the 

external environment (e.g. size of the pupil, rate and depth of respiration, dilatation or 

constriction of blood vessels). 

Systems adaptation relies on self-managing capabilities to effectively respond to 

unpredictable situations (Luck et al., 2004). These self-managing capabilities are given by 

intelligent software agents autonomously planning and pursuing their actions and goals to 

cooperate, coordinate, and negotiate with other agents (Luck et al., 2003). The main streams 

of ABM developments are currently used in Web browsers, retrieval mechanisms, and 

personal assistants. Pushing technology relies on intelligent "watch" agents (Lister et al., 

2006), which have been used to track user behaviour for personal digital assistants (Kumar et 

al., 2002; Silva & Rocha, 2003; Kunjithapatham, 2004). Agent languages are often available 

in visual programming environments for multi-agent experimentation (e.g. Swarm in 

Objective C; Cormas in Small Talk, Repast and Ascape in Java). 

Present applications of this technology have been spread across several knowledge domains 

including eCommerce, grid computing simulation; mobile communication; system agents for 
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learning, adaptation, and discovery (Zambonelli & Parunak, 2003). In relation to agriculture, 

some examples are given by Parker et al. (2001) in understanding structural adjustment in 

regional agriculture in response to shifts in policy incentives; Elliston et al. (2004) in regional 

disease incursion management; Koumboulis et al. (2006) regarding a DSS for possible 

scenarios of trading commodities in agribusiness; Arguenon et al. (2006) in prototyping of 

Precision Viniculture (PV) harvesting robots; Sengupta & Bennett (2003), Evans & Kelley 

(2004), Alexandridis & Pijanowski (2007), and Buccella et al. (2008) in GIS for land-change 

using spatial, temporal, and economic behavioral models. These results show the ABM 

evolution from an agent design metaphor to agents as a source of technologies of next 

generation computing (Luck et al., 2004).  

Autonomic agents can play a fundamental role in generic “grid computing” applications. Grid 

computing is by definition and integration of services across distributed, heterogeneous, and 

dynamic 'virtual organizations' from disparate resources in both ebusiness and e-science 

(Foster et al., 2002). Grid workflows are defined in Prodan (2007) as a collection of off-the-

shelf activities or components, interconnected through control and data flow dependencies. In 

simple terms, it can be understood as "utility computing" promoting "peer-to-peer" 

interactions. Foster & Kesselman (1999) suggest computational grids as a solution for 

inexpensive access to high-end computing capabilities, since they provide a parallel 

processing architecture in which CPU resources are shared across a network, and all machines 

function as one large supercomputer. 

Due to the nature of PA technology and SSCM decision-making, challenges in DSS 

developments should be faced using innovations and opportunities which have been suggested 

by several authors (Ahuja et al., 2005; Kitchen, 2008) to address modular and composable 

knowledge management. The ABM approach can potentially support farmers to better access 

and manage increasing quantities of available information, dynamically responding to 

changing circumstances in crop production. Some degree of autonomy in PA software 

components could bind complex analysis into easier to interact decision tools, requiring less 

technical training for farmers when trying new scientific tools. Autonomic software agents 

could be very useful in accounting for quantitative, agronomic, and managerial analysis; if 

underpinned by a knowledge management system of crop management, spatial-temporal 

reasoning and agronomic assets (Berger, 2001).  
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Computational complexity 

The computational complexity of algorithms implemented for statistical assessments is never 

a technological trend, but a fundamental issue to be constantly considered when dealing with 

tools for managing large datasets (Mather, 1999; Kundu & Ubhaya, 2001), such as those 

involved in intensive crop management (Walker, 2002). Therefore, the development 

management tools bearing quantitative methods may improve software performance as long 

as an awareness of the memory and CPU time costs of new algorithms is maintained. 

Nonlinear approximations with high dimensional input data remains a nontrivial problem 

(Mather, 1999). An ideal algorithm for such tasks needs to eliminate redundancy in the input 

data, detect irrelevant input dimensions, keep the computational complexity low, and, of 

course, achieve accurate function approximation and generalization. This problem has often 

imposed random sub-sampling techniques aimed at faster process response and more practical 

user interactions. Perhaps, this solution diminishes the analytical opportunity given by new 

trends in intensive monitoring, such as smaller robots (Blackmore, 2007) and multi-sensors 

platforms (Lobsey et al., 2007). 

Sub-sampling techniques are observed in Vesper (Whelan et al., 2001), as well as in the 

majority of the geostatistical packages available. A common approach for polynomial 

optimization problems in goestatistical tools is the Lenvenberg-Marquardt method (LM) for 

non-linear least squared regression. Typical algorithms for this method usually assumes the 

worst-case computational complexity in the order of O (m.nk), where: n is the dimension of 

the input vector (number of observations); k is the degree of the correlation function to be 

fitted; and m is the number of lags estimated by the empirical variogram. 

In the case of yield monitoring, the number of observations per field commonly exceeds 

50,000 yield observations. Datasets of over 20,000 observations already justify awareness of 

algorithm complexity (Mather, 1999). To support efficient LM algorithms for dense datasets, 

new heuristics have been recently available with a reduced complexity of O(n2.(m.n2)) in Stan 

& Kamen (1999) and O(n.(m.n)) for neural networks (Kim et al., 2006). As an example, 

Kundu & Ubhaya (2001) proposes an algorithm for regressive non-linear curve fitting that 

reduces the LM complexity to the order of O(n) for second order polynomials. 
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1.6 - Discussion and concluding remarks 

There is a strong need to convert the art and craft of SSCM analysis and decision knowledge 

into a real scientific-based, farmer-oriented, and system-optimized tool. It is also clear that 

some steps forward have been made in the evolution of agricultural decision tools, perhaps 

just matching the improved understanding of factors accounting for effective crop 

management with renewed and more sophisticated requirements. Unrealistic expectations in 

the technology may have misled farmers’ perceptions about which analytical tools would be 

factually available. In the 80’s, “the computer” would solve issues using well structured data 

bases; in the 90’s, “the system approaches” would solve problems using integrated GIS and 

crop simulation; in the 2000’s, “the information flow” would help using system 

interoperability and Web services. Currently, expectations from semantic services and agents 

supporting a knowledge intensive agribusiness may be relying in a more mature and flexible 

IT approach focused to emulate human reasoning and to facilitate user’s learning. 

The body of this research addresses common aspects of computational tools and quantitative 

methods supporting agribusiness decision making for the adoption of site-specific 

management technology. These concern questions directly related to a farmers risk perception 

for the opportunity on the return of investments in new technology. It is suggested that a 

proper system design may be related to semantic abstractions of crop management processes 

and the associated software functionality. Still, issues involving the development of SSCM 

decision tools may be related to a limited compliance in research with a minimum set of 

effective software engineering techniques. The challenge for SSCM supporting tools is to 

couple several data types and sources, analysis tools, and domain specific knowledge, while 

continuously enabling adaptive change.  

After 15 years of a new technology supporting SSCM, promises and expectations on the 

availability of field intensive monitoring, broadly known as PA, have not proven themselves 

as fast as new agribusiness trading standards have been imposed on farmers. Although 

important and valued improvements were introduced in terms of data gathering and spatial 

referencing and control at the within-field level, fast advances on specific hardware and 

firmware for robotic operations do not match with software functionality to facilitate data 

storage, information flow and knowledge acquisition and farm management DSS. As for 

operational processes, rudimentary data storage structures generated by individual sensor 
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devices under different manufacturer’s proprietary formats do not supply the required data 

interoperability and model composability.  

The low adoption of some SSCM technology observed to date, mostly related to data use and 

interpretation, has contradicted forecasts of the exponential spread of this sustainable sound 

management approach. Although within-field intensive data from one field survey may give 

us a good insight to the contributing factors of final production variation in a crop-season, it 

often doesn’t stand by itself to support next season or long term management decision 

processes. Negative impacts may have been promoted by ambiguous conclusions affecting the 

perceived usefulness of the technology as a support to decision making. The investment risk 

can be considered high as intensive monitoring benefits are still difficult to calculate, having 

estimated net returns varying from US$18 to US$48 per hectare. Inconclusive returns from 

high investments at initial adoption phases may have contributed to loss or isolation of a great 

number of single data surveys from different fields, crops and seasons, making conclusive 

analysis difficult or even impossible. Therefore, the availability of datasets may still limit the 

determination of thresholds for the opportunity of adoption. These facts have potentially 

delayed an increasing knowledge on new agronomic and managerial relationships revealed by 

intensive data gathering. Results in this research may also be limited by a lack of minimum 

number of samples characterizing the same crop over several seasons and diverse crops of one 

season, homogenously distributed across different farms and regions. Therefore, decision 

support methods addressed in subsequent research chapters concern to farmers at different 

phases of technological adoption (i.e. initial, intermediate, and advanced phases). 

The literature review presents a clear discussion of DSS concepts and development 

approaches that involves different levels and aspects in farm management, overlapping 

perspectives from distinct disciplines, and computational solutions of dissimilar typology. In 

general, the development of IT tools is characterized by isolated research projects mostly 

focusing on stand-alone solutions for a specific operational process, whether or not supporting 

data integration requirements relevant to tactical management decisions. Successful results 

from individual short-term research implementations usually fade overtime due to a lack of 

maintenance, in contrast to a proper system development process that has already been 

recognized as essentially participative (with farm managers) and cyclical (evolutionary 

versions).  

The overall conclusion for main issues involving the development of SSCM decision tools is 

that limited developments have been resilient to a minimum set of software engineering 
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requirements for the type of application. Software engineering requirements are understood as 

a set of techniques involving three basic system development dimensions: i) user requirement 

engineering (e.g. crop management process models); ii) platform independent and modular 

system design (e.g. abstraction of system components and behaviour); and iii) code 

development technology (e.g. IDE’s, API’s, open software). 

Little or no importance has been given to making proper use of system analysis and design 

techniques for system developments, communication protocols, semantic representations, and 

metadata documentation. While it is understood that the use of few fundamental concepts 

would greatly simplify system integration and modelling composability towards an easy to 

use tool box of scientifically sound analyses, also allowing farm managers to interact with 

simulation outcomes and to include their knowledge of their particular production system. 

Although commercial tools are already resilient with industrial software development 

standards, their solutions are still mostly based on a general purpose modelling formalism that 

can support specific standalone tools, not taking into account domain-specific knowledge and 

spatial analysis capabilities. 

In support of crop yield characterization and interpretation processes, the available software 

lacks minimum development standards that could sustain information flow. For strategic 

decision processes, the modelling of conceptual frameworks have so far disregarded to 

consider new Web service technologies dealing with dynamic interactions between 

heterogeneous and distributed data structures. Open computational developments would 

provide to individual end users a means to support particular reasoning for their needs for 

pragmatic management. Perhaps, the availability of such environments may still be dependent 

on further maturity in software methodological solutions to enable easier information 

interoperability and knowledge composability.  
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CChhaapptteerr  22  

MMeetthhooddss  ffoorr  ddeevveellooppmmeenntt  ooff  SSSSCCMM  ddeecciissiioonn  ttoooollss  

Summary 

The contemporary software literature shows that issues in system developments are many and 

often common to all fields of application, but appearing more critical in some areas of 

scientific developments, such as for agricultural research. This chapter complements the 

review in Section 1, with a review of system development aspects for decision support tools 

for PA. It briefly reports on a wide range of decision support applications closely related with 

differential management decision-making, including more recent Web related technologies. In 

addition, this review tries to identify present development standards and foresee potential 

pathways in software design which could improve the promptness and quality of tools directly 

available to farmers in support of decision-making processes in SSCM. 

Aspects of the evolution in system architectures are given in relation to open system 

developments, where new potential approaches are discussed for their contribution to a new 

generation of SSCM decision tools. Additional references on basic computational concepts 

are presented in Appendix 2. The main aspects of Object-Oriented (OO) and SOA 

approaches are introduced and suggested as milestones towards knowledge support systems 

for SSCM decisions. Findings are considered according to whether or not short comings could 

be attributed to issues in current system development standards. First, which aspects of 

existing tools could be attributed to system development issues? Second, how much 

adherence is there to current industry standards on open developments? Last, which 

requirements of PA DSS could be matched by the use of Web-based technologies? 

A technical survey on the implementation and the design aspects specific to PA DSS 

developments is conducted. While the response was limited, sufficient information is 

provided to characterize common patterns in the commercial solutions available for SSCM, 

where OOP and SOA are used during implementation phases regardless of relevant methods 

for Object-Oriented System Design (OOD). Future directions point to service-oriented and 

knowledge-based systems, but show little or no concerns with aspects of potential areas such 

as the semantic Web or ABM.  
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2.1 - Human-computer interactions 

Advances in human-computer interactions have been mostly characterized by an unbalanced 

evolution between hardware and software components (Baxter et al., 2006), many times 

referred to as the “software crisis” over decades (Dijkstra, 1972; Mangold, 1996; Baker, 

2006). Initial issues have been associated to software coding (Naur & Randell, 1969), 

systematic analysis and design methods (Dijkstra, 1972), requirement engineering and system 

engineering considerations (Impagliazzo, 2004). 

General software development issues have further influenced specific knowledge domains. 

Several authors have for long pointed out general failures involving cost, timely delivery and 

product quality in the development of scientific information systems (Sobrinho, 1992). The 

speed, security and quality standards already realized for transaction systems (e.g. internet 

banking, ATM), have hardly ever been matched by scientific implementations (Tian et al., 

2006; Wilson, 2006). 

Particular issues in research developments for agriculture (Sobrinho, 1992), natural resources 

(Strebel et al., 1994), and distributed resource models (Wright et al., 2000) are usually 

reported as a consequence of either weak problem definitions or complex mathematical 

computations. This type of inefficiency has been credited many times to method-less 

developments (Strebel et al., 1994; Cox, 2006). 

In agriculture, the usefulness of tools could be maximized with the adoption of basic system 

design and development methods. This approach could facilitate the upgrade and interchange 

of interdisciplinary models (Wright et al., 2000), assist intensive data integration (Kelly et al., 

2001; Lima et al., 2003), and enable proper spatial reasoning for PA tools (Cook & Bramley, 

2001). On farm decision support has been mostly focused on the prototyping of mechanistic 

models (McCown, 2002a; Papajorgji et al., 2004), usually resulting in a simulation tool of 

short-lasting usefulness (Walker, 2002; Russell & Norvig, 2003).  

Much of the up-coming PA technologies have been closely related to, or directly derived 

from, research agendas, often inheriting general aspects of poor software development as 

suggested by Martin (2000). The imbalance between system components seems to have 

stronger effects in multi-parametric applications such as land-use planning and farm 

management decision-making. Therefore, failures in agricultural DSS developments 

(Newman et al., 2000; Poluektov & Topaj, 2001; Walker, 2002; McCown, 2002; Stone & 

Hochman, 2004; Nguyen et al., 2007; Matthews et al., 2008) are likely to be not exclusive to 

this domain.  
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Research can potentially benefit from using system design methodologies and programming 

architectures that computer scientists have been developing over the past 30 years. Some 

applications have already shown positive returns, such as stochastic modelling of molecular 

networks (Priami & Quaglia, 2004), interoperability of biophysical and economic models 

(Antle & Stoorvogel, 2001); web-services for analysing and filtering yield monitor data 

(Murakami et al., 2007), and agent-base modelling of field-robots in grape harvesting 

(Argenon et al., 2006). Additional solutions are also expected from new interface prototyping 

concepts (Ramsin & Paige, 2008).  

Still, faster chips, bigger memory devices, and sophisticated algorithms haven’t been enough 

to consolidate computational science and provide affordable, accessible, and pragmatic 

development solutions. Challenges are still centred on well designed software solutions for 

knowledge acquisition and adaptive learning in decision support processes. Present 

approaches of open developments and cooperative architectures (Binstock, 2005; van Delden 

& Engelen, 2007; Tolk, 2006) reinforce that early requirements in software development 

(Naur & Randell, 1969; Brooks, 1987) have yet to be fulfilled (Binstock, 2005). 

Decision support systems are no exception to the way in which computer systems can be 

developed. Human-computer interactions are made through compiled, interpreted, or 

translated executable programs which are binary versions (software) of a physical system 

implementation (source code). This development stage translates the abstracted program 

functionality (system design) by means of formal languages (programming languages) in 

which systems are written. These programming languages translate natural-language-like 

source codes into binary executable programs. They are notational systems for computation 

encrypting human-readable into a machine-readable form (Louden, 1993). One way to 

classify programming languages using a scale of levels of human-computer interactions is 

suggested in Wood (2002), where a high-level language permits a communication that is 

closer to natural languages such as English or Portuguese. In contrast, low-level programming 

describes an operational control that is closer to the binary machine language (Figure 2.1). 

A software system is intrinsically complex from a number of aspects (Mangold, 1996; Cesare 

et al., 2007; Langr, 2008). Object-Oriented Programming proposes software developments as 

collections of self-contained "components".  The main concept is the object class which is a 

template from which actual objects can be created. It is a general tool that can be useful to 

model domain-specific problems ranging from system interaction and control protocols to 

agronomic processes and quantitative methods for data analysis and interpretation. 
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Figure 2.1: Levels of communication in human-computer interactions (after Wood, 2002). 

 

2.2 - Object-Oriented applied to PA 

The development of several applications closely related with SSCM decision support have for 

long shown the usefulness of the object-oriented concept in addressing farm management 

inputs and methods for crop production monitoring and simulations (Gauthier & Néel, 1996; 

Saraiva et al., 1998; McCauley, 1999; Acock et al., 1999).  

A direct contribution of this technology is the capability to incorporate legacy crop models to 

new developments, which offers interfaces that facilitate user interactions with quantitative 

crop simulations (Thorp et al., 2008). They introduce an application of precision agriculture 

for field management optimization that integrates field monitoring data with a DSS for 

agrotechnology transfer, namely DSSAT, (Hoogenboom et al., 1994). A previous OOP 

application reusing the same legacy system has coupled GIS and DSSAT functionalities, 

showing flexibility in the evolutionary reuse of software components. Other examples are 

given in: McCauley (1999) coupling a cotton expert system with GIS for spatially variable 

simulation outputs; Shaffer et al. (2000) with a general framework for whole-farm legacy 

simulation systems in Fortran and Basic. 
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Evolutionary development is another aspect illustrated with the work of Cox et al. (2006a), 

which re-engineers the Whopper Cropper (Nelson et al., 1999) from a crop decision aid to a 

discussion support system (Hayman, 2003). It has been integrated in sustainable agricultural 

research with a graphical interface facilitating diagnostic analyses from a database of pre-run 

APSIM simulations, the Agricultural Production System Simulator (Keating et al., 2003). 

Specific to SSCM, most of the developments characterize the stronger attention given to 

operationl processes over strategic decision processes, such as: cotton plant mapping (Plant & 

Kerby, 1995); field monitoring and operational management from multi-sensor data (Saraiva 

et al., 1998; Shrestha et al., 2003; Sung et al., 2004; Zhang et al., 2007a; Nash et al., 2007), 

also through open Web services (Murakami et al., 2007); an operating system for precise 

irrigation (Hans, 2003); image segmentation for multi-scale analysis mapping banana 

plantations variability (Johansen & Phinn, 2007, Lanthier et al., 2008); weed detection 

(Schulthess et al., 1996); control of liquid fertilizer applications (Ulson et al., 2002); 

automation of off-road equipment (Blackmore, 2002; Ampatzidis et al., 2006); erosion 

prediction (Ascough II et al., 2005). 

In relation to farm management, agricultural solutions are given for: modular crop simulation 

for potato growth (Hodges et al., 1992); agricultural systems (Van Evert & Campbell, 1994); 

farm agro-ecosystem knowledge management and decision support (Gauthier & Néel, 1996); 

generic user interface for on-farm crop simulations (Acock et al., 1999); field level GIS for 

integrated DSS (Wang & Tim, 2000); DSS for farm management (Recio et al., 2003; Ali et, 

al., 2004); a forage growth model (Andales et al., 2005); multiple-crop production simulation 

(Fleisher, 2001; Beck et al., 2002); international DSS for crop nutrient management (Li et al., 

2006). Finally, other agronomic related applications have focused on: greenhouse 

environmental control (Gauthier, 1992); plant competition dynamic simulation (Rossiter & 

Rija, 1999); a virtual plant growth morphogenetic simulation (Honghao & Fanlun, 2005); and 

analysis support class libraries for numerical estimates (Fila et al., 2003) and spatial pattern 

analysis and block interpolations (Runquist et al., 2001). 

2.3 - Web services supporting farm decision-making 

The access to, and processing of information of many types, and from distributed sources, led 

the search for technologies allowing applications to interoperate across programming 

languages, platforms, and operating systems. The World Wide Web Consortium (W3C) 

defines web services as “a software application identified by a URI, whose interfaces and 

bindings are capable of being defined, described, and discovered as eXtensible Markup 
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Language (XML) artefacts” (Bell et al., 2007). In simple terms, a service-oriented 

architecture is a collection of distributed services across the Internet that communicate with 

each other, sharing business logic, data and processes. In this cooperative architecture a 

service provider can also be a service consumer. A summary of concepts of this technology is 

presented in Appendix 2 for further references. 

PA related applications are grouped into 5 main areas to depict distinct aspects using SOA 

technology. The main areas are GIS, soil and climate, infrastructure for agriculture and 

biologic modeling, farm management and crop simulations, and SSCM. An overall analysis 

shows that a great part of the development effort has been directed to the design of meta-

infrastructures for applied research, focusing on the use and the extension of the XML into 

new application-specific layers. In modelling and design of infrastructures, significant 

attention is given to standards for open community communication networks, perhaps at a 

broad agribusiness scale.  

Another general fact is the greater number of reports of climate solutions, as compared to soil 

applications. In relation to farm management and crop simulations, there is a lack of spatial 

considerations that could offer appropriate within-field variability analysis. In GIS, most of 

the legacy development characterizes the use of proprietary solutions, only more recently 

adopting open-GIS standards for specific tools available at the field scale. Finally, site-

specific developments are limited to the storage, management and networking of continuously 

monitored data. They are conducted at a conceptual level, reflecting the lack of domain 

specific knowledge representing decision-making process flow. There are no reports on the 

specific development of web service methods used by most of the commercially available 

software claiming to support decisions in SSCM. Aiming to cover this information gap, these 

products are subject of the development survey form further discussed in Section 2.6. 

2.3.1 - GIS 

Contributions including the methods and standards of Web GIS services for land management 

and spatial reasoning can be useful when applied to integrated farm decision-making 

developments. Different services are offered (Table 2.1) for integration of agronomic 

knowledge with GIS (Bian et al., 2004) and spatial models (Nölle; 2004), including specific 

tools based on JavaBeans for visual model design and automatic Java code generation 

(Takatsuka & Gahegan, 2002). Table 2.1 is first sorted by the scale of application, from broad 

to fine resolutions, and then chronologically where SOA solutions come in last. 
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Table 2.1: Web GIS services related with agriculture. 

 

Open development standards are well applied and based on the Open Geospatial Consortium 

(OGC), also extending the use of the Geography Markup Language (GML; Cox et al., 2002) 

for the modelling, transport and storage of site-specific field information (Nash et al., 2007) 

using technologies like the Web Map Service (WMS), the Web Feature Service (WFS), the 

Web Coverage Service (WCS), and the Web Processing Service (WPS). These have been 

adopted as specifications of a knowledge-based management information system (Sorensen, 

2008) for the Web service suite proposed by the FutureFarm Consortium
©
 (Nash, 2007). 

Although experiments have shown the functionality of Web GIS services, Nash et al. (2007) 

have recognized among other authors (Egenhofer, 1993; Newman et al., 2000; Tu & 

Abdelguerfi, 2006) that the ability to efficiently handle Web-based geospatial data, as 

required for PA decision making, requires more specialized developments than current 

standards for business transactions.  

2.3.2 - Soil and climate 

Computational initiatives to improve the accuracy and the accessibility of weather data for 

agriculture have been promoted by several governments in the form of information portals on 

the Web. However, most of the reports do not characterize typical applications of SOA 

methods nor domain specific XML extensions. Solutions for soil and climate are presented in 

Table 2.2, and two main points can be observed. First, is a common integrated and 

Article Application Scale SOA Implementation 

Takatsuka & Gahegan (2004) 
Geo-scientific  

Design & Analysis 
Generic No Java; JavaBeans 

Nölle (2004) 
Agricultural 

Geo-service 
Generic Yes GML; WMS; WFS 

Aloisio et al. (1999) 
 Radar Imagery & 

 Web GSI 
Region No Java; XML; HTML 

Steward et al. (2001) 
Agribusiness 

Performance 
Region No 

ArcGIS; SDE; 

Oracle Spatial 

Button (2001) 
Yield Management 

Web GIS 
Region No GIS; Data Server 

Ellis & Searle (2001) 
Land Management 

DSS 
Region Yes 

Applets; DHTML; 

Open Map Server 

Bian et al. (2004) 
Agronomic Knowledge 

DSS 
Farm No ArcIMS; SDE; JSP 

Nash et al. (2007) 

Sorensen (2008) 
PA Web GIS Suite Field Yes 

GML; WMS; WFS; 

WCS; WPS 
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evolutionary development perspective between soil and climate Web services from different 

development groups in Australia (McGraw et al., 2001; Milford et al., 2001; NRMS, 2004), 

Brazil (Fileto et al., 2005; Evagelista et al., 2005; Otavian et al., 2005), and the USA (Steiner 

et al., 2005; Fernandez & Trolinger, 2007; Fernandez & Trolinger, 2007a). In particular they 

have targeted architectures for broad-scale solutions like the Australian Silo (Bureau of 

Metheorology, 2001) and the Brazilian Agritempo (Assad et al., 2004). The reason why there 

is no particular sorting criterion in this table, other than grouping some solutions is to 

illustrate this aspect. 

 

Table 2.2: Web soil and climate services related with agriculture. 

Article Application Scale Spatial SOA Implementation 

Gerakis & Baer (1999) Soil Texture Generic No No Pearl 

Arauco & Sommaruga 

(2004) 

Climate & 

Environmental 
Region No Yes XML; J2ME 

Melkonian & van Es 

(2007) 

N Management in 

Maze for Weather  
Field No No FTP; SQL; HTML 

McGraw et al. (2001) Soil Information Region No No Oracle Spatial 

Milford et al. (2001) Soil Web GIS Generic Yes Yes Java; Open GIS 

NRIMS (2004) 
Natural Resources  

Information 
Region No Yes 

Pelr; Java; XML; 

Open GIS Server 

Fileto et al. (2005) 
Soil & Crop 

Suitability 
Region No Yes Java; XML 

Evangelista et al. (2005) Climate GIS Server Region Yes Yes Java; JavaBeans 

Otavian et. al (2005) 
Soybean Rust 

Climate Risk  
Region No No 

Aplets; Servlets; 

XML; HTML 

Steiner et al. (2005) 
Climate Data for 

Crop Similation 
Region No Yes C#; SQL; ASP; XML 

Porter et al. (2005) 
Evapotranspiration 

(ETo) Network 
Region Yes Yes 

SQL; JavaScript; 

Perl; Java; JSP 

Yang et al. (2007a) 
ETo for Rice 

Development 
Region Yes No 

WheatherInfo; 

HTML; XML 

Yang et al. (2007b) 
Integrated 

Information: Soil 
Region Yes No HTML; XML 

Wilson et al. (2007) 
Integrated 

Information: Climate 
Region Yes No HTML; XML 

Fernandez & Trolinger 

(2007a) 

Irrigated Cotton 

Simulation 
Field No No 

WheatherInfo; 

CottonLogic; HTML 
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Implemented services have been improving fast, as the use of code reuse and modelling 

template techniques have increased in adoption. Results show a slow but increasing value of 

information to farmers through integration of dynamic climatic services (e.g. risk warnings, 

database and maps query, time series). Some applications have already provided over 6 years 

of direct assess of data interoperability to farmers (Fernandez & Trolinger, 2007a), others 

real-time climatic map interpolation and simulation of water limited yield (Evangelista, 2005), 

but none of the field level applications offer proper spatial capabilities for SSCM. Although, 

these other services could potentially make direct use of the soil information in McGraw et al. 

(2001), specific interface programs would need to be implemented for its proprietary data 

structure. A similar example can be made between Fileto et al. (2005), Evangelista et al. 

(2005), and Otavian et al. (2005), where the solution in Otavian et al. (2005) can not be used 

to improve Soybean suitability analysis in Fileto et al. (2005) via automatic binding. 

2.3.3 - Agriculture and biological modelling 

Priami & Quaglia (2004) report the extension of several mark-up languages in biosystem 

modelling, which mostly focus on domain specific declarations intended to facilitate the 

independent, distributed, and cooperative exchange of databases, algorithms, processes, and 

simulations. Developments such as a formal language defining the semantics of biological 

processes (Glossa; Kazic, 2000) and the System Biology Markup Language (SBML; Finney 

et al., 2000) (Table 2.3) support the information infrastructure necessary to describe 

biochemical networks (Hucka et al., 2003). 

This type of XML-extended language usage is intended to provide foundations for 

cooperative modelling networks (Lloyd et al., 2004), being also related with ontology 

mapping techniques, which are further discussed in Section 2.4. They are characterized in 

Table 2.3 with their underlined acronyms and sorted by scale of application. In this case, 

scale is divided into two blocks: agribusiness portals and generic modelling tools. 

Agribusiness applications are most related with public assess to data warehouses, with the 

agricultural XML Schema aiming at efficient and effective electronic communication 

throughout the grain and oilseed supply chain (AgXML
©
, 2006). A XML Schema is a typical 

markup document expressed in terms of constraints on the data structure and its content. 
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Table 2.3: Web service infrastructures for agronomic and biological modeling. 

Another contribution is the definition of a common modelling protocol based on UML for 

agricultural and environmental systems (Moore et al., 2007). This protocol includes the 

Simulation Description Markup Language (SDML) that also underlies the APSIM modelling 

suite (Keating et al., 2003). Moore et al. (2007) conclude that once models are developed in 

compliance with open common protocols, researchers can better respond to challenges in 

cooperative work. Finally, the FAO agronomic thesaurus (AGROVOC; Sini, 2006) is an 

important institutional support to Web service infrastructures, now evolving to a collaborative 

services concept for the ontological Web (Sini et al., 2008), further discussed in Section 2.4. 

2.3.4 - Farm management and crop simulation 

Research for this section reinforced the reuse of legacy systems via new ways to interface 

farmers with complex simulation and quantitative assessments (Hayman, 2003). Main crop-

Article Application Scale SOA Implementation 

Bostick et al. (2004) 
Crop Model Data 

Exchange Server 
Agribusiness No HTML; ASP; JSP 

Gingle et al. (2006) 
Cotton Diversity 

Database 
Agribusiness No HTML; ASP; JSP 

Bedggood & Sutton 

(2007) 

Grain Crop 

Variety Trials 
Agribusiness No 

HTML;  

SQL Server 

AgXML Org. (2006) 
Grain & Oilseed 

Information Network 
Agribusiness Yes XML; AgXML 

Sini (2006) 

Sini et al. (2008) 
Agricultural Thesaurus Agribusiness Yes 

PHP; JSP; XML; 

AGROVOC 

Ramachandran et al. 

(2004) 

Earth Science Metadata 

Structure 
Generic No 

XML; GML; 

ESML 

Murray-Rust (1995) 
Chemical Reaction 

Modeling 
Generic Yes XML; CML 

Proteometrics Inc. (1999) 
Macromolecular 

Structures 
Generic Yes XML; BioML 

Kazic (2000) Biosystem Modeling Generic Yes XML, Glossa 

Finney et al. (2000) System Biology Generic Yes XML; SBML 

Lloyd et al. (2004) 
Numeric Cellular 

Analysis & Simulation 
Generic Yes 

XML;  

MathML; CellML 

Pullen et al (2005) 
Composable Simulation 

Models 
Generic Yes XML; SOAP 

Moore et al. (2007) Modeling Protocol Generic Yes 
UML; XML; 

SDML 
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simulation based DSS (e.g. DSSAT; APSIM) have been extended in their practical use and 

understanding directly to agronomy advisors and farm communities. However, fewer 

adherences to SOA standards at field level (Table 2.4) would suggest a less cooperative 

development approach between extensions of the same parent system (e.g. solutions from 

Hargreaves & Hochman, 2004; Cox et al., 2006a; and Hunt et al., 2006a to APSIM). 

Another restrictive aspect for the integration between crop simulation and SSCM tools is the 

lack of spatial representation and reasoning in mechanistic models at field level. The majority 

of simulation services offering some degree of spatial reference are for region or farm scale, 

still mostly relying on proprietary software. Thysen et al. (2002) evaluate practical 

applications from Jansen et al. (1998, 2000) and Hensen et al. (2001), suggesting that the 

Pl@nteInfo
®
 solution shows the feasibility to build adaptive and real-time Web decision 

support. Legacy algorithms from the CROPGRO-Soybean simulator (Boote et al., 1989; 

Boote et al., 1997) have been re-used by Welch et al. (2002), considering the user 

participation in the proper use of OOP. Welch et al. (2002) suggest a easy-to-use field-level 

solution which is non-spatial, standalone and proprietary, which strongly contrasts with the 

majority of open development solutions shown in Table 2.4.  

Table 2.4: Web service for farm management and crop simulation. 

Article Application Scale Spatial SOA Implementation 

Jensen et al. (2000) 
Plant Protection 

Web DSS 
Region Yes No 

HTML; JavaScript; 

Perl; SAS 

Hansen et al. (2001) 
Pest Management in 

Potato  
Region No No 

C++; ASP; 

SAS Server 

Wharton et al. (2008) 
Pest Management in 

Potato 
Region Yes Yes Perl; PHP; XML 

Van Ouwerkerk (2004) Farm Web DSS Farm Yes No 
JavaScript; ASP; 

ArcGIS 

Welch et al. (2002) 
Soybean Crop 

Simulation 
Field No No Visual Basic; DSSAT 

Paz et al. (2004) 
Soybean Crop 

Simulation 
Field No No 

Visual Basic; ASP; 

DSSAT; HTML 

Hargreaves & 

Hochman (2004) 
Farm Management Field No No 

NetMeeting; APSIM; 

Soft Systems 

Cox et al. (2006a) 
Farm Management 

DSS 
Field No No APSIM;  C++ 

Hunt et al. (2006a) 
Farm Management 

DSS 
Field No No APSIM;  PHP; ASP 
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2.3.5 - Site-specific crop management 

Table 2.5 shows that in contrast to individual early adopters of open development methods 

(Saraiva, 1998; Lütticken, 2000), Web services addressing site-specific management are still 

pretty much at conceptual levels. An exception is given in Murakami et al. (2007) which 

presents an application of the Precision Agriculture Markup Language (PAML) for an online 

procedure embedding domain knowledge in analysis of yield monitor data (Mollin et al., 

2002).  

Murakami et al. (2007) is the result of an evolutionary development approach, as 

chronologically grouped in Table 2.5 (from Saraiva, 1998 to Murakami et al., 2007). A few 

commercial tools claim Web service capabilities, but technical documentation is not fully 

available. These have become the subject of a survey reported in Section 2.6. 

A strong point in the SSCM contributions is the apparent step-wise development providing 

formal XML extensions for PA information infrastructure (e.g. PAML and AgroXML). 

AgroXML (Nash, 2008) is developed specifically for the agricultural domain, using GML 

standards for high resolution spatial information. However, the small number of direct 

solutions for SSCM only addresses field monitoring processes, and don’t deal with 

quantitative assessment or conceptual design of decision-making processes. 

 

Table 2.5: Web service for site-specific crop management. 

 

  

Article Application Scale Spatial SOA Implementation 

Lütticken (2000) 
Farm Information 

Network 
Generic No No Java 

Saraiva (1998) 
Object Model for 

SSCM Data 
Field No No UML 

Blackmore et al. (2002) 
Behavioural 

Model of  
Field Yes No UML 

Murakami et al. (2002) 
Site-Specific  

Data Infrastructure 
Field Yes No 

UML; Java; 

XML; Mosaico 

Murakami et al. (2007) 
Yield Data 

Management 
Field Yes Yes 

Java; eMosaico;  

XML; PAML 

Nash (2007) 
Site-Specific 

Information Flow 
Field Yes Yes 

XML; GML; 

AgroXML 
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2.4 - Towards a semantic support for PA 

Over twenty years of evolution in the decentralized Agris System reference (Salokhe, 2004) 

has built the conceptual infrastructure for an Agricultural Ontology Service (AOS). This 

service, proposed by the FAO (Fisseha et al., 2001) to address the provision of a semantic 

search, now uses the existing knowledge contained in vocabulary and thesaurus systems 

(AGROVOC; Liang et al., 2006). 

The AOS aims to allow integrated development of domain-specific terminologies and 

concepts that may better support information management across the Web. Mapped 

vocabularies indexing the AOS are: i) the AGROVOC Thesaurus; ii) the Agris/Caris 

Classification Scheme (ASC); iii) the FAO Technical Knowledge Classification Scheme 

(TKCS); iv) the FAO TERM SUBJECTS; v) the Ag-Event Application for exchange event 

metadata; and iv) the Chinese Agricultural Thesaurus (CAT). It can be downloaded freely in 

several formats for non-commercial use, and it is used around the world for indexing and 

retrieving data from agricultural information systems. 

Specific agricultural ontology services are proposed for:  i) agribusiness metadata description 

(Fu et al., 2007) formalized by a Resource Description Framework (RDF) and supporting 

knowledge management for agricultural e-Commerce; ii) agricultural sustainability in the 

State of Amazonas, Brazil (Brilhante et al., 2006), using indicators of sustainable 

development described in XML and Web Ontology Language (OWL); and iii) plant ontology 

mapping (Goumopoulos et al., 2004) supporting collaborative work towards the automation 

of crop management and glass-house scenario simulation. Plant ontologies such as the 

PLANTS system and the Plant Ontology Consortium (POC) project are available for research 

application describing: i) botanical terms; ii) morphological and anatomical structures; iii) 

organ, tissue and cell types; and iv) plant growth and structural development stages. 

The uses of semantic GIS services, which are also relevant to PA, have been reported in 

several contributions. Venancio et al. (2006) describe the OntoCarta development relying on 

open-source public domain tools (e.g. Java, XML, GML) to build a semantic Web GIS 

resource using Protégé (Noy et al. 2002). OntoCarta helps map navigation and geo-object 

interoperability, being part of the ontological workflow proposed by Fileto (2003) to compose 

a semantic Web for the Brazilian agriculture (POESIA). In this framework, interpolated maps 

are automatically generated by interoperability between other resources re-used or 

implemented in the same framework, such as: machine learning (Weka; Witten & Frank, 
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2000), climate (Agritempo; Evangelista et al., 2005), soil (Agrissolos; Fileto et al., 2005), and 

soybean infestation (Otavian, 2005). 

Contributions making a combined use of XML and RDF to other specific GIS applications are 

reported by Fonseca et al. (2002), Córoles et al. (2003), and Bell et al. (2007). Buccella et al. 

(2008) provide a comprehensive survey of current approaches for ontology-driven GIS 

analyses and compare methods for ontology integration. They conclude that a series of 

considerations are still to be solved when mapping GIS ontologies. These considerations have 

also been reported for generic geo-services (Egenhofer, 1996; Newman et al., 2000; Tu & 

Abdelguerfi, 2006; Buccella et al., 2008), and site-specific investigations (Nash et al., 2007). 

They are now listed by the OGC as guide lines for the evolution of its open standards (e.g. 

GML, WMF, WFS).  

Although adding clear advantages for representing reasoning capabilities, other authors have 

raised additional questions (e.g. “How the quality of an ontology can be evaluated and 

validated?”; “How to determine its completeness?”; “Does it represent the real world or some 

specific view of it?”). These questions reveal the truly preliminary development stage of 

semantic Web technologies (Guarino & Welty, 2004; Buccella et al., 2008). 

In relation to semantic Web representations applied to SSCM, one has to rely on early efforts 

for metadata protocols of field intensive monitoring (Bramley & Williams, 2001; Abuzar et 

al., 2003). Although these contributions had for some time shown the importance of 

agricultural metadata models for PA, only recently have system related investigations been 

reported on the ontology mapping of site-specific monitoring processes (Arguenon et al., 

2006; Nash, 2007)  

2.5 - Other advanced tools facilitating direct access to farmers 

The use of intelligent agents is present in several reports of applied GIS domains. The 

evolution of the general methods and positive results of applied research should be motivation 

for more attention to these technologies as a potential means of offering facilitated user 

interfaces and semi-autonomic data analysis to support SSCM. The idea behind the use of this 

technology is not to offer a “smart black box” solution that would put the user rationale aside, 

but actually to facilitate farmers’ accessibility in the way that they could infer individual 

management knowledge and validate their decision-making. In this sense, autonomic pieces 

of software could transparently organize and process raw data, as well as to bring insights 

from complex simulation models and scientific knowledge. 
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This evolution of generic methods for development of intelligent software agents is well 

reported: intelligent decision support (Petrov & Stoyen, 2000); distributed model base 

management (Tolk & Pullen, 2003; Li & Peng, 2004); distributed grid simulation (Pullen et 

al., 2005); reconciling heterogeneous information assets (Lister et al., 2006); and autonomic 

computing (Huebscher & McCann, 2008). Extensive reviews on specific applications of these 

methods are given in Parker et al. (2001) for urban land-use; Evans (2007) and Buccella et al. 

(2008) for current agent approaches in spatial simulation; Brown & Xie (2006) for spatial 

dynamic modelling; and Heckbert & Smajgl (2005) for urban monitoring systems. 

The use of agents for GIS in urban, environment, and forestry studies are introduced in: 

Gimblett (2002) and Janssen (2005) with considerations in human-environment systems; 

Parker et al. (2001) and Berger (2001) with implementations in land resource use change and 

policy; Castle & Crooks (2006) with semantic Web GIS for geo-object simulations; Smajgl 

(2004) modelling the use of common-pool resources; Elliston et al. (2004) with a crop disease 

incursion management integrated with agricultural production and economy models; Golden 

et al. (2005) with ecological forecasting; and Cortés et al. (2000) and Thomson et al. (2007) 

with knowledge-based aids in forest disease and biodiversity management.  

Applications at a broad agribusiness scale have been reported at a more incipient level. Evans 

& Kelley (2004) simulate the distribution of land use preferences at household level and 

observe that individual preferences are weighted differently as a function of scale. Folorunso 

et al. (2006) focused on the impact of the E-commerce in agribusiness where agents help 

farmers with their transactions online. Other agents are also considered for structural changes 

in farm land and mediating factors of cooperation and collaboration between best individual 

strategies of farmers. Wada et al. (2007) use a dynamic agent model for shifting cultivation in 

Laos as a function of demand and supply of crops. In their approach, villages are treated as 

decision-making agents, in their own right, using a scale-sensitive procedure to validate the 

model across differing spatial resolutions. 

The use of agents in PA accounts for very few reports mostly related with operational 

requirements (Ribeiro et al., 2003; Blackmore et al., 2004; Blackmore et al., 2007) or 

conceptual architectures  for auto-steering and agricultural robot behaviours (Blackmore et 

al., 2002; Blackmore et al., 2004a; Gracía-Pérez et al., 2008). Agents are mostly recognized 

as dedicated processors (firmware) which are components within major mechatronic architectures 

(Blackmore et al., 2007). A formal use of the agents in association with ontology mapping for 

control of several agricultural robots is reported in Arguenon et al. (2006). Their work focused 
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in the cooperative behaviour of vineyards robots under different and synchronized tasks, 

concluding that optimal choices towards the development of harvesting systems can be 

identified and modelled using agents.  

2.6 - A survey on methods for development of SSCM decision tools 

The survey presented in this section aims to identify current implementation standards and 

evaluate potential pathways in software design that could improve the efficacy and drive the 

evolutionary development of PA software tools. It is not intended to be comprehensive in 

terms of software development techniques or extended to generic GIS tools. Questions are 

directed to current and emerging system approaches, with the aims: to compile a contact list 

of PA software developers; to summarize common patterns in the development of PA tools; 

and to identify trends in DSS architectures which can be applied in SSCM decision processes. 

2.6.1 - Previous surveys on PA decision support tools 

Several publications on software tools to support farm management have been reported in 

surveys on different aspects of farm mapping solutions and SSCM decision support. Ess et al. 

(1997) evaluated commercially-available software for grain yield mapping mostly related to a 

GIS perspective. One of the first comprehensive lists of software solutions for PA is 

introduced by Swayer et al. (1999). They compare the usefulness and practicality related to 

operational aspects of twenty-five (25) farm management tools involving GIS and 

econometric functionalities. They were evaluated on their capability to support decision 

processes in business management (e.g. finance, labour, machinery inventory, and production 

traceability), yield mapping, generic GIS, and agricultural applied GIS. An updated overview 

of farm mapping software is given in Fitzpatrick & Neale (2008), examining the range of 

available tools and functions that seem useful to assist landholders and natural resource 

managers. They suggest a decision matrix to assess primary producer needs and the ability of 

specific mapping tools to meet their needs and expectations. 

A significant improvement on software functionality and interactivity could be observed 

between early reports (Swayer et al., 1999) and recent reviews (Fitzpatrick & Neale, 2008). 

However, this relative evolution has not been reflected in technological adoption, nor has 

serious attention been given to new Web-based developments. 
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The report by Swayer et al. (1999) was considered relevant as a reference, because it 

considered indicators of decision support capabilities in the analysis. They have also 

evaluated functionalities for spatial data interoperability and customized management related 

to five overall decision processes, namely: economic analysis, fertilizer recommendation, lab 

links, fertilizer blending calculations, and prescription mapping. However, their survey is 

limited as related to system development and implementation architectures (e.g. OS 

compatibility, data format compatibility, interoperability, and open standards). Therefore, a 

new survey form (Section A2.5) has been developed on the basis of elementary system 

development questions, aiming for both an updated summary of existing decision support 

tools for SSCM processes and aspects of evolutionary development. 

2.6.2 - Existing PA DSS software 

Most of the agricultural software industry does not clearly report their associated development 

approaches and implementation techniques in the form of general information, mainly 

focusing on the marketing of functionalities. To diminish the information gap on adopted 

methodologies in system development, existing PA DSS have been identified, and a list of 35 

DSS developers was targeted with the survey form on methods for DSS developments 

(Section A2.6). This list did not intend to be comprehensive or conclusive, and it did not 

consider tools constrained to communication protocols, servo-mechanic data gathering 

control, or merely accounting spreadsheets. The list in Swayer et al. (1999) has been revised 

and extended with other references and agronomy related Web sites (AGanswers, 2005; Farm 

Chemicals, 2000; Payne, 2005; The Geospatial Resource Portal, 2005). 

2.6.3 - The survey form on methods for development of decision tools 

Gaining views on efforts and experience developing software applications in PA is important 

to evaluate present implementation standards and foresee potential pathways in software 

design. Results of the development survey form introduced in Appendix Section A2.6 are 

used in formulating a conceptual system framework to serve as a reference for near-future 

improvements in applied software (Chapter 3). It is not intended for any individual 

evaluation or comparative matrix to be compiled as result, as only summary information will 

be used for reference. The underlying motivation for this survey is to identify and report 

common requirements to promote better standards of software accessibility, modularity, 

composability and reverse engineering. It is expected that identifying these requirements 
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could help the development of more pragmatic tools for decision support in the adoption and 

operation of site-specific management, if they are matched with both commercial 

implementation and knowledge-based modelling research.  

2.6.4 - Summary of the survey responses 

Effective responses to the survey were limited, where 15 out of the 35 DSS developers argued 

to be excused from  the survey because of intellectual property policies in the company, no 

matter how generic the questions. No response at all was gained from 10 companies (30%) 

including some of the big technology providers, with an additional 7% (3 companies) not 

being located at addresses appearing on Web links. Individual responses are not to be 

published for respect of the privacy of the collaborators. 

Seven developers (20%) have completely fulfilled contributions from which very general, but 

clear results can be drawn. It answered questions such as: “Does PA speak object-oriented 

languages?” and “Do PA developments conform to present industry standards?”. All 

companies have reported the present adoption and the intention of future investments in OOP, 

SOA, and KBS. Although, little or no concerns has been shown in relation to potential areas 

like the Web semantics or ABM. 

In contrast with some of the current tendencies in the software industry (Appendix Tables 

A2.2 and A2.3), none of the developers supporting SSCM decision making are using Java 

Standard Development Kit (SDK) or other complementary Interactive Development 

Environments (IDE). They mostly use more traditional code standards (Appendix Section 

A2.1) such as C++ (4 out of 7) and Visual Basic (5 out of 7), even if Web standards appears to 

be increasing through investments in JavaScript and XML (2 out of 7) and particular attention 

to .NET solutions (Appendix Table A2.1 and Section A2.4). However, the adherence to 

object-oriented concepts appears to be a definitive standard for programming (OOP, 7 out of 

7) and design (OOD, 5 out of 7), and also the use of IDE tools (Appendix Section A2.3) 

applying the object concept (3 out of 7). 

In relation to user’s participation in development and the use of Web services to improve 

communication, the great majority have shown concerns and diverse means to communicate 

with users (6 out of 7), mostly focused on farmers (5 out of 7), research (4 out of 7), and 

agronomist/consultants and technology providers (3 out of 7). Active communication with 

users was reported by 4 companies through diverse means with an average of 3 companies for 

each type of media in question 4 of Section C of the survey (Appendix Section A2.5). 
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In contrast with all the other companies, one was completely reserved in terms of user 

interactions. They do not directly consider user requirements, rather relaying in extensive 

amounts of domain knowledge for development, only reacting to longstanding customers 

requirements. Although unusual in this survey, this practice does not necessary represent any 

by-passing of farmer’s knowledge, rather being understood here as an up-to-date engineering-

centred strategy that values the importance of knowledge intensive as a resource management 

as discussed in Section 1.4.3.  

Finally, answers from Sections B and C have further characterized that little interchange 

between technology providers exists (3 out of 7) potentially explaining frequent reports of 

poor data interoperability between complimentary software solutions. Results from question 8 

of Section B of the survey show that all the decision support modules that are expected to be 

required are in fact available (e.g. GIS, variogram analysis, economic analysis, prescription 

mapping, proximal sensing, image processing, and analysis of management zones), however 

they are not all offered in one software solution . The overall conclusion of the survey 

indicates trends in object-oriented design patterns and Web-based developments in support to 

site-specific differential management. 

2.7 - Concluding remarks 

An overview on the evolution of human-computer interactions is presented as a means to 

understand natural system limitations when developing supportive tools for site-specific 

management decision processes. The literature review is used to illustrate some of the 

methods and tools that have been successfully used so far and to investigate potential 

architectures that can match the requirements of DSS for SSCM. Current Web paradigms are 

introduced as milestones for the development of a new generation of knowledge support 

artefacts that can aid integrated, educative, and adaptive farm management. Their application 

to PA related knowledge domains is presented and results are discussed.  

The chronology in this rationale is to suggest that many of the existing limitations in the 

functionalities offered by SSCM decision support tools are related to historical system 

development issues, and not based on the failure of specific agricultural DSS solutions. Due 

to the extensive character of the evolution in software development, only introductory aspects 

relevant to the context of this study are discussed. It is suggested that more in-depth research 

in applied object-oriented architectures and Web services may contribute to the maturity and 

effectiveness of PA software developments. 
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The object approach has proved to persist as a basis for new open developments towards 

knowledge-based Web services for PA, but strong evidence is given to the importance of 

systematic adoption of basic design methods and interactive development technologies. 

Evolutionary software development techniques have shown successful applications in support 

of broad agricultural and whole-farm analysis, but have not been well investigated in relation 

to differential crop management decision processes. The majority of tools directly available to 

farmers has little adherence to basic modelling standards and implementation architectures 

which could facilitate code re-use, data interoperability, and distributed and cooperative 

services. 

Given PA DSS requirements (Robert et al., 2000; Lynch et al., 2000; Robinson, 2005; 

Matthews et al., 2008), it is suggested that the technological tool box matching the required 

functionality has only recently improved to the level of providing composable and integrated 

software solutions. Web-based technology has already shown potential application in farm-

level PA, but developments addressing the integration of site-specific data from multi-sensor 

platforms have also indicated that some aspects in this technology are yet to mature into 

scalable evolution.  

Results of the survey on methods for DSS developments (Section 2.6.4) have shown that 

object-oriented and service-oriented technologies have mostly used an integration of C
++

, IDE 

and .NET solutions as a current and interoperable approach, which offers a straight forward 

technical solution with an easier maintenance syntax structure. None of the currently available 

tools that could be classified as a decision support system can be characterized by a 

development which would consider the use of semantic mapping or autonomous agents for 

intensive knowledge management. These appear to be areas of greater attention in other 

disciplines also related with GIS and intensive data monitoring, such as for grid simulation in 

urban planning and conflict management or forestry management of population variability. It 

is shown that great attention is being given to the involvement of decision makers (i.e. farmer, 

agronomist/consultant, and researcher) using traditional and new functional modelling 

notations. The limited response has not compromised a representative result from the survey, 

even if it could not bring a comprehensive overview of current developments. Importantly, the 

identification of system development characteristics as reported in Section 2.6.4 is of great 

support to the better understanding of all phases involved in the development of more 

pragmatic tools supporting the adoption and operation of site-specific management. 
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CChhaapptteerr  33  

  

AA  ffrraammeewwoorrkk  ffoorr  aasssseessssiinngg  tthhee  ooppppoorrttuunniittyy  iinn  SSSSCCMM  

Summary 

The literature review in Part I has suggested that there is no practical software supporting crop 

management for within-field production variability. This systemic problem can be linked to 

two main causes; the lack of consideration of quantitative spatial assessments and the limited 

adherence to semantic system design methodologies. Simple quantitative methods for spatial 

and temporal assessments of crop variation need to be standardised by a large sample of 

intensively monitored data for different crop systems. Semantic design frameworks need to be 

abstracted and refined in order to support evolutionary open development approaches and 

provide the basis for integrated knowledge-based farm management. 

Although object-oriented and Web architectures can potentially improve this situation (and 

have been used for agriculture) limited experimentation has been conducted to match 

autonomic analysis of intensive field monitored data with knowledge on crop management 

processes. A stronger modelling approach is proposed in this work with a conceptual 

framework for understanding the domain of differential crop management decisions and 

presenting the parameters and methods directly influencing the opportunity for adoption of 

SSCM technology. 

Standard system design methods and tools, upon which object-oriented architectures can be 

created and reused, are applied according to common steps for the adoption of open 

component developments. The proposed framework design for methods supporting 

management decisions uses an innovative method of application of the Unified Modelling 

Language (UML), designing the quantitative assessment of crop variation and the associated 

opportunity for delineating potential management zones. ULM diagrams used were the Use-

case Diagram, the Object Class Diagram, and the Sequence Diagram. These conceptual 

descriptions are expected to serve as a platform independent template, allowing future 

refinements in the abstracting of objects, their state (attribute values), their behaviour 

(functional methods), and their relationships. The new method of application has offered easy 

means of visual design and object class documentation, and the resulting Platform 

Independent Model (PIM) can be further implemented using integrated development tools of 

any programming language or operational system. 
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3.1 - Introduction 

This chapter introduces an innovative method of application of the UML. A conceptual design 

is carried out using methods to support management decisions in the context of quantitative 

assessments of spatial aspects of within-field crop production variability. The UML models 

considered aim to characterize the main processes involved in decisions related to methods for 

differential crop management which are addressed in following research chapters. 

Quantitative methods are strongly suggested for supporting the control of sustainable 

agricultural systems (Day et al., 2008), and potentially enhancing the value of information for 

field management decisions when conceived through systemic approaches. This central role 

of system analysis in developing innovative farming systems has long been recognized by 

international groups; ICASA (Bouma and Jones, 2001) and EFITA (Gelb and Parker, 2006), 

promoting a better overall system understanding and re-use (Harsh, 2006) and for the design 

of integrated farm decision support tools (Öhlmer and Nott, 1979; Kozai and Hoshi, 1989; 

NRC, 1997; Ahuja et al., 2002; Öhlmer, 2006). 

The parsimony of analysis considering spatial and temporal aspects of within-field crop 

variation has also been suggested as a basic decision hypothesis for the opportunity of 

adoption of SSCM technology (McBratney and Whelan, 2001). However, the literature 

review in Chapters 1 & 2 have also shown that there is no simple and effective system 

solution fully supporting this central assessment in the adoption decision process. This lack of 

effective tools directly available to farmers has been strongly associated with a limited 

adoption of SSCM technology (McBratney et al., 2005). Many software products are still 

reflecting ideas in which the standalone coupling of geo-data layers, descriptive statistics, and 

accountability tables would suffice to support SSCM. Tools are lagging behind in analysis 

and interoperability features based on both quantitative methods (Rus et al., 1993; Bouma, 

2002) and/or on-farm action research (McCown, 2001a; Lynch and Grecor, 2004) approaches.  

Several decision-making frameworks have been suggested, used, and expanded within distinct 

knowledge domains (e.g. business management optimization, empirical analysis, knowledge 

engineering). A common point to all domains is the inherent complexity of decision 

processes, which are generally composed out of issues related to human, computational, 

systemic, and scale of management factors. Farm management decision support is no 

exception, whether considering aspects associated to operational crop production or to 

strategic adoption of PA. 



 71 

In SSCM, the task of developing effective tools is not easy and an evolutionary and 

participative development approach (Papajorgji, 2005), which is better matched by open 

software platform developments (Murakami et al., 2007), is required. Open and modular 

implementations are likely to address the multidisciplinary complexity involved in agronomic 

decisions (e.g. soil, climate, plant, infestations, environment, machinery, and adoption of new 

technology), and the incipient nature of SSCM research which still contains several decision 

knowledge gaps (Robert, 2000; McBratney and Whelan, 2001; McCown, 2002a; Dobermann 

et al., 2004; Robinson, 2005; Matthews et al., 2008). 

Although object-oriented and Web-based architectures have been considered in some SSCM 

related tools, there is an evident need for more systematic data handling and information 

management when abstracting components of agricultural DSS (Matthews et al., 2008). Most 

experimental projects focus on fast code implementation for expert model validation and give 

little or no attention to practical aspects of system design and interface prototyping (e.g. 

requirement engineering, code documentation, stakeholders’ participation, algorithm 

optimization). There is an great amount of research and operational data (e.g. crop simulation 

and yield monitor data) being produced in relative isolation and distinct formats, leading to 

duplicate efforts (McCown, 2002; Wilbanks and Boyle, 2006; White and van Evert, 2008). 

Model design can help to document and make expert abstractions and algorithms reusable, 

and supporting the integration of fragmented information assets. It enables shared analysis 

and the use of data from disparate sources (Bouma and Jones, 2001; Ahuja et al., 2005; 

Papajorgji, 2007; White and van Evert, 2008). Formal mechanisms for documenting and 

distributing research information, model abstraction, and system design also merit attention. 

They should meet the same rigor, quality, and reproducibility standards as imposed on 

scientific laboratorial methods (Wilson, 2006); in order to ensure accessibility and reuse. 

It is argued that the use of standard methodologies for platform independent designs and 

modeling notations is, at this point, more relevant to model incipient SSCM techniques. Due 

to present levels of underdeveloped knowledge about the role of individual factors and 

relationships for integrated SSCM decision processes, a full system implementation is likely 

to mislead proper abstraction of objects, compromising the degree of future re-use and class 

specialization. 

Design methodologies can now better support not only software implementations, but also the 

communication between topical expertise and business management requirements. 

Movements like Science Commons (Wilbanks and Boyle, 2006) also reinforces design 
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strategies and tools for faster and efficient scientific research in order to speed the translation 

of data into discovery, unlocking the value of mathematical analysis and domain-knowledge 

models that to be accessible and benefit more people. 

The standard use of a minimum set of design techniques in PA decision making could grant a 

better understanding of site-specific concepts, crop management processes and methods of 

analysis. This would facilitate translations between functional, managerial, and legacy 

knowledge. In the long run, information has more value when it is widely shared than when it 

is closely held (Thompsom and Sonka, 1997). This particular description is reflected in one of 

the first initiatives towards Web-based solutions for PA, the Cyberfarm management 

assistance (Sonka and Coaldrake, 1996). In contrast, current DSS are still segmented and 

isolated; overloading a farm manager with manual computer work and lacking integrated 

analytical capabilities. Wilbanks (2008) suggests that the Internet should be viewed as a 

platform for facilitating the free circulation and sharing of physical tools of science. 

Contemporary IT developments have reinforced the need for semantically rich models, in 

which Web services are now evolving to support advanced distributed simulations (Tolk, 

2006) using Grid computing (Tolk & Pullen, 2003; Numrich et al., 2004). A new generation 

of design methods offers techniques that can enable machine-based reasoning through 

semantic-enriched information and provide intelligent support to users (Omelayenko et al., 

2003). Still, limited attention to knowledge management technology is regarded to the applied 

academia (Tian et al., 2006), as observed in agronomic research. From CommonKADS 

(Breuker & van de Velde, 1994; Schreiber et al., 1999) to ontology (Corsar and Sleeman, 

2007) and Agents and Grid computing (Gil, 2006; Huebscher & McCann, 2008), different 

designs all point towards knowledge intensive assets as a new factor in production and 

business competitiveness. All these designs use UML models as a common basic concept.  

Accordingly, the use of a few basic diagrams from the UML method is further explored in 

Section 3.3, to address the assessment of spatial production variation. The new method of 

application has proved to facilitate conceptual abstractions and implementation designs, and 

to offer a standardized mean to document and preserve the modelling rationale underlying 

proposed solutions. It is also expected that this novel PA application of the Model 

Development Approach (MDA) can offer a conceptual framework design that will support 

prototype implementation and method experimentation within this research as well as a 

reference for near-future improvements in applied software (Section A3.2). 
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3.2 - The Unified Modelling Language (UML) 

Unified Modelling Language is a general visual design language for specifying and 

developing complex systems, especially large object-oriented projects. The purpose of the 

UML is to facilitate analysis and design of any type of application, providing a language-, 

methodology-, and platform-independent modelling notation. In formal definition, “UML is 

an evolutionary general-purpose, broadly applicable, tool-supported, and industry-

standardized modelling language for specifying, visualizing, constructing, and documenting 

the artefacts of a system-intensive development process” (Alhir, 2003). It is an industry 

standard for modelling that can be used to analyse and document systems of any type and 

combination of business logic, management process, hardware, operating system, 

programming language, or communication network. The language enables and promotes the 

capturing, communicating, and leveraging of knowledge of system development actors (users, 

domain specialists, analysts, and programmers) (Richards & Castillo, 2007). It has been 

applied to software and non-software systems and domain specific methods and processes, 

capturing architectural knowledge (semantics) and system flow (syntax) (Alhir, 2003). 

The UML tools, such as the NetBeans 6.1 used for the framework design in Section 3.3, have 

evolved so far that modelling is no longer simply an academic design exercise that is 

forgotten after the implementation phase starts. There are a large number of open source 

UML-based tools freely available (http://java-source.net/open-source/uml-modeling). One of 

the most common functionalities of these tools is automatic code generation. Originally meant 

for low level software engineering, most of them convert diagrams into executable object 

classes. Some of these integrated development tools offer reverse-engineering, analysing an 

existing source code to construct a set of UML diagrams. Although reverse engineering can 

be useful for understanding the vast undocumented code legacy, it does not fully provide 

information related to business organizational aspects (e.g. the Use-case, Component, 

Activity, and Collaboration Diagrams). Several Integrated Development Environments (IDE) 

can execute UML models in a way that deploys and validates the designed application. 

There are claims of overloading methodology and design constructs in the UML method 

(Richards & Castillo, 2007). However, the great deal of functionality encompassed in the 

language does not require nor dictate any type of minimum required diagram set or model 

documentation. Although involving a comprehensive set of techniques, the use of a limited set 

of UML diagrams is understood to suffice as a modelling methodology capable of abstracting 

SSCM decision processes. 
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3.2.1 - The UML applied 

The use of the UML is related to the general understanding that separating software design 

into multiple perspectives helps to improve the overall abstraction of a system, reducing 

complexity and supporting design decisions. It is understood that simplified design diagrams 

can be used to bridge gaps (e.g. how to integrate variability assessments in practical decision-

making processes) between business requirements (e.g. the assessment of within-field crop 

variation) and available technology (e.g. easily accessible SSCM decision support tools). 

In Australia, Moore et al. (2007) describes a common modelling protocol that is explicitly a 

hierarchical framework view for biophysical system simulations, and uses UML diagrams and 

XML schemes. This formal protocol specification (Moore et al., 2005) proposes PIM models 

using UML class diagrams that describe the relationship between components of modular 

simulation system developments such as the APSIM suite. The design specified in Moore et 

al. (2005) makes extensive use of UML class and sequence diagrams to describe a protocol of 

template structures and message synchronization between components of agricultural 

simulation models. Several sequence diagrams detail all the possible dynamic flows of events 

and messages during a simulation process. 

Other UML uses in agriculture can be generalized into two groups based on spatial analysis or 

process simulation models. For spatial reasoning, examples include a GIS for agro-

environmental management (Martin & Vigier, 2003), a spatial information system supporting 

common resource agricultural policy (Hasenohr & Pinet, 2006), the monitoring of fertilizer 

applications (Pinet et al., 2006), and the analysis of spatio-temporal patterns (Miralles, 2006). 

Mechanistic model applications are for dynamic plant growth simulation (Drouet & Pages, 

2001), soil-water balance model (Papajorgji & Shatar, 2004), and agricultural systems 

(Papajorgji & Pardalos, 2006).  

For SSCM, UML models have had limited investigation, and then mostly for continuous 

monitoring information infrastructure. The first set of models was introduced by Saraiva 

(1998) using the Use-case and Class Diagrams characterizing georeferenced data flows in the 

domain of PA. Blackmore et al. (2002) proposes a State Diagram designing behavioral 

transitions of autonomous tractors, a Class Diagram describing the structure of data flows and 

an hierarchical chart for inheritance of expert system functions for system control. Murakami 

et al. (2002) introduce a metamodel Package Diagram illustrating the modular composition of 

an infrastructure for field monitoring information systems. It is further detailed with class 

diagrams and information flow frameworks representing inheritance and interaction 
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relationships between objects abstracted for intensive field sampling. Murakami et al. (2007) 

follow their previous work, extending the use of a UML Class Diagram that represents the 

system structure for a specific XML scheme (PAML) for storage and management of field 

data for Web services. Nash et al. (2007) shows a design extending the XLM to the agroXML 

for a similar domain of field monitoring information flow. Their approach also extends the 

use of UML models in SSCM; introducing an Activity Diagram for data flows of a Use-case 

Diagram of site-specific soil sampling, where the information about concurrent processes and 

knowledge on the business workflow can represented. Common conclusions from these 

contributions are that UML diagrams depicting knowledge from integrated system 

requirements and business processes are affective and the need for formal investigation of the 

use of applied UML design methods is warranted. 

3.3 - A framework for supporting the adopting of SSCM technology 

In the context of system development methodologies, this research considers the application 

of design methods in conforming to recommendations of the Object Management Group 

(OMG). Results from the DSS development survey (Section 2.6.4) are considered in 

formulating a conceptual system framework, which is fundamental for knowledge 

representation of a multidisciplinary problem domain. Object classes and/or class interfaces 

from legacy UML designs for SSCM operational processes and crop simulation are also 

considered in system analysis (Saraiva et al., 1998; Blackmore et al., 2002; Papajorgji & 

Pardalos, 2006; Murakami et al., 2007; Nash et al., 2007). 

Open development tools were used for empirical prototyping of object classes and public 

API’s, aiming to evaluate source code management and automatic generation. Focused on 

Web compatibility, the Java standard development kit (J2SE) and the NetBeans integrated 

development environment (IDE) were used for project management, UML models, source 

code editing and compilation. It is expected that the use of these tools could support a 

semantic representation of conceptual and practical aspects of management processes with 

facilitated code generation.  

A conceptual framework level of development has been addressed as a basis for a modular 

and evolutionary development approach towards a knowledge-system suite to assist farm 

management. This framework design is centred on the generation of platform independent 

designs, where code generation and refinement is considered only as an academic prototype 

investigation to evaluate the use of interactive development environments. It is argued that the 
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use of standard methodologies to generate PIM is more relevant to present levels of the 

applied knowledge domain than comprehensive system coding development. A summary of 

UML notations for different elements and relationships used in this chapter are given 

respectively in Tables 3.1 & 3.2 according to standards given in Booch et al. (2006) and 

NetBeans IDE (2008). 

A Class Diagram is introduced as a metamodel describing several aspects influencing 

precision farming management processes (Figure 3.1). This metamodel framework 

summarize the wide range of knowledge domains considered for integrated farm management 

and highlight the strategic aspect of the opportunity for SSCM. Methods defined for object 

classes associated with the adoption of SSCM technology, the “SSCM Opportunity” and 

“Spatio-Temporal Reasoning” classes, are detailed on this top level system structure in order 

to introduce the kind of functionalities and relationships that will be further modelled in the 

next subsections using a Use-case Diagram, three Class Diagrams, and one Sequence 

Diagram. 

Table 3.1: UML diagram design elements with their notation and description. 
Elements Notation Description 

Use-case Class 
 Describes the system functionality using 

multiple scenarios of a specific flow of user 
transactions. 

Actor 

 
A coherent set of user roles during system 

interactions. 

Object Class 

 
Any regular object class abstracted in your 

system design. 

Utility Class 

 A utility class represents a type that has no 
instances, as a set of global variables and 

procedures that have been grouped in the form 
of a class declaration. 

Class Interface 

 
A stereotype of class offering only public 

operations, but no attributes or method bodies. 

Association Class 

 
Class information (e.g. attributes, operations) 
about a specific association shared by two 

elements. 

Assembly Connector 

 A connector between elements that provides 
the services that another element requires, 

which is defined from a required interface to a 
provided interface. 

* sources: Booch et al., 2006 and NetBeans, 2008 (www.netbeans.org). 
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Table 3.2: UML diagram design relationships with their notation and description. 

* sources: Booch et al., 2006 and NetBeans, 2008 (www.netbeans.org). 

A Use-case Diagram (Figure 3.2) is used to understand specific design refinements for 

strategic decision-making for SSCM, which conforms to the class metamodel. This diagram 

depicts the general context of within-field production variability assessment to aid the 

adoption of SSCM technology. This Use-case Diagram shows human-computer interactions 

between system actors and system functionalities that generalise the behavioral sequence of 

transactions for the system assessing the opportunity for technological adoption. Further 

decomposition of the integrated farm management classes into more specific model 

components is accomplished describing objects, their state (attribute values), their behaviour 

(functional methods), and their relationships (e.g. hierarchy, dependency, association, 

inheritance, generalization, refinement). Object classes are abstracted within a categorical 

hierarchy of system models, these being the assessment of the opportunity for SSCM adoption 

Relatioships Notation Description 

Association 

 

A general association relationship between two 
elements. 

Generalization 

 

The relationship between a subtype element and a 
supertype element in which a supertype must 

possess the same attributes of subtypes. 

Aggregation 

 

The relationship between two elements where 
one of these classes plays a more important role 

within the relationship. 

Composition 

 

An especial type of aggregation in which all child 
elements are dependent on the parent element. 

Usage 

A dependency in which one element (the client) 
requires the presence of another element (the 

supplier) for its correct functioning or 
implementation. 

Dependency 

The relationship between two elements whose 
definitions depend on one another in such a way 
that changes to one can result in changes to the 

other. 

Realize 

These relationships are used in two places: 
between interfaces and the classes that realize 

them, and between use-cases and the 
collaboration that realize them. 

Extend 

 

A dependency between Use-case and Object 
Classes in which the client extends the behavior 

of the source. 
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(Figure 3.3) by means of a variability index (Figure 3.4) that uses quantitative parameters 

from a spatial variography analysis (Figure 3.5). 

3.3.1 - The integrated farm management metamodel 

It is understood that a full range of methods and tools in system development and knowledge 

engineering can supply open and interoperable architectures better supporting the 

maintenance and interchange of concepts, models, modules, and source code. This suggests 

that tools directly available to farm managers from different knowledge domains could be 

integrated through a customizable suite of individual knowledge management solutions 

(Figure 3.1). A specific farmer would select and interact with different software artefacts 

according to his tacit knowledge on what information could support his specific farm context 

and individual decision processes. Information could be supplied by standardized repositories 

of validated scientific models, making use of interfaces capable of autonomic routine 

functionalities (e.g. georeferencing, data exploratory analysis, evaluation of geostatistical 

parameters, monitor data management) for facilitated interactions. A knowledge management 

system controlling individualised management databases could interact with information from 

past management practice performances (predictions and decisions vs. actual outcomes) that 

includes a particular set of quantitative indices, simulations, spatial analysis, time series, 

agronomic evaluation and prescription, economic-environmental assessments, and on-line 

semantic Web services.  

It has been shown that software engineering has recently evolved to a point where the supply 

enabling technology for the development of the suggested knowledge suite functionalities is 

also possible. Still, a closer parity between available decision support tools and practical 

requirements involved in SSCM decision processes is dependent on applied designs which 

can depict the way in which mathematical analysis of spatio-temporal and agronomic factors 

and relationships could be added to the flow of management decision processes.  

These designs are better implemented through standardized notations and integrated 

development technologies, which are already applied in SSCM for field monitoring workflow 

(Section 3.3.2). No research has been found on the application of those methodologies 

specific to decision processes for evaluating the opportunity for adoption of SSCM. 
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Figure 3.1: Conceptual metamodel of domains supporting integrated farm management. 

The metamodel of typical aspects influencing farm management (Figure 3.1) highlights the 

strategic adoption process which is detailed in the framework introduced. The framework 

design is based on the hypothesis that an opportunity index for SSCM assessed by simple 

quantitative measures for spatial crop variation, should consider geostatistical parameters and 

site-specific agronomic knowledge. 

3.3.2 - A preliminary design for decision support on the opportunity to SSCM 

Use-case diagram 

A Use-case Diagram is a scenario view modelling that encompasses a solution tailored to the 

user perspective. Use-case Diagrams depict the functionality of a system using Actors and 

Use-cases. Actors are external to a system and represent roles for "users" of a system. Use-

cases are interactions or dialogs between a system and actors, including the messages 

exchanged and the actions performed by the system. Use-case classes are used to model and 

represent units of functionality or services provided by a system to users, being denoted as 

ellipses. 
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Figure 3.2 shows a system model for knowledge support in differential crop management 

decisions. It considers a farm manager actor, a system actor for quantitative characterization 

of the spatial-temporal variability, and a knowledge management actor. The farm manager 

actor (Farmer) is a decision-maker user who has to ensure an optimal crop-season 

management given measures of within-field variability provided by the system. Strategic 

decisions regarding the potential for within-field management zones are undertaken by the 

farm manager actor based upon analysis of variability indices for the opportunity for adoption 

of SSCM technology: the Assess Crop Variation Use-case Class. Final decisions, their 

associated indices and predictions, and practical economic and ecologic outcomes are to be 

stored in a knowledge management actor, which offers access to historic management 

information and analysis assets. This abstract actor (Knowledge Support Suite) would also 

implement self-learning algorithms supporting knowledge extraction from autonomic mining 

of field and crop intensive monitoring datasets. Additional knowledge management 

functionality could facilitate future decision reasoning by considering historical decisions and 

associated outcomes, although these are not further detailed in this framework.  

 

Figure 3.2: Use-case diagram for actors assessing and implementing the adoption of 
technologies for site-specific crop management (SSCM). 
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The other Use-case Classes, Optimize Management Units and Define Best Practices, describe 

functionalities relating to an optimal operational plan for efficient farm management. The 

relationships between Actors and Use-case Classes define user actions (e.g. Efficient 

Management, Adoption of SSCM) and the realization outcomes (e.g. Strategic Plan, 

Operational Plan). Use-case relationships have been defined through functional interactions 

(e.g. <<usage>>, <<extend>>) associated with the crop variation analysis (Assess Crop 

Variability) as the primary relevant evaluation to further consider the delineation of spatial 

units for best differential management practices. The <<extend>> relationship implies that a 

condition must be satisfied in order to consider the extended Use-case Class, hypothesizing 

that the best differential management operational plan is dependent on the opportunity of 

optimizing within-field manageable units. The primary functionality of assessing spatio-

temporal crop variation is further investigated by subsequent Class Diagram models, which 

are introduced in a hierarchical order from generalized to more specific components. 

Class diagrams 

The Class Diagram shown in Figure 3.3 basically introduces the overall system structure for 

evaluating the opportunity for the adoption of SSCM, as related to the Assess Crop Variation 

Use-case Class. Two other Class Diagrams (Figures 3.4 and 3.5) further depict more detailed 

abstractions of class components for executing the same Use-case functionality.  

In Figure 3.3, a top level Class Diagram introduces seven (7) object classes and their 

relationships (Site-Specific Farm Management, Field, Crop, Crop-Season, Management 

Zones, SSCM Opportunity, and Spatio-Temporal Variability). This type of structural design is 

associated with entity-relationship models for database structures. Object classes are 

represented by rectangular containers of attributes and operations. Attributes store values of 

object characteristics and operations are functional or behavioural methods of a class that can 

be used by other object classes through message passing events conforming to different class 

relationships. Relationships are denoted by different line styles (solid or dashed) and line 

terminators (e.g. arrowheads, hollow arrow-head, diamond hollow arrow-head) according to 

the way in which a class participates and communicates with other classes (e.g. association, 

composition, aggregation, inheritance, generalization).  
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Figure 3.3: Class diagram of object classes and their relationships for evaluating the 
opportunity for adoption of SSCM. 

 

The SSCM Opportunity class is the central abstraction in this diagram. It refers to decision-

making processes in a Site-Specific Farm Management class for an operational Field that 

grows a Crop generating a Crop-Season production. Field and Crop-Season classes establish 

a composition (“has a”) relationship (bold diamond arrowhead notation) with the Spatio-

Temporal Variability class, where soil and crop production have some level of variation along 

the geographic extent. The Spatio-Temporal Variability class supplies index benchmarks for 

the SSCM Opportunity class from outcomes of variability assessment methods which are 

detailed in the class diagram for crop variability production indices (Figure 3.4). The SSCM 

Opportunity class has an aggregation relationship (hollow diamond arrowhead notation) with 

the Spatio-Temporal Variability and Management Zones classes, which denotes that this class 

is of higher importance and uses return values from message calls to the aggregated classes. 
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It is also suggested though a dependency relationship that the class Management Zones 

requires methods from the Spatio-Temporal Variability class in order to aggregate spatial 

optimization aspects for the SSCM Opportunity methods of analysis. However more specific 

functionalities and class associations of the Management Zones class are not detailed in this 

framework. 

The class diagram shown in Figure 3.4 details the object classes and methods that are related 

with the Spatio-Temporal Variability class for the quantitative assessment of field variability 

indices. Additional classes in this diagram are Continuous Monitoring Data, Variography, 

Soil Eca Variation, Vegetation Index Variation, and Yield Variation. 

Figure 3.4: Class diagram of object classes and their relationships for assessment of 
within-field variability indices. 
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The central class in this diagram, the Spatio-Temporal Variability defines methods to quantify 

the variance in the Continuous Monitoring Data class using parameters returned from the 

variogram methods defined in the Variography class. These variogram methods are detailed 

in the class diagram for the computation of variogram parameters (Figure 3.5). Operational 

aspects related to machinery specifications for differential treatments, which are encapsulated 

in the Variable Rate Treatment abstraction, are also used by methods in the Spatio-Temporal 

Variability class. An inheritance relationship (“is a”) denotes (hollow arrow-head) a 

generalization connection between the Continuous Monitoring Data class and the Soil Eca 

Variation, Vegetation Index Variation, and Yield Variation classes. 

It suggests that generalized methods describing the parent class are specialized within the 

child classes in order to consider specific characteristics for different production monitoring 

sensors, which are used in different periods of the crop-season (Pre-Season, In-Season, and 

Post-season relationships). 

 

Figure 3.5: Class diagram of object classes and their relationships for variogram analysis 
and parameterization of field variability indices. 
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The Variography class is the central abstraction in the class diagram in Figure 3.5, which 

introduces two new classes: the Empirical Variogram and the Theoretical Model. This class 

diagram depicts standard procedures of variogram analysis. Three types of theoretical 

variogram models illustrate the inheritance classes which provide generic variogram 

algorithms to the parent Variography class. Specific correlogram functions relative to each 

model are defined for the Stable, Exponential, and Spherical classes returning different 

variogram parameters for the getBestFit( ) method when selecting the best variogram model 

to be used in other Variography class methods. 

Sequence diagram 

Another design perspective is to represent the process in which an object class communicates 

with other classes through a time sequence diagram. The sequence diagram shows the 

messages passing between objects according to the order in which they are created to allow 

process flow. Message passing between objects is used to invoke a method or require data. 

The sequence diagram in Figure 3.6 shows the process of quantitative assessment of within-

field crop variation, illustrating a process that requires the communication between objects 

from different levels of abstraction (Figures 3.3, 3.4, and 3.5). Objects are instantiations with 

7 object classes, where a Farmer actor selects a field on his farm to consider the adoption of 

SSCM. The system returns messages with numerical parameters for a benchmark analysis, 

such as Yield Variability Index, Mean Yield Variability Index, and Field Rank for the adoption 

opportunity. A spatio-temporal variability analysis requires clean yield datasets from a 

database of continuously monitored yield data and data distribution from numerical analysis 

(e.g. getMeanYield, getMeanCVa, and getMeanYieldIndex). The spatio-temporal variability 

analysis considers the execution of methods within its own Spatio-Temporal Variability 

object class, which are depicted by self-message passing (e.g. getArealCoefVariation, 

getMagnitudeOfVariation, and getSpatStrucOfVariation). Other interactions for the spatio-

temporal variability analysis are creating instances of the Variography class in order to obtain 

returning variogram parameters from getBestFit, getFieldMaxLag, getCorrelatedDistance. 
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3.4 - Discussions and final remarks 

It is suggested that little support for evaluating the opportunity for PA is directly 

available to farmers. Current DSS overload a farmer with computer work, lack spatial 

reasoning for quantitative assessments, and do not provide integrated analysis capabilities 

which couple scientific methods and actual farm business processes. 

A platform independent design has been introduced using a new method of application of 

the UML for a framework of decision support for adoption of SSCM technology. This 

preliminary design has focused on specific aspect on the assessment of within-field 

variability, suggesting methods within an integrated farm management metamodel. 

It is expected that this model can be broadly used or extended as a template either for 

design or code implementation, since it is developed using an evolutionary, general-

purpose, broadly applicable, tool-supported, and standardized modelling architecture. The 

reuse of this design to support the development of SSCM tools will also enable the 

realization of benefits associated with this modelling technology. 

The structure and the sequence of transactions performed by functionalities of the Assess 

Crop Variation use-case are depicted through class and sequence diagrams. This 

conceptual framework supports the quantitative assessment of the production spatial 

variability based on variogram parameters. The interaction of object classes from the 

Optimize Management Units use-case are also presented at the top level class diagram 

(Figure 3.3), but the specific structure of this system functionality is not further detailed. 

Several object classes and their relationships have been abstracted into three levels of 

structural detail, being centred in the SSCM Opportunity (Figure 3.3), Spatio-Temporal 

Variability (Figure 3.4), and Variography (Figure 3.3) classes. 

It is understood that the framework design presented describes structural and functional 

decompositions of the quantitative assessment of the spatial within-field variation. 

Although introduced as stand alone structures, object class components abstracted in this 

design investigation are to be conceptualized as part of a broad and integrated knowledge 

management suite (Figure 3.1), for which UML models are standard basis of more 

specific knowledge engineering projects. However, it is argued that knowledge gaps on 

the definition of agronomic methods and their integration within practical management 
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processes may still be limiting the comprehensive use of knowledge management 

methods. It is believed that a basic conceptual design gap has been properly addressed 

with the proposed framework, and further issues in the actual quantitative spatial 

assessments and farm management decision processes are respectively addressed in 

following research Chapters 4-7. 

The use of UML diagrams by means of visual and interactive design and development 

tool (such as the Java NetBeans IDE here used) has proved to favour a free and open 

development. It is intuitive to use as design tool and effective during experimental 

prototyping and code reengineering. Still, some class methods are specific to the 

application knowledge domain and need to be implemented through expert algorithms. 

Source codes have been prototyped and are introduced in Appendix 1 respectively using: 

i) Java and Splus© script for the “getArealCoef”, “getMagnitudeOfVariation”, and 

“getSpatStructOfVariation” methods defined in the “Spatio-Temporal Variability” 

object class (Figures 3.4 and 3.6); and ii) Definiens Developer 7© process trees for the 

“fuzzyClustering”, “fuzzyClustGrow”, and “compositeSegmentation” methods defined 

in the “Management Zones” object class (Figures 3.3). 

It is observed that some of the abstracted class methods depicted during design (i.e. 

object classes in the Variography Class Diagram, Figure 3.5) have been previously 

implemented through open development initiatives and are available for download (e.g. 

degree.org – coordinate transformation and map projections, iamg.org – multivariate 

geostatistics, SourceForge.net – data mining and clustering). These could potentially be 

imported and reused in code implementations of the proposed conceptual design, but 

require a higher level of programming skills.  

The new method of application has proved to facilitate abstractions and implementation 

designs, offering means of system documentation, automatic code generation and to 

preserve the rationale of the domain-specific methodological solution. The overall UML 

framework introduced represents a conceptual software structure, which is expected to 

offer a sole and common repository for numeric algorithms and agronomic rationale 

presented in following research chapters. 
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Summary  

The research in this chapter targets the support of strategic investments in SSCM. It aims at 

the development of methods to be implemented as a module of the DSS conceptual 

framework proposed in Section 3.3 (Figure 3.4). Questions investigated here are of relevance 

for decisions concerning the characterization of within-field variability. The basic idea is that 

a numerical index, rendering the degree of management-responsive crop variability, could 

provide a simple ranking mechanism to identify fields of greater potential for further 

investment in differential management. The method addresses the quantification of the 

magnitude and the spatial structure of yield variation as components of an opportunity index 

for the adoption of SSCM technologies. Results are standardized over ten years of yield 

monitor data from three grain grower groups from distinct agronomic regions in Australia. A 

preliminary approach based on variogram parameters has been revised, and new methods 

proposed for improved simplicity, functionality and accuracy. The magnitude of variation is 

calculated using the average field variance and an areal coefficient of variation. The spatial 

structure is calculated using a maximum length of autocorrelated variation relative to the 

ability of variable-rate machinery to react. The new method has proven to be more flexible 

and robust when applied to both stationary and non-stationary yield distributions. 
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4.1 - Introduction 

The stepwise adoption of SSCM technologies is, in many aspects, dependent on the degree of 

variation observed in production. As a measuring tool, yield monitors have been a leading 

driver in SSCM technological adoption and likely to show that production differences 

commonly exist within a crop field and over seasons. In fact, the visual analysis of 

productivity maps and the use of georeferenced overlays have confirmed the spatial 

occurrence of variation in crop yield and pointed to some key influencing factors. 

As a decision tool, the purpose of gathering yield monitor data is to provide the basic input for 

logic pathways in differential management. It has been considered decisive in supporting 

operational improvements (Dillon et al., 2007) and short- and long-term management 

strategies (Ping & Dobermann, 2005), being of particular importance to the underlying 

economics as a parameter easily translated into money metrics (Griffin et al., 2004).  

However, the additional monitoring and mapping activities have not pragmatically supported 

farmers in identifying better field management options. From growers’ perspectives, over a 

decade of intensive yield mapping has not fulfilled the potential to manage variability 

(Jochinke et al., 2006), and there is limited well-documented evidences of PA pay off 

associated to yield monitoring investments (Lambert & Lowenberg-DeBoer, 2000, Whelan, 

2008). As a result, the motivation for yield data gathering could be now under threat. 

To date, few studies have been conducted to quantitatively characterize yield variability as an 

indicator of the opportunity for SSCM. PA research has been mostly focused on different 

methods for better understanding causes of field production variability. Many techniques 

aimed to identify and optimize the main contributing factors by addressing the covariance 

analysis between crop responses and major data layers (Timlin et al., 1998; Cambardella & 

Larken, 1999; Kravchenko & Bullock, 2002; Eghball et al., 2003; Zeleke & Cheng Si, 2004; 

Iqbal et al., 2005; Kravchenko et al., 2005; Miao et al., 2006). This cause-effect approach 

bypasses a summary of nested processes provided by yield variograms, leaving behind the 

establishment of standard measurement procedures that could quantify the spatial distribution 

description (Pringle et al., 2003; Taylor et al., 2005). 

This lack of standard measures for yield variability could have been a result of limited data 

availability at the initial phases of PA adoption, when single yield maps can be useful to 

farmers identifying causes of variation from a previous crop season but of limited value for 

strategic decisions classifying SSCM adoption suitability (Dobermann et al., 2003). 
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Although the PA adoption process is subject to a large number of variables, it is known that 

progress has to be made in the simplicity of methods used to translate monitored data into 

meaningful information. Crop production systems in Australia are generally characterized by 

hot climates, scarce rainfall and economic constraints that favour lower-input investments. 

Therefore, cost-effective tools to quantify crop variability in a manner that will help to 

identify fields that would justify further investments in differential management are still 

missing (Whelan & McBratney, 2000; Robertson & Brennan, 2006). 

In this context, investigation of a simple index rendering the degree of within-field 

management-responsive yield variability seems warranted. Once standardized by the available 

data, such an index could also serve to establish different thresholds of adoption opportunity, 

made specific to different agronomic regions and management systems. It could also provide 

a simple ranking mechanism for farm investment planning. The rationale for this investigation 

is to identify the areas of a farm where the cost of gathering further site-specific data is likely 

to be best matched by future production improvement. It is suggested that yield variability can 

be characterized via the two components of magnitude and spatial distribution.  

A numeric index is suitable for decision problems directly related to PA adoption questions 

like “Should I stay with uniform management; or should I go for SSCM?” At early phases in 

the adoption process, the proposed index could contribute to the justification (or not) of 

further investments in differential treatment. As a long-term decision tool, it could aid spatial 

and temporal management plans that would be cost effective. 

Motivation to use the theory of regionalized variables is found in the inconclusive results 

from other yield variance analysis such as fractal (Eghball et al., 1999), temporal standard 

deviations (Taylor et al., 2003), multiple discriminant (Jaynes et al., 2003), and multi-fractal 

(Zeleke & Cheng Si, 2004). It addresses the lack of spatial parameters in establishing 

productivity patterns, as seen in methods based on purely numeric statistics. 

Another relevant point for establishing a numeric index is the reliability of input yield data. 

For some time, literature has been extensively reporting systematic and random artefacts in 

yield monitor data (Nolan et al., 1996; Arslan & Colvin, 2002; Ping & Dobermann, 2005) and 

consequent remedial correction algorithms (Blackmore & Moore, 1999; Whelan & 

McBratney, 2000a, Beck et al., 2001; Molin & Menegatti, 2002). However, only recently 

more effective and pragmatic tools have been provided for Exploratory Data Analysis (EDA) 

and clean-up of operational and sensor related problems in yield monitoring, in the form of 

freeware (Sudduth & Drummond, 2007) and web services (Murakami et al., 2007). 
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4.2 - Quantifying yield variability with Geostatistics 

4.2.1 - Geostatistical analysis 

Spatial autocorrelation analysis of the variation present in georeferenced yield monitor data is 

a key to characterizing and understanding patterns when allocating inputs for the next crop 

season. The semi-variogram is central to geostatistical representation of spatially correlated 

data (Goovaerts, 1997). It permits the quantitative characterization of variation for the 

understanding and assessment of spatial patterns in yield variability.  

As variography is a core component of methods considered in this chapter, which is briefly 

introduced in this section. More comprehensive literature on the variogram models considered 

here is available for further detailed reference (McBratney & Webster, 1986; Schlather, 2001; 

Geovariances, 2005; Emery & Lantuéjoul, 2006). 

Although the analysis of anisotropy is relevant to variability studies, no directional aspect in 

yield variability has been considered in order to maintain the proposed simplicity of methods. 

This simplification has found support in McBratney et al. (2002) who noted that yield 

anisotropy may be imposed by a more intense yield sampling in the harvest direction. In 

agreement with that, a latter work from McCullagh & Clifford (2006) has presented clear 

evidences of anisotropy within the harvest orientation to be related with the unequal spacing 

between rows and columns, when empirically studying conformal invariance to determine the 

rate of decay of spatial correlations of crop yields. Additionally, Clifford et al. (2006) 

concluded that distinction between anisotropy and convolution properties of yield monitor 

data are hard to make, as well as the degree and causes of anisotropy. 

4.2.2 - Covariance functions 

When applied to geostatistics, the covariance is a positive-definite function that characterizes 

the correlation between two stationary random variables Z1 (u) and Z2 (u + h), hence is a 

function of two locations over a pair separation distance (h) denominated “lag”. In this 

context, available covariance models are the core functions modelling the spatial dependency 

of a single variable Z1 (u) and Z1 (u + h), when fitting theoretical variogram models. 

Therefore, the link between the variogram and the variance is here recalled (Equation 1), 

where the variance ( ( )hγ ) is calculated for the smallest possible increment: 

( ) (0) ( )h C C hγ = −  (1) 
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For comprehensive information, an extensive list of covariance functions is giving by Emery 

& Lantuéjoul (2006) and  Geovariances (2005), including descriptions of general equations, 

suitable applications, valid polynomial dimensions, parameter constrains, and graphs of the 

function shape given for changes in parameter values. 

Relative to the covariance function is the correlogram (ρ(h)) which is used in the variogram 

calculation, being subtracted from the maximum standard covariance value set to 1. The 

models considered in the final Yieldex (Yi) method are introduced by their respective 

correlograms in Table 4.1, which are further used in theoretical model fitting. Associated 

with the concept of incrementation, the integral scale in Russo & Bresler (1981) introduces a 

method for the computation of the variance as the area of correlation. As further detailed in 

Section 4.4, this method has been replaced by a simple computation of the “practical range” 

(also denominated as “equivalent range”) which directly relates the lag size with the 

correlation range of the theoretical model (a1).  

Table 4.1: Correlogram models and range coefficients used in the Yi computation. 

Covariance 

Function 

Correlogram 

[ ρ(h) ] 

Range Coefficient 
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4.2.3 - Empirical variogram and theoretical variogram model fitting 

This relation is defined by an integral range parameter that is linked to the distance parameter 

of the basic covariance function (correlation range) and also affects the horizontal axis by 

normalizing lag distances; hence the denomination of  scale factor ( SF = a1 / δ ). Therefore, 

the total variance parameters can be used to establish a practical dimension of correlation. 

This practical range (R) became a central idea for best fit selection for the Yi method and it is 

calculated as the correlation range (a1) times the coefficient in the scale factor of the 

correlation function (R = δ × a1 ). To facilitate the understanding and computation of the 

practical range, the range coefficient (δ) is systematically introduced below with the table of 

correlograms from covariance functions relevant to Yi computations (Table 4. 1). 

The variogram shape of a stationary process is predictable, and its attributes can be recorded 

and used later in model fitting. The empirical, or experimental, variogram is a plot of 

variances versus distances between ordered pairs. It is estimated by averaging variances from 

all pairs of observations within a giving pair separation distance (“lag”; h). This classic 

geostatistical algorithm has been previously detailed and discussed by several authors 

(Lantuejoul, 2002) and is represented as in Equation 2.  

( ) ( ) ( )
( )

2

1

1
ˆ

( )

N h

i i

i

h z x z x h
N h

γ
=

= − +  ∑  (2) 

Typical variogram behaviour shows an inflection point at which the variogram flattens. It is 

denoted as the “sill” (C1) and is theoretically equal to the “pure” correlated variance in the 

data set. The distance at which the sill is reached is called the “correlation range or scale” (a1) 

and defines the distances over which there is a predictable relationship in variance. Beyond 

the sill the data is no longer correlated, and no relationship of variability can be defined. The 

“nugget effect” (C0) occurs when the variogram curve intersects the y-axis above the origin, 

suggesting the presence of random or uncorrelated “noise” at all distances. It is often the 

result of either sampling problems or occurrence of a variability process at smaller scales than 

the sampling interval. The theoretical variogram model fitting uses the attributes from the 

empirical variogram to perform a regressive approximation of theoretical covariance 

functions. The general fitting parameters are: the “pure” variance of the data (C1); the 

correlogram (ρ(h)); and the random or uncorrelated noise (C0), as shown in Equation 3. 

( ) ( )0 1
1h C C hγ ρ= + −    (3) 
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The use of a non-linear curve fitting procedure in VESPER (Whelan et al., 2001) applies the 

Levenberg-Marquardt (LM) method for weighted least squares regressions (Levenberg, 1944; 

Marquardt, 1963). Vesper is a shareware computer program available for download at the 

ACPA (www.usyd.edu.au/su/agric/acpa), which is a FORTRAN code for variogram 

estimation and spatial prediction with error. 

4.3 - The preliminary Opportunity Index (Oi) for the adoption of SSCM 

4.3.1 - Oi description 

To address the lack of field variability measures, Pringle et al. (2003) provide a semi-

automatically computable Opportunity Index (Oi), assessing manageable within-field yield 

variation. The approach considers the opportunity of adopting SSCM technology as a function 

of the variability observed in production of preceding crop seasons and the economic-

environmental benefit relative to uniform management. The variability is characterized by a 

dual aspect in crop yield assessment, the magnitude and the spatial structure of variation.  

The Oi formulation derives parametric methods from transitive and nested theoretical 

variogram models when fitting experimental variograms to yield data and variance trend 

residuals. This preliminary hypothesis characterizes the index as a function of three main 

components (Equation 4). 

Oi M D E   =    ⋅  ⋅   (4) 

Where: M = the magnitude of variation relative to a certain area threshold; D = the spatial 

structure of variation relative to a management-responsive area; and E = the economic-

environmental benefit of SSCM relative to uniform management. 

The magnitude of variation (M) is quantified as the ratio between the areal coefficient of 

variation of the field being evaluated and the median areal coefficient of variation from all 

available sample fields. The areal coefficient of variation (CVa) is obtained by the double 

integral of the semivariance from the best fitting variogram model minus the nugget effect. 

The spatial component (D) is described as the ratio between the maximum average area 

within which yield variation is autocorrelated (S) and the minimum area at which individual 

variable-rate machinery can operate (s). The average area of correlation is calculated using the 

integral scale (Russo & Bresler, 1981). E was assumed constant since there was minimal 

reliable information on environmental impact and its economic costs at present. 
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Pringle et al. (2003) report a stable index ranging from 2.8 to 47.2, which was basically 

commensurate with the expected ranking of yield maps. However, discrepancies were 

observed in fields with very low values of mean yield (Y ) and a very large magnitude of 

variation seen when coupling the areal coefficient of variation with the spatial trend. This 

would inflate the magnitude factor (M) into large values, giving the illusion of a great 

opportunity for SSCM when perhaps the yield outcome was just caused by natural adversities 

occurring non-uniformly over the entire field (frost, water-logging, insect infestation). They 

also compare Oi results with two alternative assessments of yield variation (i.e. Fairfield 

Smith, 1938 and Burrough, 1983), showing weak correlations with both. The authors 

conclude that this approach would be preferable over the previous methods because it offers a 

more pragmatic computation for broad-acre fields, while being independent of the areal scale 

of application. Still, further improvements on the preliminary nature of the index components 

was foreseen as it had been established according to subjective expert interpretations and 

empirical thresholds over a limited data set trial. 

4.3.2 - Previous applications 

The Oi has also been used by Taylor et al. (2005) to compare the spatial variability of yield 

data and the suitability to differential management in vineyards across different varieties and 

regions in Australia, France and Spain. This study identified some trends in the spatial 

structure of variability, having significant regional location effect but no varietal influence. 

However, acute trends across any blocks needed to be removed from the data as the trend 

decomposition process in the technique could not totally remove the influence in the final 

index results for non-stationary yield distributions. Taylor et al. (2005) further explore the 

analysis of Oi components for the same data set showing greater magnitude of variation in 

Europe in contrast to greater spatial structure of variation in Australia, suggesting that unique 

management thresholds are likely to be needed. Their results also show a stable range of 

index values (from 9 to 16) in comparison to grape indices reported by Pringle et al. (2003) 

(from 2.8 to 33.5). However, the mean value ( O 9i = ) from 29 blocks at Cowra locations 

differs from Pringle’s mean value ( O 21i = ) from 3 grape blocks in the same region of NSW, 

Australia. Still, comparisons between investigations had reinforced positive aspects of the 

preliminary approach when applied to different production systems. 

Oi methods were used and extended in Tisseyre & McBratney (2007) for a technical 

opportunity index (TOi). They introduce a morphological filter applied to interpolated yield 

maps, taking into account the minimum kernel area that machinery controllers can operate. In 
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this study, considerations of practical accessibility in areas of erosions and dilatations are 

added to the spatial structure component (D). Although supporting a more detailed 

representation of operational practices, this approach requires additional input data 

manipulation and skilled interpretations, and also increased the mathematical complexity. 

Responses from the TOi were normalised to hypothetical fields ranging from zero (complete 

nugget effect) to 1 (larger variogram ranges), showing a positive relationship between TOi 

values of increasing operational kernels with Oi values of increasing variogram ranges. 

Cited in Dobermann et al. (2003), the Oi approach is listed among empirical threshold 

techniques that could be useful for the classification of yield zones. They evaluate the 

effectiveness of subjective methods in relation to the automation of yield relative percentages, 

but, unfortunately, they don’t actually apply the Oi leaving behind the opportunity to observe 

Oi outcomes under dissimilar characteristics of field shape and water input (circular central-

pivot-irrigated fields under maize-soybean-maize rotation). 

4.4 - Applying the preliminary Oi to South Australia (SA) 

4.4.1 - Data and Oi methods  

A historical data set (1997-2004) of available yield monitoring data was gathered from five 

(5) farms in South Australia (SA): Brook Park (2 fields); Clifton Farm (3 fields); Faithfield (1 

field); Rayville Park (2 fields); and Tingara (2 fields). In all there were 45 broad-acre field-

years observations ranging in size from 22 ha to 113 ha. The farms are part of the Southern 

Precision Agriculture Association (SPAA), which is an Australian non-profit grower’s 

organization built on the information and experience shared and collected amongst farmers 

focused on the promotion, development and adoption of PA as means for profitable and 

sustainable farming and environmental preservation. Cultivated grain crops include wheat 

(Triticum aestivum, 21), barley (Hordeum valgare L., 11), faba beans (Vicia faba, 6), canola 

(Brassica napus, 5), lentils (Lens esculenta L., 1), and field pea (Pisum arvense, 1). 

A file folder structure of ASCII (.txt) and JMP 6.0 (.jmp; © SAS Institute Inc., 2005) format 

files was organized by region, farm, field, year, and crop. Pre-processing procedures were 

applied in order to remove monitoring artefacts which might compromise proper agronomic 

information extraction. The trimming procedures used in this investigation have followed 

steps described in Taylor et al. (2007) as part of a protocol for delineating management zones. 

The procedures involved are the following: 
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i) A two step data trimming procedure for the removal of outliers, which was executed in 

JMP tables. Firstly, a constrainment of the data set to threshold limits derived from 

previous analysis and participative R&D. In this phase, it is important to preserve the 

integrity of the associated pair of coordinates. The second step makes use of data 

distribution parameters to remove outliers, which are above and below the yield mean 

by 1.5 standard deviations. 

ii) A spatial coordinate transformation for easier visual interpretation in absolute distances 

and geometric overlays of small scale geo-objects. Usually, this phase involves a 

conversion from radial geographic coordinates, in degrees of latitude and longitude, to 

planar cartographic projection systems, in metres. This procedure was executed in 

GEOD, a freeware application for coordinate transformation that is available for 

downloading from the New South Wales Department of Lands. 

(www.lands.nsw.gov.au/survey_mapping/surveying/gda/geod_software). 

After the trimming procedure, the final number of individual yield points per field varied from 

a minimum of 7,000 to a maximum of 48,000, caused in fields of similar size by changes in 

sampling resolutions (e.g. data logging frequency, and harvest speed) from one season to 

another. An example of sampling variation could be observed during 6 seasons (1999 to 2004) 

from the field “Road” (113 ha at Brook Park farm), with changes in the density of observation 

from 177 (in 1999) to 425 (in 2003) points per hectare. This contrasts with both: i) higher data 

densities during 5 seasons from the field “212c” (25.7 ha at Tingara farm), ranging from 584 

(in 2003 and 2004) to 1,128 (in 1999); and ii) lower densities during 7 seasons from the field 

“41” (41 ha at Rayville Park farm), ranging from 170 (in 1998 and 2002) to 293 (in 2003), or 

one year from the field “FrontSW” (93.3 ha at Faithfield farm) with 202 points per hectare.  

When applying Oi in this research, the objective was to determine index thresholds 

standardised over 7 years of yield data. Therefore, original S-Plus (S-Plus 7.0 - Enterprise 

Developer; © Insightful Corp, 2005) script files available from Pringle (2002) were used in 

order to compute the CVa, Ja, and trend residual parameters. 

Methods in Pringle et al. (2003), firstly apply variogram of yield data in Vesper to fit the 

Spherical, Exponential, Double-Spherical and Double-Exponential models. Best fitting 

parameters (model type, C1, C0, and a1) are copied from Vesper into S-Plus scripts for 

individual field computations for CVa and trend-surface residuals. Variography of residuals 

uses the same procedure to run the Ja script in S-Plus. Finally, all parameters were copied into 

Excel for the final Oi calculation.  
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4.4.2 - Empirical investigation of Oi parameters 

Initial results aiming to establish index threshold values have shown inconsistent values for 

the spatial structure component, which is related with very high values for the final index 

(Table 4.2). The majority of these observations could be related to non-stationary variability 

processes, in which the use of trend procedures could not avoid large values of the variogram 

maximum lag (ML) as shown in Figure 4.1. Problems with the preliminary Oi method 

motivated an empirical experimentation process using variogram parameters to search for 

simpler and less subjective methods of quantifying components of yield variation. The first 

process considered the inclusion of other theoretical variogram models (Gaussian, Linear with 

Sill, Stable, Generalised Cauchy, Power and Matèrn) that may explain the unbounded 

behaviour of many variograms in which crop yield appears to vary increasingly without limit 

as lag distances increases (McBratney & Webster, 1986). This can be understood as result of 

either an unexplained smaller scale of variance or nested processes within one another, which 

is characterized by practical ranges that far exceed maximum distances across the field. 

Table 4.2: Unstable Oi results for selected fields with occurrences of non-stationarity. 

Field Year Crop Y  
(ton.ha

-1
) 

CV 
(%) 

Area  
(ha) 

ML 
(m) 

Oi 

Road 1999 wheat 1.3 24.3 112.8 1,477 141.4 

 2000 barley 3.4 14.2  1,466 46.1 

 2001 lentils 1.7 34.5  1,467 27.1 

 2002 wheat 0.6 110.7  1,472 780.6 

 2003 wheat 2.1 16.7  1,476 363.0 

 2004 field pea 1.0 14.8  1,470 18.6 

Blackflat 1998 wheat 4.4 22.6 42.3 773 19.4 

 1999 faba bean 3.5 18.8  769 32.9 

 2000 wheat 5.2 15.6  768 7.6 

 2001 barley 4.8 19.0  776 264.5 

 2002 canola 1.8 25.0  771 19.2 

 2003 wheat 4.4 12.3  772 8.9 

 2004 faba bean 2.0 16.2  775 29.6 

Field 27 1997 wheat 3.9 29.0 50.3 906 477.6 

 1999 canola 1.3 34.6  902 32.7 

 2000 wheat 4.7 17.8  904 77.6 

 2001 barley 4.4 12.4  904 279.8 

 2002 faba bean 1.6 37.1  903 599.6 

 2003 wheat 3.8 12.0  905 301.1 

 2004 barley 1.9 17.2  905 394.1 
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As the main problem in the Oi response was directly related to variogram fitting to large 

ranges and non apparent sills, the investigation focused on the spatial structure component. 

Empirical experimentation was undertaken to investigate the upper limit for the integration of 

the areal scale of correlation per Russo & Bresler (1981). Considered limits for integration 

were the variogram range, ML, and areas obtained from correlograms and the variogram of 

fitted correlation functions. 

However, none of the upper limits for integration could respond with D values that would 

increase in proportion to increasing ranges of simulated variograms from different seasons of 

a single field. Unexpectedly, the integral scale approach relying on trend residuals could not 

consistently correlate with the intrinsic characteristics of the best fitting variograms (nugget 

effect, practical range, or function steepness). Many of the complex variogram models 

included could not provide a good fit to the majority of the available samples and were simply 

dismissed (i.e.: Double-Spherical and Double-Exponential, Linear with Sill, Power, and 

Matèrn). Finally, the ranked opportunity from different seasons of a single field did not 

correspond in any logical way with inferences given by local production knowledge and yield 

maps. 

4.4.3 - The preliminary Oi: results and discussion 

Preliminary results using the Oi methods have helped develop a better understanding of a dual 

aspect in crop yield assessment, the magnitude and the spatial structure of variation. However, 

the use of trend surface techniques had frequently not accounted for strong structures in 

variability drifts, with poor model fittings (R
2
) ranging from 0.02 to 0.49. Therefore, the 

approach could not properly describe the residual yield variance, even when using quartic 

polynomial trend-surface decompositions for the removal of a macro-scale nested effect 

component in yield variograms (Figure 4. 1). Even for samples where the trend surface fitting 

was significant, the variogram of residuals would still present a strong drift (e.g. Bills 2003). 

This could be attributed to nested processes at different scales that impart spatial variation on 

crop yield.  

For the samples from SA, 19 index values were considered as outliers out of 23 samples 

showing strong non-stationary behaviour. Variogram models were accounting for range 

values much greater than the associated field maximum lag, giving no significance when 

calculating the spatial structure component and negatively impacting computations of the 

‘integral scale’. As a result, Oi values ranged from 7.6 to 780.6 (CV = 107%), while including 
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a)  Yield Variograms. b)  Trend Residual Variograms. 

 

a 1,000m range threshold for the computation of the areal coefficient of variation. These 

results greatly contrasted with previous works, where Oi values ranged from 2.8 to 47.2 

(Pringle et al., 2003; Taylor et al., 2005; Taylor et al., 2005a). In addition, further issues were 

identified when high CVa values were obtained in fields with very low mean yields, 

consequently building artefact responses in the M component of the Oi. 

 

 Figure 4.1: Variogram fitting of trend surface residuals as a result from the Oi 

method (Pringle et al., 2003). 
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In terms of computational performance, the original S-Plus scripts (Pringle, 2002) were 

completely revised, accounting for: i) change in input/output routines allowing buffered 

readings of multiple field-year for sequential calculations; ii) inclusion of nested theoretical 

variogram models; and iii) Addition of plug-in S-Plus libraries, GStat and Surf, with 

optimized algorithms for more efficient spatial trend analysis. Script changes have improved 

the total computational performance with the optimization of recursive algorithms. As an 

example, the reduction of CPU time by 82% when computing the spatial structure of variation 

(from 107s down to 6s for a single field-year sample).  

4.4.4 - Problems using the preliminary Oi approach in SA 

Results from the D component were not significant, having extreme values of correlation 

distances ranging up to 250 times the average field maximum lag. This component has 

induced final index values greater than 250 for the 19 samples of strong non-stationary 

response as detailed in section 4.3. Besides avoiding the actual form of variation, the trend-

surface decomposition has only solved variograms of standard stationary behaviour when 

coupled with the integral scale technique. In addition, the M component results were again 

problematic in the same way as reported in previous applications of the Oi. 

Although claiming a solution that is independent of the areal scale of the field, the Oi 

computation has imposed a sequence of processes which is dependent on proprietary software 

formats. As result, data import/export procedures further requires from users advanced data 

management skills. Far from a pragmatic solution accessible to farmers, the overall Oi 

technique deals with individual field analysis that requires two variogram fitting procedures, 

for yield and trend residuals, strongly increasing the subjectivity of results. In addition, the 

original S-Plus script code did not consider optimized algorithms to compute the fourth order 

trend decomposition procedure, requiring very long CPU time (up to 45 minutes) for 

individual fields with more than 35,000 observation points. 

Due to systematic issues involving the determination of the two Oi components, it was 

concluded that changes were required in order to standardise procedures that could deal with 

stationary and non-stationary variability, to reduce the subjectivity of analysis, and finally to 

improve the computational efficiency and user interface. 
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4.5 - A new yield variability index: Yieldex (Yi) 

4.5.1 - Australian dataset 

In order to ensure a wider scope of yield variability samples for testing the new method, the 

historical data set previously used for the Oi investigation was expanded with data gathered 

from another two Australian non-profit grower’s organizations involved in PA technology, 

and additional samples from more recent seasons in S.A. (i.e. 2005 and 2006). The Riverine 

Plans Inc. is an organization that includes farming systems focused on dry land broad-acre 

farms in northeast Victoria and southern NSW, with annual rainfall varying from 450 mm to 

650 mm. The second organization supplying monitored data is Conservation Farmers Inc. 

(CFI), which encompasses farms in the northwest of NSW having from 500 mm to 600 mm 

annual rainfall. The list of grain crop yield maps used in this investigation, with their 

respective number of field-year samples in brackets, included: wheat (Triticum aestivum, 

129); canola (Brassica napus, 30); barley (Hordeum valgare L., 20); sorghum (Sorghum 

bicolor L., 13); faba bean (Vicia faba, 9); chick pea (Cicer arietinum L., 9); lupin (Lupinus 

angustifolia L., 3); triticale (Triticosecale sp., 2); lentil (Lens esculenta L., 1); field pea 

(Pisum arvense, 1); and corn (Zea mays L., 1). 

A total of 80 fields from farms in the SPAA (5), Riverine (3), and CFI (8) regions have 

summed up 218 broad-acre field-year samples over a decade of yield monitoring (1996 to 

2006). All files were organized and pre-processed as previously described in Section 4.1. The 

implementation of Yi methods was achieved by the implementation of new source codes in S-

Plus scripts and Java classes that can process several fields in a single run. Finally, the 

consideration of Java classes is a preliminary attempt to create a package for yield variability 

analysis, aiming to support and explore the use of object-oriented open source libraries. 

4.5.2 - Yi methodology 

Although the need to seek more robust methods to deal with non-stationarity was evident, it 

was also clear that the rationale presented in Pringle et al. (2003), quantifying two 

components of yield variance, should be preserved. In addition, systematic problems of 

consistency in estimation methods and subjective interpretation of variograms have lead to the 

aim of a simple automated procedure based on yield data. 

The selection of the best fitting variogram was undertaken by means of classical evaluation 

parameters having an additional consideration for the practical range in relation to the 
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associated field maximum lag. Detailed discussion of evaluation parameters, such as the 

Akaike Information Criteria (AIC), is given by Webster & McBratney (1989). The new 

method has a more pragmatic approach, discarding the tailored visual variogram fit in search 

of a lower AIC. The computation of complex covariance functions is preserved, but only 

considers Spherical, Exponential, Gaussian, Stable, and Generalised Cauchy models. 

Variogram fitting of practical ranges bigger than the maximum lag are discarded, even if 

presenting lower AIC and Root Mean Square Error (RMSE). Therefore, the best AIC 

selection is only considered from variograms reaching a sill within the field scale. If all 

covariance functions failed to limit practical ranges within the maximum lag, the best fit 

model is given by the lowest AIC from all variogram models, and the spatial structure of 

variation is calculated by inverting the covariance function to values at maximum lag. 

The first Yi component considers the magnitude of variation. For this component, a areal 

coefficient of variation was computed by the total average field variance minus the nugget 

effect, simplifying the double integral calculus in Pringle et al. (2003). This average 

covariance is recursively computed between each single sample location and all the other 

points within the field. 

The second Yi component regards the spatial structure of variation. It is dependent on the 

application response which can be easily adjusted if new machinery or commercially 

available operational standards are to be considered. As explained earlier, the practical range 

from yield variograms will be used to compute the maximum distance of autocorrelation, 

thereby, removing the trend decomposition and the spatial correlated ‘integral scale’ 

procedures from the technique outlined in Pringle et al. (2003). 

Finally, a visual validation of Yi ranks from different seasons of a single field was performed 

using kriged yield maps plotted with a normalized colour legend which considered minimum 

and maximum yield values from all field-year samples. Further details on the determination of 

components and results from the new Yi methods are given in the following sections.  

 The magnitude of yield variation 

The first step to estimate the magnitude of yield variation (MV) is to compute the average 

covariance of the total field (AC). It is calculated (Equation 5) as half the squared yield 

differences between all pairs of locations, treated as a vector, in the yield sensor data and 

subtracting the nugget effect (C0), which represents the random uncorrelated variation which 

could be caused by measurement or machinery operational error.  
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  When x = ( x , y ) 

In order to allow further comparison of the variation in magnitude between fields with 

different Y  values, the AC is standardized into a new areal coefficient of variation (CVA) by 

dividing it by the field Y  (Equation 6). This final factor of magnitude gives a spatially 

structured coefficient of variation that reassembles the standard coefficient of variation; 

however it considers the average covariance relative to the entire field area (similarly to block 

kriging), in replacement of the purely numeric standard deviation from the mean yield. 
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As a final step, MV is calculated as the ratio between CVA and an estimate of the minimum 

CVA (magnitude) needed to consider differential management practices (Equation 7). For 

simplicity, given present limitations in knowledge and data availability, this is currently 

assumed to be the median CVA from the available 218 field-year samples. 
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   The spatial structure of yield variation 

The second component of the Yi is the spatial structure of yield variation (SV). This addresses 

the maximum length for average autocorrelated yield variation, here denoted as correlated 

distance (CD), and standardizes it against the ability of variable-rate machinery to react, the 

operational length (OL), as shown in Equation 8.  
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L
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As introduced earlier in this section, it was observed from empirical results that an optimal 

index ranking could be obtained by the use of distinct solutions according to the nature of the 

best fit model, whether or not showing a practical range within the field maximum lag 

(Equations 9 or 10). Therefore, the maximum correlated distance (CD) was defined by the 

distance (h) at which the variance is equal to either: 

i) the sill (C1) plus the nugget effect (C0) for the other models; or, 

ii) 95% of the variance at maximum lag plus the nugget effect (C0). 
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Associated equations for distance calculations are described as follows:   

• For all variogram models with practical range smaller than the field maximum lag: 

( ) ( )0 1
S when: 1

100
V

h
h C C hγ ρ= = + −                     (9) 

• For all variogram models with practical range bigger than the field maximum lag: 

( ) ( )[ ]0 0S when:      0.95
100

V MaxLag
h

h C Cγ γ= = + −                (10) 

In practice, Equation 9 basically sets the maximum correlated distance (CD) as the distance 

(h) equal to the practical range when this value is smaller than the field ML. Otherwise, in 

Equation 10, the value of the best fitted variance at maximum lag is used to calculate the 

distance (h) by the inverted the covariance function. After the determination of h, CD is 

calculated by dividing h by 100 to standardize metres into hectares for the associated length of 

maximum area of autocorrelated variation.  

The variability distribution patterns have to be considered with reference to machinery 

intervention options. In spatial terms, patterns are assessed in relation to the smallest area unit 

of treatment applicable. This operational kernel resolution has been already formulated as a 

function of machinery characteristics (Pringle et al., 2003), of machinery characteristics plus 

position inaccuracy (Tisseyre & McBratney, 2007), and of variable-rate change along the 

swath (Dillon et al., 2007). To the extent of this research, the distance limiting the operational 

length unit (OL) is based on variable-rate machinery standards as defined by Pringle et al., 

(2003), being the minimum area (s) as a function of operational characteristics [β = swath 

(m); ν = speed (m/s); and t = time to alter application (s)] and divided by 10,000 to again 

standardize it to hectares (Equation 11). Typical values of those characteristics for grain 

crops and grapes are given in Pringle et al., (2003). 
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   The opportunity index in yield variation 

Finally, the Yi is calculated in Equation 12 as the square root of the product of MV and SV.  
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The diagram presented in Figure 4.2 summarizes the Yi method, and also shows the data flow 

where each specific parameter is calculated.  

Figure 4.2: Yi methodology diagram, illustrating the procedural and the parameter flow. 

* Calculated parameters in each stage are underlined, and their use in subsequent procedures is indicated by 

the arrows, describing that some parameters (ML, C0, CVA) are used in more than one stage of the method. 
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Figure 4.3: Histogram for Yi 

results from 218 field-year 

samples in Australia. 

4.5.3 - Yi results and discussion 

The overall Yi distribution for the 218 samples has shown a mean of Yi = 5.7 (CV = 41.5%) 

and a median of Y% i = 5.2, with values ranging from 1.6 and 17.3 (Figure 4.3). Individual 

means for the three agronomic regions have shown a fairly stable response even if a very 

dissimilar number of samples is observed: 51 samples in 

SPAA (Yi = 5.2), 119 samples in CFI (Yi = 6.0), and 48 

samples in Riverine (Yi = 5.6). A good opportunity for site-

specific management is suggested when Yi is greater than 6. 

Samples having the index above this value have intuitively 

shown large magnitude variability and well structured 

distribution of variance when visually interpreting yield maps 

through expert knowledge. This threshold matches the greater 

regional mean index, in CFI, and it is just above the overall Yi 

and Y% i characterized in each individual region (4.8 for SPAA, 

5.6 for CFI, and 4.6 for Riverine) as well as median 

calculated using the majority of crops, excluding canola and 

chick pea. 

 

Upper and lower limits of valid Yi were explored by empirical experimentation. It showed 

that if the Yi was found to be less than 1 or greater than 45, then some inconsistencies in the 

input data were observed. This suggests that the proposed method is sensitive to noise input. 

Still, results showed the flexibility of the new approach in that it delivered a stable range of 

index values over a very diverse input data set, including distinct regions (soil, topography 

and climate), a variety of fields (size and shape), different crops, and possible incomplete data 

gathering. The idea of offering an index capable to support a quantitative analysis on the 

opportunity characterized by individual field-seasons is illustrated in Table 4.3, for selected 

fields of non-stationary variability which have previously shown inconsistent results of the 

preliminary Oi method. The variation of density in the number of observations previously 

observed in section 4.1 was also present in this enlarged data set. An equivalent increase in 

processing time is not observed during the variogram analysis in Vesper, since a random sub-

sampling procedure is executed prior to the variogram computation, reducing the input data 

dimension to around 15,000 observations.  
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Table 4.3: Yi and its components’ results from selected fields with occurrences of non-

stationarity in association with Oi values. 

 

Farm Field Year Crop Y  
(ton.ha

-1
)
CV 
(%) 

MV SV Yi Oi 

2001 canola 2.7 27.8 1.5 14.0 3.4 645 

2002 wheat 0.5 48.4 2.1 30.6 8.1 53 

2003 canola 0.6 68.9 4.0 35.4 12.6 1258 

Bearbung Creek 

2004 wheat 4.1 31.7 1.7 40.0 8.3 1279 

1997 wheat 3.7 33.3 1.8 62.4 10.7 58 

1998 sorghum 5.4 17 1.0 14.4 3.7 23 

1999 chick pea 1.3 30.3 1.0 54.8 7.4 516 

2000 wheat 2.6 28.3 2.2 49.1 10.3 573 

2003 wheat 5 23 0.5 77.3 6.3 13 

2004 wheat 4.9 17.8 0.9 52.6 6.8 23 

2005 sorghum 3.5 19.6 1.1 22.9 5.1 25 

Tarnee Comet B 

2006 chick pea 1.8 23.9 1.2 42.4 7.1 29 

2000 canola 1.9 24.2 1.6 39.8 5.8 22 

2001 wheat 2.8 23.4 1.5 17.4 5.1 35 

2002 wheat 0.2 129.2 4.6 62.2 17.0 1069 

2003 canola 2.3 12.4 0.9 66.4 7.7 272 

2004 wheat 1.8 15.9 0.4 54.4 10.0 393 

Grand View 44 

2005 barley 4.4 18.9 0.7 32.1 3.3 365 

1999 wheat 1.3 24.3 0.3 68.2 5.0 467 

2000 barley 3.4 14.2 0.6 57.5 5.8 20 

2001 lentil 1.7 34.5 1.1 44.1 6.8 28 

2002 wheat 0.6 110.7 4.8 61.3 17.2 781 

2003 wheat 2.1 16.7 0.6 56.7 5.7 670 

2004 field pea 1 14.8 0.7 25.0 4.2 21 

Brook Park Road 

2005 wheat 3.1 10.1 0.5 67.3 5.9 21 

1998 wheat 4.4 22.6 1.3 34.7 6.8 21 

1999 faba bean 3.5 18.8 0.5 30.1 3.8 33 

2000 wheat 5.2 15.6 0.4 21.3 2.9 7 

2001 barley 4.8 19 0.3 18.9 2.4 299 

2002 canola 1.8 25 1.4 11.0 3.9 22 

2003 wheat 4.4 12.3 0.9 26.0 4.8 10 

2004 faba bean 2 16.2 0.4 39.8 4.0 473 

Clifton Farm Blackflat 

2005 wheat 5.7 12.4 0.9 23.6 4.6 400 

RayvillePark Field 27 1997 wheat 3.9 29.0 0.7 46.5 5.6 600 

1999 canola 1.3 34.6 2.1 13.7 5.4 594 

2000 wheat 4.7 17.8 0.7 36.4 5.2 25 

2001 barley 4.4 12.4 0.3 46.0 3.6 351 

2002 faba bean 1.6 37.1 1.7 46.2 8.9 600 

2003 wheat 3.8 12 0.4 46.1 4.1 378 

  

2004 barley 1.9 17.2 0.5 46.5 4.7 455 

  2005 wheat 3.4 25.4 0.6 46.4 5.2 525 
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The new method for determining the CVA has shown results that were strongly correlated (r = 

0.93) with previous CVa values from the Oi methods. However, the mean CVA of 16.9% (CV 

= 64.4%) suggests a moderate to low overall areal coefficient of variation for the three 

agronomic regions (SPAA = 15.3%, CFI = 17.4%, and Riverine = 17.3%), when compared 

with results in Pringle et al. (2003) with CVa = 26.9. % and Taylor et al. (2005) with CVa = 

27.4%, perhaps having a wider spread of values (3.6% to 93%) being related to a greater 

variety of crops considered. CVA values have contributed to the final MV distribution (mean = 

1.2; median = 1; min. = 0.3; and max. = 4.9) after normalized by the median CVA (14.2%) 

calculated from responses of all crop types. An attempt to normalize MV by crop, using 

median CVA relative to each specific crop, has presented biased results for crops with low 

occurrences (e.g. canola, lentil, and field pea). 

Different from previous Oi responses, the new CVA computation has given a stable MV 

response, even when calculated with yield means either in the lower or in the upper deciles of 

the yield distribution (less than 1.1 tons/ha or greater than 5.2 tons/ha). Only 2 samples (Field 

44 and Road in 2002) from 17 in the lower decile appear to have the final index influenced by 

high values in the magnitude factor (Table 4.4). However, both samples were also the only 

ones having a combination of very low yield means, very high coefficients of variation, and a 

strong spatial structure component (respectively; Y = 0.2 and 0.6; CV = 129% and 111%; and 

SV = 62.2 and 61.3). This may explain their final top two positions in the Yi rank for all 

samples (Yi_44 = 17.0 and Yi_Road = 17.2). Perhaps not characterizing a systematic influence of 

low yield means in high Yi values, since the remaining samples were in the medium Yi range.  

The visual validation of the results from the new methodology used local management 

knowledge to rank yield maps from numerous years in a single paddock. The Yi values for 

individual samples were considered in agreement with the spatial distribution of yield 

magnitudes. In general, the order of ranked maps by Yi values was very coherent with the 

over plot of the associated variograms, in particular when many years in one field were of 

stationary yield variability (Figure 4.4). However, for the few fields with a strong occurrence 

of non-stationarity present in the majority of the seasons, Yi ranked values did not 

consistently correspond to the overlay of variogram curves and expected results from field 

knowledge.  Still, for some of the fields that were difficult to characterize, such as fields 

Road, 44, and Comet B in Table 4.3, the final rank corresponded with the observed variability 

and appears very consistent with variogram parameters. An example of these cases the field 

27 from Rayville Park farm is detailed in  Figure 4.4, which introduces interpolated yield 

maps normalized to a single legend, their related variograms plotted to a single scale and the 
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resulting Yi ranking the opportunity of adoption for SSCM. In this case, only yield data from 

1999 and 2000 have shown practical range within the approximate length of the maximum lag 

in Field 27 (Figure 4.4). The strong non-stationarity observed for remaining years accounts 

for sill values at distances much greater than the field maximum lag (≈906m). For variograms 

of these years, the best fitted variance at maximum lag is used to calculate the distance (h) by 

which the correlated distance (CD) is determined using the inverted covariance function of the 

best fit model (Table 4.1). This result shows the robustness of the Yi, properly ranking the 

crop variability for cases of critical occurrence of non-stationary variation. It is therefore 

suggested that the Yi ranking approach provides a good means for the temporal analysis of the 

spatial yield response variation. 

 

Table 4.4: Selected fields where low mean yield and variation of components’ values 

didn’t affect a stable range of the final Yi response. 

Field Year Y  
(ton.ha

-1
) 

CV 
(%) 

CVA 

(%) 
MV SV Yi 

Creek 2002 0.5 48.4 29.9 2.1 30.6 8.1 

Creek 2003 0.6 68.9 56.1 4.0 35.4 12.6 

Cris 2004 0.6 32.2 16.1 1.1 27.6 5.6 

Doolies 2002 0.7 58.6 36.4 2.6 42.7 10.5 

Racecourse 2003 0.6 21.0 12.7 0.9 38.4 5.9 

Bridge 2003 0.7 27.3 22.6 1.6 46.0 8.6 

Glens 2002 0.7 50.8 35.1 2.5 39.4 9.9 

Glens 2003 0.6 22.6 10.5 0.7 34.9 5.1 

Woolshed 2006 0.8 52.4 19.1 1.3 36.7 7.0 

WA 2003 0.9 26.3 13.4 0.9 43.4 6.4 

Field 44 2002 0.2 129.2 65.9 4.6 62.2 17.0 

East Ridge 2002 0.7 34.2 23.4 1.6 14.5 3. 6 

Freeling 2002 0.6 29.7 25.2 1.8 17.7 5.6 

Rhombus 2002 0.8 35.8 30.8 2.2 18.1 4.7 

Bills 2002 0.8 50.4 36.5 2.6 22.9 5.7 

Road 2002 0.6 110.7 68.8 4.8 61.3 17.2 

Field 41 2004 0.9 20.3 15.8 1.1 25.2 4.0 
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Figure 4.4: Yi results for Field 27, ranking yield maps by season and related variograms. 

 

From the five (5) theoretical models initially used in the Yi method, only the Spherical, 

Exponential, and Stable variograms satisfactorily represent most of the variability present in 

yield data. The variogram analysis has shown that from 43% of field-year samples of strong 

non-stationarity, few samples had the Gaussian model as best fitting. Still in those cases, 

variogram curves were presenting a upward-concave slope at small lag distances. This aspect 

cannot be correlated with existing knowledge of typical yield variability processes. In fact, 

yield variation usually accounts for steep increases at small ranges. The same situation was 

observed for the Generalised Cauchy model fitting, again having the best AIC for only 2 

samples. Even if considered for final Yi computations, the Stable model only responds with 

the best AIC when small values of the smoothness parameter were observed (0 ≤ α ≤ 1.3), 

resulting in a variogram shape of downward-concave curve as normally expected for yield 

variances. 



 113 

 

It was observed that differences in Yi values when shifting parameters between different 

models where influenced by typical experimental variogram outlines. When patterns were of 

strong exponential behaviours, no significant differences in Yi results were observed with 

Gaussian, Stable, or Generalized Cauchy models. In contrast, variograms showing standard 

stationary behaviours were mostly best-fitted by the Spherical model, having an AIC just 

below the Exponential model and much smaller than for the unbounded group. A summary on 

the total number of best-fit by theoretical model shows 101 samples fitted by the Stable 

variogram model, 86 by the Spherical model, and 31 by the Exponential model.  

 

Comparable to the technical Oi analysis by Tisseyre et al. (2007), the Tukey-Kramer test was 

conducted in order to compare differences of Yi means by crop type. This conservative 

method for different size samples (Hayter, 1984), further illustrates the need for more well 

distributed samples among crop types (Figure 4.5), as no final conclusion could be effectively 

drawn for Yi thresholds by crop (Table 4. 5). The mean Yi for wheat (Yi = 5.5) is just close 

below to the overall mean as this crop provides many more samples than all the other crops 

together (129 against 89 samples). Faba bean samples show a mean just below this value (Yi = 

5.7), and barley was the only crop that could be characterized by a lower mean (Yi = 4.4). 

Canola, chick pea, and sorghum have shown potential for higher mean values. However, 

lupin, triticale, lentil, corn, and field pea are still requiring more samples. 

 

 Figure 4.5: Comparisons of Yi means by crop using the Tukey-Kramer test. 
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 Table 4.5: The response of Yi values to different grain crops. 

Crop Samples 
Yi 

Min. Y% i 
Yi 

Max. Y i 
CV 

(%) 

wheat 128 1.6 5.2 17.2 5.5 40 

canola 31 2.0 5.8 12.6 6.4 42 

barley 20 2.4 4.1 7.8 4.4 33 

sorghum 13 3.2 5.7 9.6 6.3 36 

chick pea 9 3.0 7.1 10.5 6.4 35 

faba bean 9 3.8 4.6 9.0 5.7 38 

lupin 3 3.6 4.7 5.6 4.6 22 

triticale 2 4.5 10.7 17.0 10.7 82 

lentil 1 . 6.8 . . . 

corn 1 . 8.1 . . . 

field pea 1 . 4.2 . . . 

All crops 218 1.6 5.2 17.2 5.7 41 

An uneven distribution in the number of field-year samples between crops and between 

regions has restricted the analysis of specific Yi thresholds values for those variables. When 

considering median and mean values by crop, no correlations could be observed between 

mean yield (Y ) and Yi values, respectively r = - 0.09 and r = 0.01. For the same correlations 

by region, median values have a significative result (r = 0.62) contrasting with a weak 

correlation for mean values (r = 0.27), perhaps only illustrating an expected wider spread in 

regional yield variations. Mean Yi values by region are shown in Table 4.6. In the case of a 

more even number of samples by crops, it would be possible to calculate the median CVA 

relative to crop type when standardizing the MV component. 

A random downsize procedure in the number of observations from the total of 128 wheat crop 

fields, in steps of 10%, was executed in order to estimate the minimum mumber of 

observation that would be necessary to have a better confidence of threshold values by crop 

type. Results have indicated that less than 30 observations would not sufice to characterize a 

medium Yi values that could be used to compare indices in terms of crop per field per season 

(Figure 4.6). In which case, all other crops considered, except canola, would be under 

sampled for this type of analysis (Table 4.5). This also points out the number of missing 

samples per crop that would be required for the normalisation of the magnitude component 

(MV) using a median areal coeficient of variation (CVA) by crop type. 
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Figure 4.6: Graph showing the influence of the number of field-year samples in the 

stability of threshhold values. 

 

 

Table 4.6: Yi distribution by different agronomic regions. 

Region Samples 
Yi 

Min. Y% i 
Yi 

Max. Y i 
CV 
(%) 

CFI 119 1.6 5.6 12.6 6.0 38 

Riverine 48 2.0 4.6 17.0 5.6 48 

SPAA 51 2.4 4.8 17.2 5.2 42 

 

Seasonal influences were observed in low index values for samples in years of relatively good 

rainfall and characterized by high magnitude means and spatially homogeneous distributions 

of crop yield (Figure 4.7). In contrast, a greater percentage of high Yi values occur in 

relatively dry years, where low yield means and higher soil attribute contrasts favour an 

increase opportunity for SSCM technology. In 1996 and 2005, 88% and 73% of samples, 

respectively, were below the overall median Yi as potential effect of a relatively favourable 

weather. This case is especially evident in 1996 for the SPAA region, where all the samples of 

lower mean were located. As a contrast, in dry years (2002 and 2006) most of the samples 

were above the overall median (71% and 92% respectively), as 2006 was considered the driest 

year for the last 100 years. Another example can be seen in the rainfall map (Figure 4.7), 

where the balance between the majority of samples (119) in the CFI region, distributed 

through an average to above average rain fall area, and remain samples (99), distributed 

through an average to below average area, is reflected in the index graph for 2004. 
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Figure 4.7: Yi distribution by year showing response to wet and dry seasons. 

Correlation analysis between the final Yi value and its components shows equal weight in 

contributions from MV and SV. Although very high CVA values for the top two ranked samples 

(i.e. Field 44 and Road in 2002) have imposed a little more weight to the magnitude 

component, a slight inversion in contribution occurs in favour of the spatial structure factors 

when those two samples were excluded (Table 4.7). 

Table 4.7: Correlations between final Yi values and its individual components. 

 Ac 
CVA 

(%) 
MV CD SV 

Yi 0.10 0.54 0.54 0.62 0.62 

95% Yi 0.16 0.46 0.46 0.68 0.68 
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In a practical way, the analysis of the average Yi by field (Table 4.8) shows the yield 

variability index to be suitable as a decision support tool for whole-farm management. It can 

give insights for future investments in data collection by ranking the stability of the variation 

in each field within the farm over a certain period of time. The observation of fields having a 

higher median index value over a bigger number of seasons indicates a greater opportunity for 

adoption of technology in those areas of the farm. Figure 4.8 shows a map that illustrates 

fields from Bearbung farm with their respective values of the median Yi ( Y% i) and number of 

seasons of yield data gathering. For this farm, it would be suggested that the west region has a 

greater potential for technological adoption with fields of high median index over several 

years, thus fields “Doolies” with 8.3 during 5 years and “Creek” with 8.3 during 4 years. 

Fields in the central region of the farm would have secondary priority for investments with 

fields “Racecourse” ( Y% i = 6.2) and “Camerons” ( Y% i = 6.3), however with the field 

“Racecourse” having more potential of return with an average rank over 4 seasons against 

only one year of data monitoring at “Camerons”. 

 

 

Figure 4.8: Y% i ranking fields by farm in support of whole-farm management. 
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Table 4.8: Y% i values by field indicating fields of greater yield variation within a farm in 

support to whole-farm strategic decision making. 

Region Farm Field Seasons 
Med. 

MV 

Med. 

SV 

Med. 

Yi 

Min. 

Yi 

Max. 

Yi 

CV 

(%) 

Creek 4 1.91 33.0 8.2 3.4 12.6 46 

Doolies 5 1.55 44.6 6.7 3.8 10.6 39 

Kates 4 1.08 24.7 4.4 3.0 9.4 53 

Bearbung 

Racecourse 4 1.46 25.1 6.2 4.3 7.5 22 

Bottom L 3 1.06 30.0 5.6 4.6 6.4 16 

Diamond 2 2.54 10.9 3.3 2.6 4.1 32 

Mugs 3 1.08 48.9 7.3 2.8 8.8 50 

Kiewa 

Swamp 3 1.63 19.3 4.2 2.9 4.9 26 

Lease 2 0.89 47.5 6.0 2.4 9.6 85 

Pine 2 0.62 42.1 5.0 4.6 5.4 11 

Romaka 

West Creek 4 0.92 30.1 4.0 3.0 5.0 24 

Bt 5 1.07 64.3 8.6 6.4 9.7 16 

Comet B 8 1.07 50.8 7.0 3.7 10.7 33 

Kerrett 5 1.28 41.3 5.7 4.1 11.0 44 

CFI 

Tarnee 

TC 6 1.02 49.7 6.8 3.8 9.3 29 

WA 6 1.24 40.3 7.0 4.0 8.2 29 Glenmore 

WC 6 1.41 62.9 8.6 4.7 10.9 27 

12 5 1.73 24.6 4.5 2.7 7.0 38 

13 3 0.50 40.5 4.1 2.0 4.6 39 

Riverine 

Grand 

View 

44 6 1.19 47.1 6.7 3.3 17.0 60 

Bills 4 1.07 30.8 5.5 4.7 6.3 13 Book Park 

Road 7 0.58 57.5 5.8 4.2 17.2 62 

Barn 2 0.54 36.8 4.4 4.0 4.8 13 

Blackflat 8 0.68 24.8 4.0 2.4 6.8 32 

Clifton 

Farm 

Top D 4 1.03 27.0 5.2 3.8 5.2 1 

Field 27 8 0.63 46.2 5.2 3.6 8.9 30 

SPAA 

Rayville 

Park 
Field 41 7 1.11 33.7 6.3 4.0 7.2 24 

Finally, the Y% i approach has proved to be more flexible and robust in addressing both 

stationary and non-stationary processes in spatial yield distributions. By excluding the nugget 
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Figure 4.9: Increasing computation time 

complexity relative to a high-

resolution yield monitoring data. 

contribution of yield variation on both the magnitude and spatial structure calculations, it 

more readily reflects yield variability promoted by environmental (physical) properties in a 

field. The procedure now implemented has made the yield variogram analysis less dependent 

on expertise and reduced the overall computational complexity, and program source codes are 

presented in Appendix Sections A1.1 and A1.2. 

A final comment on results concerns the 

computation of complex algorithms, where 

high dimensional inputs remain a nontrivial 

problem. Likewise the example of the LM 

method discussed in Section 1.5.3, the Ac 

computation time (Figure 4.9) for data files 

ranging from 13,000 to 180,000 yield 

observation points (average of 35,000 after 

trimming procedures) accounted for an 

abrupt increase in cost (CPU time). This 

resulted from the recursive aspect of the field 

average variance algorithm computed in Java 

between all pairs of points in the field.  

4.6 - General discussion 

It is believed that the concepts of magnitude and spatial structure of variation have been 

proved relevant when assessing the opportunity for differential crop management. A fair bit of 

work is still required to establish an environmental-economic component to make a complete 

opportunity assessment. However, a final and pragmatic index could be conceived as a 

function of Yi and the associated environmental cost/benefits (E), as shown in Equation 13. 

 

O ( Y )i if E   =   ,  (13) 

 

So far, it has not been possible to evaluate the influence of crop type in the final Yi results due 

to heterogeneous sample distribution. The lack of a more comprehensive and equally 

distributed data set has limited the Yi to be grouped and normalised according to crop type, 

region, farm, field, or season. Therefore, adjustments in the areal coefficient of variation 

(CVA) by crop type are only dependent of equally available samples from all crop types, what 

would directly improved the characterization of the magnitude of variation by specific crops. 



R.P. de Oliveira - Contributions Towards Decision Support for SSCM. 

 

 120 

In relation to characterization of the Sv, the use of the Yi in production systems of different 

industries with different harvesting strategy or monitoring procedures or treatment machinery 

would require the adjustment of operational distance parameters (OL) to cope with their 

specificities. 

In closing, it is suggested that further investigations could also account for a directional or 

topological property, addressing the Yi sensitivity observed in relation to input data quality as 

potentially promoted by harvesting artefacts, monitoring gaps, or irregular field shapes. 

Sample fields with different formats and management system could include circular, 

rectangular, and random polygonal shapes. It would be opportune to compare rain-fed 

quadrilateral shaped fields with central pivot circular fields.  

4.7 - Concluding remarks 

This chapter explores the quantification of field variability over a significant number of fields 

in Australia, addressing parametric methods when modelling yield variation as a function of 

its magnitude and spatial structure. “Raw” yield monitor data collected on broad-acre crop 

fields from three grain grower groups across distinct agroclimatic zones in Australia is the 

only input source used. Trimmed yield data is organized by region, farm, field, year, and crop; 

according to procedures described in Taylor et al. (2007) and using 218 field-year samples 

from South Australia (SA), Victoria (VIC), and New South Wales (NSW) States. Parameters 

from data exploratory statistics, variance and spatial dependency analysis are used to measure 

the magnitude and the spatial structure of variance via geostatistical approaches. Initially, a 

preliminary approach for the Opportunity Index (Oi) was applied (Pringle et al., 2003), but 

problems were identified when dealing with frequent non-stationarity in yield variability. 

As a result, new methods of assessing a yield variability index, denominated Yieldex (Yi), are 

proposed, proving more flexible and robust when addressing both stationary and non-

stationary spatial yield distributions. Furthermore, the Yi methods can be put into practice as 

behavioural procedures of the object classes abstracted in the conceptual framework 

introduced in Chapter 3, thus formulating a simple software solution that embraces 

underlying geostatistical knowledge for yield variability assessment.  

The rationale for an opportunity index is to identify the areas of a farm where the cost of 

gathering further site-specific data is likely to be best matched by results. It is clear that 

quantitative threshold information is useful to determine whether the observed variability 
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warrants differential treatment. It can also give some extra insights of factors affecting 

variability.  

Combined with local field management knowledge over multiple seasons, the Yieldex method 

can be considered a reliable indicator supporting the efficiency in crop management. With 

automated response for simple to understand formulations, it has proved to be stable over a 

variety of crop management systems and input data characteristics, providing practical 

applications as a decision tool at several adoption stages. 

With the typical volume of data currently available in family farms and producers 

associations, the field median Yi can already be used to rank the opportunity in fields per 

farm. If a fair distribution of samples is available, the farm median Yi can also be used to rank 

the opportunity in farms per region per season via the aggregation of information. 

As more data became available, a broader scope of practical applications can be foreseen. 

With more seasons of information across a crop rotation, the field crop median Yi would 

support the ranking of opportunity in crops per field. With even more specialization having 

many determinations by season, the Yieldex would give an opportunity ranking in crops per 

season per field. The Yi could not systematically support the ranking of individual season 

samples per field as initially expected due the lack of more comprehensive data sets. 

Therefore, this yield monitor based index directly helps farmers at intermediate phases of 

technological adoption. On the other hand, the analysis of the average Yieldex per field over 

multiple seasons has shown suitability to support future whole-farm management investments 

in technology.  

The research in this chapter addresses the lack of cost-effective automated methods to assess 

the within field variability in crop production. Once implemented as an open Web Service 

available for farm managers and technical service advisors, it can offer a pragmatic decision 

support tool. 

Apparently, incomplete data gathering procedures in asymmetric field shapes have mostly 

influenced index outliers. For this reason, the use of protocols for exploratory yield data 

analysis and specific software applications for yield data management are reinforced. 

Present thresholds have been standardized to 3 Australian agroclimatic zones, requiring data 

from different contexts (biophysical and managerial) in order to standardize a general index 

for pragmatic decision support. 
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The Yi simplifies the parameterisation of the magnitude and spatial structure yield variability 

components, as in relation to the preliminary opportunity index formulation. However, it does 

not address any aspect of the opportunity associated with the economic-environmental 

cost/benefit of SSCM adoption.  
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CChhaapptteerr  55  
  

  

  

AAppppllyyiinngg  tthhee  vvaarriiaabbiilliittyy  iinnddeexx  ttoo  rreemmoottee  aanndd  pprrooxxiimmaall  sseennssoorr  ddaattaa  
 

 

Summary 

The investigation in this chapter aims to help the development and validation of methods that 

could effectively quantify and rank the degree of inherent, manageable production variability 

within a field. The applicability of the methods used in the quantitative crop yield variability 

index, the Yieldex (Section 4.5.2) is tested using alternative input datasets generated by remote 

and proximal monitoring devices commonly used in SSCM. The potential for assessments using 

indices obtained from less invasive surveys is evaluated, showing the methods to be robust and 

providing quantitative and ranked correlations between all datasets. Using these different indices 

could be very useful in supporting more efficient within-field variability management via in-crop 

growth monitoring data or soil parameters that are independent of management practices. The 

main evaluation uses datasets of crop reflectance imagery and soil ECa gathered on 14 broad-acre 

fields from the 80 considered for yield data in Chapter 4. The best correlated vegetation index 

between imagery and interpolated yield data was chosen for each field for the process of 

determining the opportunity index from the imagery. Final indices from imagery (Ii) and soil ECa 

(Si) are correlated with yield index absolute values (Yi) for field-year analysis, and with mean 

yield index values from all seasons per field for farm-field analysis. Importantly, both new 

applications of the index have shown an ability to incorporate both the magnitude and spatial 

nature of the encountered production variability in a manner that matches the physical 

understanding of the data produced by the respective sensing systems. The Ii calculations appear 

to be most useful in single season assessment between paddocks and farms. Si results suggested it 

to be a better indicator of the ‘opportunity’ realised in the final crop yield expected across 

seasons. Finally, the Si and Ii show potential for use in situations where no yield monitor data is 

available. 
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5.1 - Introduction 

Conceptual decision-tree diagrams related to the “null hypothesis” concept (Whelan & 

McBratney, 2000) have recently been described to the level of individual field-operations 

(Fountas et al., 2006). Still, limited attention has been given to quantitative methods evaluating 

the spatial production variability, once restricted to statistical analysis (Gangloff et al., 2004; 

Reyniers et al., 2006) or visual interpretation of interpolated maps (Taylor et al., 2003), and 

usually over-parameterised (Cox et al., 2006). Still, the extraction of management information 

from SSCM monitoring activities is a crucial issue for Australian growers, in order to increase 

efficiency in crop management as a means for profitable and sustainable farming. 

Following on from the work on Chapter 4, the application of the opportunity index developed for 

use with yield monitoring systems, the Yieldex (Yi), could be the restricted by an adoption of 

harvester-mounted yield monitors which remains relatively low. In addition, available monitoring 

devices mapping other crop production influencing factors could offer the ability to assess the 

scale of within-field variability using less invasive sensing technologies that may prove useful on 

many farms.  

This chapter addresses the potential use of alternative input data sources for the Yi methods, 

given that results using yield monitor data have readily reflected the scale of yield variability. 

The investigation aims to help in the process of developing a decision support system for 

differential crop management by examining index input options other than yield data, which 

could cost-effectively quantify and rank the degree of inherent, manageable production 

variability within a field. The basic idea is that it would be ideal if such assessment could be 

undertaken using non-invasive remote or proximally sensed data gathered either external to farm 

operations or apart from harvesting procedures. There are three main hypotheses on the 

application of the variability index in this research. Firstly, the proposed methods should be 

robust and stable enough to quantify field variability responses from different data monitoring 

sources. Secondly, there is a potential for using less invasive monitoring methods that would be 

suitable for more pragmatic variability assessments and could support both initial PA adoption 

and mid-season evaluations. Finally, variability responses which are based on soil properties 

could help to explain within-field variations in yield that are independent of optimal management 

practices and the more random seasonal impacts such as hail, pest and frost damage. 



 125 

 

5.2 - Remote information: what can we see from far above? 

From classic passive reflectance scanners, through multispectral and higher resolution satellite 

and active radar or laser sensors, to more recent aircraft-based hyperspectral imagers, the 

potential for remote sensing has been keenly explored in agricultural crop management. Over 35 

years of technological development have been required to reach the present standards of 

commercial products and analytical capabilities that may serve as pragmatic tools in operational 

management. Well documented literature supports the stepwise evolution of sensor platforms and 

the improved capability of information extraction for regional production systems (Kalluri et al., 

2001; Kalluri et al., 2003; Ferencz et al., 2004), for small-scale crop inventories and yield 

estimations (De Wit & Clevers, 2004; Chuan et al., 2007; Prasad et al., 2007), and for precision 

agriculture (Reyniers et al., 2001; Seelan et al., 2003; Reyniers et al., 2006) 

Up to now, applied research has been mostly focused on crop yield forecasting (Kalluri et al., 

2003; Hayes & Decker, 1996; Cox et al., 2001; Ferencz et al., 2004; Prasad et al., 2007), 

generally using the support of crop canopy growth and vigour index assessments as a source of 

parameters for crop grow models. Typical vegetation indexes are derived from relationships 

between spectral signatures mostly related to canopy biophysical predictors (e.g., vegetation 

density and vigour, chlorophyll and light absorption, soil water availability). The most widely 

used applications make use of the Normalised Difference Vegetation Index (NDVI), as detailed 

in Section 1.3.1.2, where indices are obtained from coarse spectral resolution imagery for yield 

averages in large areas within a province, a county or an agronomic region (Hayes & Decker, 

1996; Ferencz et al., 2004; Qingyuan et al., 2007; Prasad et al., 2007). 

Although improvements have been made on direct imagery distribution to farmers (Kalluri et al., 

2001), imagery data for quantitative crop modeling at local scales is still facing requirements of 

higher accuracy, reliability and timeliness in delivery for broader use in SSCM applications 

(Moran et al., 1997; Lamb & Brown, 2001; Ferencz et al., 2004; Lee et al., 2007). However, a 

new generation of remote sensing imagery based on inexpensive digital narrow-band cameras 

deployed on platforms such as a mobile high-lift crane or remotely-controlled helicopters may 

provide additional options for PA applications for yield predictions (Lee et al., 2007) or weed 

management (Lamb & Brown, 2001). 



R.P. de Oliveira - Contributions Towards Decision Support for SSCM. 

 

 126 

Investigations applied to site-specific management have also evaluated new variations of spectral 

imagery derived indexes, commonly described in relation to spectral responses of specific crop 

biophysical parameters (Daughtry et al., 2000; Haboudane et al., 2007; Chuan et al., 2007). Some 

of the vegetation indices which are further untroduced in Appendix 5 (e.g., NDVI, TRVI, PCD, 

PPR, GNDVI, OSAVI, MSAVI, TVDI) have been further applied as potential sources for spatial 

assessment of crop variability and delineation of management zones (e.g., Shanahan et al., 2001; 

Boydell & McBratney, 2002; Zarco-Tejada et al., 2004; Adams & Maling, 2004; Reyniers et al., 

2006). The capability of aircraft-based crop reflectance information supporting field-level 

nitrogen recommendations has been explored by Flowers et al. (2000) in wheat and corn rotation 

and in corn and legume rotation by Mulla et al. (2000). Multi-spectral scanners (MSS), similar to 

satellite instruments, have also been used on integrated aircraft and GPS platforms to obtain 

agricultural field imagery for the evaluation of crop health (e.g. TRWIS III in MacDonald et al. 

(1996) and GERDIAS 3715 in Broge et al. (1997)) and weed management (CASI in Johnson et 

al., 1996). The CASI system was also used by Protz et al. (1998) to study early season imagery to 

detect variations in agricultural landscapes at a spatial resolution of 1 m. Recently, additional 

technologies also include new multi-sensor platform and either tractor mounted or handheld 

sensors for soil, canopy, and nitrogen; like: the Greenseeker® mapping systems (NTech 

Industries
©

, www.ntechindustries.com/greenseeker-home.html), Cropcircle
®

 (Holland Scientific 

Inc.
©
, www.hollandscientific.com/products.html), and N-sensors (e.g. ALS Yara International

©
, 

www.yara.com/products_services/fertilizers/ support_services/ support_tools/index.aspx). 

For site-specific weed and disease management, imagery can also serve for detecting the 

proportional coverage as an indication of weed or infestation patch size and distribution based on 

the contributing percentages in each pixel (“weed” or “non-weed” and “infested” or “non-

infested”). Johnson et al., 1996 used 1.8 m pixel resolution imagery from the Compact Airborne 

Spectrographic Imager (CASI) scanner taken from an elevation of 1200 m to evaluate vineyard 

health relative to phylloxera infestation. Lamb & Brown (2001) present a comprehensive review 

on the application of remote sensors for mapping weeds in crops and highlight the potential of 

new hyper-spectral airborne imagery for precision weed management, as offering higher spectral 

and spatial resolution, timeliness of delivery, and flexibility for re-visit frequency or specific sub-

field monitoring. However, the cost of using these sophisticated systems for the detection of 

weed patch proportion and distribution may still be restrictive to surveys over broad-acre 

paddocks. Lamb & Brown (2001) also suggest that weed management research must concentrate 
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on quantifying the sensitivity of remote-sensing systems for detecting weed density and patch 

distribution, at point at which the use of the Yieldex methods my be useful. Based on the 

description of sensor properties and previous results, the evaluation of several vegetation indices 

to characterize the within-field variability using available datasets of airborne multispectral 

imagery, with sensors for visual (RGB) and near-infrared (NI) reflectance, appears suitable in this 

study. Therefore, the specific equations for the determination of the indices used in this work are 

listed in Appendix 5 (Table A5.1). 

5.3 - Proximal information: what can we grasp from near the surface? 

A geophysical approach for penetrative environmental investigations using electromagnetic 

proximal sensors, which respond to apparent soil electrical conductivity (ECa), is now being 

frequently applied in precision agriculture. This technique has over the last 15 years proved 

useful to soil mapping, offering some advantages over sparse and costly soil horizon core 

sampling and traditional lab analysis. This more efficient and timely monitoring approach 

generates higher spatial resolution datasets that can support more accurate spatial interpolations 

(Sudduth et al., 1995), better characterize the degree of within-field variations in several soil 

properties (Corwin et al., 2003), and delineation of management zones (Cockx et al., 2004). 

Electromagnetic fields are well suited as a source for determining soil properties to different 

profile depths which are useful for agricultural practices (McNeill, 1992). This “on-the-go” 

technology has also been used to direct soil sampling schemes that have proven useful for yield 

prediction (Brenning et al., 2006). Commercially available instruments can be of two types 

(Sudduth et al., 2003), an electrode-coulter-based contact sensor (e.g., Veris 3100) or induction-

based non-contact sensors (e.g., Geonics EM31 and EM38). These tools have been evaluated and 

their typical responses to agricultural soil properties at distinct depths compared for use as input 

into operational-level decision making. They have been applied to a wide range of agricultural 

operations such as prediction of soil-water regime in Canada (McBride & Bober, 1993); salinity 

management in Western Australia (Bennett et al., 2000); and characterization of production 

systems across the north-central USA (Sudduth et al., 2005). Sudduth et al. (2003) concludes that 

each type of commercial ECa sensor has its own operational advantages and disadvantages. 

Electromagnetic Induction (EMI) instruments can provide an indirect indicator of important soil 

physical and chemical properties through correlations with factors that influence soil conductivity 
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such as soil moisture availability; soil salinity; soil texture; and the presence and type of clays 

(Brune & Doolittle, 1990). In addition to the characterization of relatively constant factors 

affecting soil ECa, Eigenberg et al. (2002) have related temporal changes in available soil 

nitrogen with a time sequence of ECa maps suggesting that this measurement could be useful to 

identify temporal variations in soluble nitrogen. The potential of ECa information to match the 

pattern of spatial variation in grain yield has also been investigated due to its correlations with 

soil properties (texture and moisture availability) that vary considerably across the landscape 

(Jaynes et al., 1993; Sudduth et al., 1995; Corwin et al., 2003; Taylor et al., 2003). 

A comprehensive evaluation of depth-weighted responses between different ECa measurements 

(i.e. Veris 3100 and EM38) and soil clay content and CEC is given in Sudduth et al. (2005), 

where highly contrasting correlation results were associated with differences in soil parent 

material, levels of organic matter, drainage classes, profile layering and variations in crop 

management. A great variability is also observed in correlation coefficients between ECa and 

grain yield data (Sudduth et al., 1995), which were related to annual climatic differences. A 

similar analysis for corn and soybeans in Jaynes et al. (1993) shows negative correlations in dry 

years, having no significance found in a year with more optimum precipitation patterns. Studies 

have shown that relationships between ECa and crop yield may vary both spatially due to soil 

differences, and temporally due to climatic and managerial differences (Sudduth et al., 2005). 

EMI readings under different management and soil physical properties are not directly 

comparable (Sudduth et al., 2001). Results from Corwin et al. (2003) show strong correlation 

coefficients between EM38 surveys at different depths and profile distribution of soil salinity, 

with a higher coefficient (r = 0.81) for vertical dipole orientation (EM38V). Corwin et al. (2003) 

suggest EM38 surveys as a pragmatic means of characterizing three-dimensional distributions of 

soil salinity and conclude that ECa analysis should not be conducted in a one to one comparison 

of absolute readings, as measurement discrepancies only permit ranks on a relative basis. To 

overcome this measurement discontinuity limitation Brening et al. (2006) have proposed a 

geostatistical approach to rescaling single field measurements to a common scale for adjacent 

fields by minimizing the root-mean-squared discontinuity error between fields using local 

kriging. This linear scaling approach has relatively reduced the discontinuity error of kriging 

across field boundaries (17%) within a single year; however it was limited to very similar 

conditions of crop management. 



 129 

Finally, access to proximal sensor data is becoming more widely available and their use in a 

quantitative index on production variability seems an obvious choice. The ECa variation based 

index can potentially overcome problems of ranking distributions of absolute ECa values relative 

to individual field measurements. 

5.4 - Methods 

The Yi methodology is used with datasets of crop reflectance imagery and soil ECa gathered on 

broad-acre fields where Yi results have also been calculated from historical production data. The 

use of historical production data reflects the ‘opportunity’ captured in past seasons based on the 

associated crop type and management interactions. For the process of determining the 

opportunity index from imagery (Ii), the best correlated vegetation index between imagery and 

interpolated yield data was chosen for each field as defined from previous work (Boudal & 

Whelan, 2007). The opportunity indices computed from the imagery (Ii) and soil ECa (Si) were 

then compared with the Yi results calculated from the corresponding yield monitor data. Finally, 

an overall analysis of results reinforces the Yieldex response sensitivity to environmental 

properties and the intrinsic characteristics of the data source, potentially responding to distinct 

crop growth influencing factors. 

5.4.1 - Data preparation 

Within the time frame for the yield monitoring datasets (1997-2006) previously used in Chapter 

4, it was possible to match one year of ECa monitoring data and a couple of seasons of imagery 

datasets for at least two fields in 7 of the farms. The farms are distributed within three agronomic 

regions, i.e. South Australia (SPAA – Rayville Park, Clifton Farm, and Brook Park); Riverine 

(Grandview and Glenmore); and Northern NSW (CFI - Bearbung-Kiewa and Tarnee). In each of 

the 14 fields, one survey for each of three different ECa measurements was available. Two 

proximal sensors, EM31 and EM38, were used on the same day during the pre-season (either in 

2004 or 2006) for measurements of EM31 in vertical position (31V) and EM38 in both vertical 

and horizontal dipole orientations (i.e. 38V & 38H). Related imagery data for the 14 fields was 

gathered with airborne Advanced Visible and Near-Infrared Radiometer (AVNIR) sensors 

(Specterra ®) at Zadocks’ Stage 30 in the crop development. For details on the decimal code for 

the growth stages of cereals refer to Zadoks et al. (1974). The temporal crop reflectance imagery 
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data set included 33 field-year samples, from 2003 to 2006; with at least two years of derived 

vegetation indexes for each field. A list of grain crops with their respective number of field-year 

occurrences includes: wheat (20), canola (4), barley (3), faba bean (3), chick pea (1), triticale (1), 

and field pea (1). 

Soil ECa and crop reflectance imagery data files have been organized and processed for 

variability assessment in the same fashion as described in Sections 4.4.1 and 4.5.1, for file folder 

structures, outlier data clean up, and analytical software procedures. Data pre-processing 

procedures have followed data clean up steps described by Taylor et al. (2007) in a protocol for a 

cost-effective approach in SSCM adoption. 

Imagery pre-processing procedures for spectral and geometrical adjustments were conducted in 

ERDAS Imagine software (© ERDAS Inc.). In order to provide proper correlation analysis and 

fast processing of individual field variability averages, original imagery datasets were cropped to 

actual field boundaries and randomly sub-sampled to a maximum of 35,000 observations per 

field-season using shapefiles of field boundaries.  

After pre-processing ECa datasets, the number of measurement points per hectare varied 

minimally across fields with a maximum difference of 10% in total number of observations pre 

hectare between all individual fields. There was an average density of 100 observations per 

hectare across the data set. This characterizes the ECa data as a more density-stable, yet coarser 

resolution, input set compared with yield monitor datasets. Yield data densities were up to 8 

times larger (i.e. field “Black Flat” with 33,713 yield observations against only 4,270 ECa 

measurements), with sampling differences between seasons up to 82% for individual fields (i.e. 

field “WC” ranging from 8,320 yield observations in 2002 to 46,932 in 2004). These differences 

arise due to changes in observation cycle time and/or harvest speed. The variation present in the 

ECa input set could not be related to field dimensions and appears to be much less influenced by 

gathering artefacts or monitoring gaps. The size of the individual field ECa datasets varied from 

2,590 to 18,700 observations respectively in fields “Top D” and “Field 44”. This range of data set 

size did not compromise computation performances for the soil ECa based index (Si). 

5.4.2 - Additional imagery dataset 

For a wider examination of the most relevant vegetation index as a source of field variability 

assessments, an extra imagery data set is used including fields not matching the ECa data 
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availability. Crop reflectance monitoring from 2003 to 2006 was available for 32 additional 

fields. This expanded data set for 46 fields, including 87 field-seasons, served as data input for 

better comparison between different vegetation indices, composing a more diverse and balanced 

input with more crop types per farm, more field-seasons per region, and more vegetation indices 

per season.  

This data was used in a systematic evaluation of four vegetation indices per field-season of 

available airborne AVNIR, for which a summary of the equations are introduced in Appendix 5. 

Imagery data was processed according to algorithms previously defined in JMP
©

 by Boudal & 

Whelan (2007), and full references for the vegetation indices considered may be found on several 

comprehensive reviews (e.g. Baret et al., 1994; Bannari et al., 1995; and Haboudane et al., 2007). 

The Ii determinations, a total of 348 in all, used input data from the three commonly used 

vegetation indices (NDVI, PCD, and PPR) and a fourth vegetation index chosen from the best 

vegetation index as suggested in previous work (Boudal & Whelan, 2007) that evaluates the 

correlations between imagery and yield monitor kriged maps, from the same datasets, using 9 

different vegetation indices (NDVI, GNDVI, PCD, PPR, PVR, VI, OSAVI, MSAVI, and TRVI) 

as summarized in Table A5.1. Imagery data tables were organized by field-seasons using JMP 

statistical software in order to formulate the best vegetation index from original spectral numbers 

from the Red, Green, Blue, and Near-Infrared bands. For 24 samples, where the suggested best 

vegetation index matched one of the three commonly used (i.e. NDVI, PCD, and PPR), the 

OSAVI index was used instead. 

5.4.3 - Correlation between indices from different monitoring sources. 

This investigation applies methods developed using variogram parameters for quantitative 

analysis of the crop yield variability index, Yieldex (Yi), proposed in Section 4.5.2.  The concept 

is to quantify the degree of within-field variability in within-season crop or soil as a function of 

the magnitude of variation (Mv) and the cohesion of spatial variability patterns relative to the 

present ability of variable-rate machinery to react (Sv). Multivariate correlations between 

variability indices computed from yield data (Yi) and from the alternative input datasets, ECa (Si) 

and vegetation index (Ii), are evaluated. Value ranges and means for the variability indices 

constructed from different inputs (Si and Ii) were expected to validate the stable response and 
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index distribution thresholds previously observed for index values (Yi) calculated from 10 years 

of yield monitoring data.  

Correlation coefficients will also provide a means of evaluating the suitability of remote (crop 

reflectance) and proximal (soil ECa) sensors as optional sources of quantitative information for 

ranking the degree of production variability across fields and farms. It would be very opportune if 

ranked field variations from less invasive surveys could indicate variations reflected in harvesting 

data. 

For the imagery index (Ii) correlations, the best correlated vegetation index between imagery 

from each field and the corresponding interpolated yield data was chosen for the Ii calculation. 

The indication of the best vegetation index by field-season is given by previous work (Boudal & 

Whelan, 2007) that used the same monitoring data and vegetation indices here considered, 

comparing each field-year yield map with associated maps from the 10 individual vegetation 

indexes kriged to a common grid. Variogram parameters from the best vegetation indices were 

obtained from the best-fit theoretical variogram model for the process of determining Ii. 

Opportunity index values from the imagery (Ii) and soil ECa (Si) are compared with yield index 

results (Yi) by individual absolute values and individual index ranked-position. Correlation 

coefficients are obtained by field-season between absolute Ii values and absolute Yi values in 

order to analyse imagery responses by region, field, season, and crop. Because ECa related 

properties are relatively stable over time, EMI surveys are usually done once per field, forcing 

correlations with absolute Si values to be considered with mean yield index values by field (Yi) 

only for region and field relationships. To support analysis of Si coefficients by crop type, 

correlations with absolute Yi values considered a constant absolute Si value by field over all 

seasons of available yield data.   

The analysis of ranked-positions by field-season used the Spearman method for correlations 

between absolute index values (Ii, Si, and Yi). This method calculates the “Spearman's ρ” 

correlation coefficient using the principle for the Pearson product-moment correlation coefficient 

for the absolute ranked position values between variables. 

Datasets were further imported to GIS (ArcMap®) for visual interpretation of new index values 

(Si and Ii). The rank of field-season maps based on each index is observed by field and compared 

with Yi ranked map overlays. 
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Analyses are expected to support questions related to the new methods, such as:  

i) Can the Yi approach be applied to data from other continuous survey technologies? 

ii) Can an imagery based index (Ii) support in-crop growth variability assessments? and 

iii) Can an ECa based index (Si) support between field assessments that are less dependent on 

best agronomic practices? 

Assessment of the significance level (α) in this work uses critical values from the evaluation table 

for Pearson’s correlation coefficients for maximum alpha value of 0.05. Correlation coefficients 

that do not match the minimum critical value associated with the number of observations for α = 

0.05 are considered no-significant. Correlation coefficients in tables of results will be highlighted 

by additional symbology indicating the significance level (α = 0.05; α = 0.02; or α = 0.01). 

5.5 - Results 

5.5.1 - Yieldex responses from different monitoring data 

The observed stable range of index values calculated from the imagery and soil ECa datasets as 

compared to that obtained from the crop yield data confirms the robustness of the process across 

data sources (Table 5.1). Table 5.2 shows a higher contribution from the magnitude component 

(Mv) in Ii, which is considered consistent with the finer resolution and response characteristics of 

the imagery data which provides more information on small scale variability. A higher observed 

contribution from the spatial structure component (Sv) in the Si is consistent with the lower 

sampling resolution and the more continuous nature of soil properties being detected by soil 

sensors. This more continuous, less variable nature of the soil ECa data at the field scale 

contributes to the relative lower maximum in Mv seen in Table 5.1. 

 

Table 5.1: Yi distributions from different data sources. 

Index Minimum Median Maximum 

Yield (Yi) 1.6 5.2 17.3 

Imagery (Ii) 2.6 7.7 18.1 

ECa (Si) 2.0 3.7 9.0 
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Table 5.2: Partial correlations between magnitude (Mv) and spatial structure (Sv) components 

and final index from different data sources. 

Index r (Mv) r (Sv) 

Yield (Yi) 0.82 0.85 

Imagery (Ii) 0.82 0.71 

ECa (Si) 0.83 0.94 

 

5.5.2 - The variability index from crop reflectance imagery data (Ii) 

Correlation of imagery index (Ii) with Yi for all fields-years in all regions shows no overall 

significance, having a weak positive result (Table 5.3, r = 0.19). The correlation improved when 

individual years were examined over all regions (0.27 ≤ r ≤ 0.35), with the smallest coefficient 

for a dryer season in 2004, in particular at lower latitudes, as compared with higher correlation in 

seasons with average to above average rainfall deciles in 2003 and 2005. Analysis of Ii 

correlations of all 33 field-years by each region only shows a higher positive coefficient in the 

Riverine region (r = 0.61), where the number of field-years was the least (6). More detailed 

correlations by year and region show Ii results strongly varying in relation to seasonal and 

regional production variability (Table 5.3). These results range from negative correlations (2004 

in CFI, r = -0.77) to significant positive correlations (2005 in CFI, r = 0.99). Large differences in 

responses also appear to be related to seasonal moisture conditions with higher coefficients by 

region for 2005, when relatively higher average rainfall was recorded across all regions. 

Obviously the Yi and Ii discrepancies are seasonally dependent and potentially related to the mid-

crop development stage timing of the imagery observation. Adverse impacts on crop performance 

closer to the end of the season would be picked up in the Yi determination but not reflected by the 

Ii, potentially justifying negative correlations between them. This spread is also observed when 

determining the best vegetation index, ranging from r = - 0.39 for Ii_MSAVI to r = 0.97 for Ii_VI (data 

not shown). 

Coefficient results of the ranked correlation (Spearman’s ρ) for the same type of analysis 

described above are shown in Table 5.4. Ranked correlations by field-season may improve the 

coherence between the imagery index (Ii) and the production based index (Yi). However, overall 

and detailed ranked analysis coefficients (ρ) have not greatly improved individual results. 
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Table 5.3: Correlation coefficients by agronomic regions between Yi values computed from 

yield and Ii values from the best vegetation index by field-season. 

† 
Significant correlation for α = 0.02. 

 

 

Table 5.4: Spearman correlation coefficients by agronomic regions between ranked Yi positions 

and ranked Ii positions from the best vegetation index by field-season. 

 

 

Additional analysis of field-year samples was conducted by crop type (Table 5.5) to evaluate 

correlations between Yi and Ii to explore the potential of Ii thresholds for different production 

systems. Correlations were strong for Barley and Canola. The Barley data is only from the 

southern region (3 field-years in 2 seasons), but the significant results from Canola data spans 2 

seasons over the 3 regions. No significance was found for wheat, even though it was the most 

sampled crop across all regions (r = 0.03 for 20 field in all regions and r = 0.60 for 3 field-years 

in Riverine). Ranked correlation results by crop are presented in Table 5.6. A significant 

correlation is found for Canola (ρ = 1) across two seasons (2003 and 2004). A rank correlation 

equals to 1 show that indices are ordering the degree of variability between field-years in 

identical fashion. The individual field ranking for wheat in 2004 was also preserved (ρ = 1) for 

the Riverine plains (fields “WC”, “44”, and “WA”). 

All Regions CFI Riverine SPAA 
Year 

Field-Years r Field-Years r Field-Years r Field-Years r 

2003 11 0.35 3 0 2 - 6 -0.44 

2004 13 0.27 3 -0.77 4 0.49 6 -0.16 

2005 7 0.34 3 0.99
†
 - - 4 0.49 

2006 2 - 2 - - - - - 

All years 33 0.19 11 -0.08 6 0.61 16 -0.13 

All Regions CFI Riverine SPAA 
Year 

Field-Years ρ Field-Years ρ Field-Years ρ Field-Years ρ 

2003 11 -0.06 3 0.50 2 - 6 -0.26 

2004 13 0.37 3 -0.50 4 0.80 6 -0.14 

2005 7 0.39 3 0.50 - - 4 0.40 

2006 2 - 2 - - - - - 

All years 33 0.21 11 -0.06 6 0.71 16 -0.11 
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Table 5.5: Correlation coefficients by crop type between Yi values computed from yield data and 

Ii values from the best vegetation index by field-season. 

All Regions CFI Riverine SPAA 
Crop Seasons 

  Field-Years r Field-Years r Field-Years r Field-Years r 

barley 2 3 0.85 - - - - 3 0.85 

canola 2 4 0.96
*
 1 - 2 - 1 - 

chick pea 1 1 - 1 - - - - - 

faba bean 2 3 -0.16 - - - - 3 -0.16 

field pea 1 1 - - - - - 1 - 

triticale 1 1 - - - 1 - - - 

wheat 4 20 0.03 9 -0.06 3 0.60 8 -0.19 
§ 

Significant correlation for α = 0.01. 

Table 5.6: Spearman correlation coefficients by crop type between Yi ranked positions and Ii 

ranked positions from the best vegetation index by field-season. 

All Regions CFI Riverine SPAA 
Crop Seasons 

 Field-Years ρ Field-Years ρ Field-Years ρ Field-Years ρ 

barley 2 3 0.50 - - - - 3 0.50 

canola 2 4 1.00
§
 1 - 2 - 1 - 

chick pea 1 1 - 1 - - - - - 

faba bean 2 3 -0.50 - - - - 3 -0.50 

field pea 1 1 - - - - - 1 - 

triticale 1 1 - - - 1 - - - 

wheat 4 20 0.09 9 0.02 3 1.00
§
 8 -0.21 

* 
Significant correlation for α = 0.05. 

5.5.3 - The variability index from soil apparent electrical conductivity (Si) 

Correlations between the soil ECa indices from all sensors (Si) and the Yi by field from all years 

of available yield data did not show strong relationships, with a low overall coefficient (r = 0.16) 

when all three sensors were considered together (Table 5.7). Ranked correlation results could not 

significantly improve the overall correlation (r = 0.17) for all sensors and all regions. At the 

regional level, using data from all 3 seasons provided significant correlations only in the Riverine 

area. From the overall correlations by individual instrument measurements, the EM38H shows up 

as the best individual instrument (r = 0.45), with weak positive results for vertically oriented 

readings of EM31 and EM38. The correlations with the Si from EM38H data have also provided 

the best coefficients by region with always positive ρ for ranked position correlations (Table 

5.7). The EM38H appears to be the soil ECa based variability measure with the greatest potential 

to match the final index from the actual production data 
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Comparisons between Si and Yi have been useful in identifying which sensor orientation and 

depth is most suitable, with the proviso that measurements were only taken at one time. For a 

detailed Si seasonal examination of sensor by year, sensor by year and region, and sensor by crop 

(respectively Tables 5.8, 5.9, and 5.10), individual Yi for all seasons per field were compared 

with a constant Si value for each of the three sensors per field. Results in Table 5.8 report the 

correlation of ECa based index (Si) as presenting a clear, strong seasonality. Coefficients were 

mostly positive but ranged from significantly negative in 2006 (r = -0.95) to significantly positive 

in 1998 (r = 0.62), and better correlated with the Si_38H index. Higher correlations are observed 

for all sensors in years of average to very much above average rainfall (i.e. very wet for 1998 and 

average for 1999 and 2001). While not statically significant due to the sample number, the 

EM38H orientation provides consistently stronger correlations. In general, the higher correlation 

values are observed in the wetter seasons (i.e. 1998, 1999, 2001, and 2005). The Spearman 

ranked correlation has once more added very little. It mostly improved the correlations for the 

vertically oriented measurement with seasons of below to very much below rainfall deciles. 

Examples are the ranked coefficients for 2002 and 2004 (Table 5.8).  

Additional to the observed seasonality, analysis by region and year has indicated that coefficient 

contrasts are also regional. The Si_38H provided the strongest correlations for the majority of years 

across all regions (Table 5.9), only showing negative correlation for 2004 (dry year) in the CFI. 

ECa surveys in vertical orientation (Si_31V and Si_38V) only showed comparable correlation with 

the Si_38H for the dry seasons of 2002 and 2004 (Table 5.9). 

 

Table 5.7: Correlation coefficients, by sensor and region, between average Yi (Yi), by field, 

and Si values from EM31V, EM38H, and EM38V monitoring data. 

Si_All EM Si_31V Si_38H Si_38V Region Fields 
r ρ 

    Fields 
r ρ r ρ r ρ 

CFI 12 -0.35 0.04     4 -0.52 -0.20 -0.13 0.40 -0.50 -0.40 

Riverine 12 0.93
§
 0.71

§
     4 0.93

*
 0.80 0.95

†
 0.80 0.94

*
 0.80 

SPAA 18 -0.22 -0.22     6 -0.36 -0.37 0.33 0.14 -0.52 -0.54 

All Regions 42 0.16 0.17     14 0.03 0.06 0.45 0.42 0.09 0.06 

* 
Significant correlation for α = 0.05;

 † 
Significant correlation for α = 0.02; and

 § 
Significant correlation for α = 0.01. 
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Table 5.8: Correlation and ranked correlation coefficients (r and ρ), by year, between Yi and 

Si values from EM31V, EM38H, and EM38V monitoring data. 

* 
Significant correlation for α = 0.05;

 † 
Significant correlation for α = 0.02; and

 § 
Significant correlation for α = 0.01. 

A comparison of Si values between years for the same region shows a smaller median standard 

deviation (median sd = 0.31) than the spread of Si values between regions in the same year 

(median sd = 0.55 for 2003 and median sd = 0.83 for 2004). The SPAA data includes a larger 

number of samples in all years, accounting for the majority of negative correlations for vertical 

orientation readings (EM31V and EM38V) in contrast with positive correlations for the EM38H. 

While for the Riverine data, only positive correlations are presented from correlations with all 

EM measures (Table 5.9). The CFI region accounts for a limited number of samples that don’t 

show any significant correlation, presenting the highest variation in correlation results between 

different EM sensors (median sd = 0.60) when compared with average standard deviations for 

SPAA (median sd = 0.33) and Riverine (median sd = 0.26) data. The Si_38H correlations have a 

much greater contrast in results from all regions and years (median sd = 0.44) than indices of 

vertical oriented measures (Si_31V median sd = 0.10 and Si_38V median sd = 0.07), but the least 

variation in results between all regions with Si_38H median sd = 0.29, against Si_31V median sd = 

0.31 and Si_38V median sd = 0.34.  

Results of Si coefficients by crop were obtained using a constant ECa index by sensor per field. 

The Si_38H correlations were stronger for all crops over the other ECa sensor orientations (Table 

5.10). Individual Si sensor coefficients, in particular for Si_38H, were always greater than overall 

Si_All EM with individual field-year Yi. This more specific analysis shows that variation in ECa 

indices has become less random, beginning to show some coherent patterns relating crop to 

Si_All EM Si_31V Si_38H Si_38V Year Fields 
r ρ 

    Fields 
r ρ r ρ r ρ 

1998 12 0.62
*
 0.63

*
 4 0.68 0.80 0.71 0.80 0.49 0.20 

1999 21 0.49
*
 0.22 7 0.46 0.21 0.57 0.39 0.43 0.25 

2000 30 0.01 -0.07 10 -0.02 -0.24 -0.06 0.02 0.10 0.20 

2001 27 0.19 0.20 9 0.10 0.07 0.58 0.52 -0.01 0.02 

2002 33 0.14 0.24 11 -0.02 0.20 0.44 0.46 0.02 0.11 

2003 42 0.27 0.33
*
 14 0.33 0.33 0.27 0.34 0.23 0.35 

2004 39 0.27 0.41§ 13 0.20 0.50 0.35 0.37 0.30 0.40 

2005 30 0.13 0.12 10 -0.06 -0.12 0.46 0.47 0.10 -0.01 

2006 6 -0.95
§
 -0.88

†
 2 - - - - - - 

All years 243 0.15§ 0.21§ 81 0.09 0.17§ 0.30§ 0.36§ 0.09 0.15§ 
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seasonal weather variations in specific years or regional rainfall conditions. Faba Beans and 

Canola have shown strong positive relationships with all sensors, with the best individual 

response from Si_38H.  

The EM38H was also the highest correlated sensor for the other crops. The strong positive 

correlations were also related to years of relatively dryer conditions in all regions. Most of the 

Canola and Faba Beans samples were either from 2001 surveys in the Riverine plains, with below 

average rainfall deciles, or from dry 2002 surveys in the CFI region, with very much below 

average rainfall deciles. Only Chickpeas have provided non significant negative correlations with 

all sensors (Table 5.10), however showing much stronger ranked correlation coefficients (ρ). 

Once more, low Si coefficients for wheat could be observed, with maximum coefficient (r = 0.23) 

for Si_38H with well supported analysis (42 field-year samples in 10 seasons). Sorghum 

coefficients were of strong significance, with very high positive values for all sensors (Table 

5.10), which matches the agronomic conditions of this summer crop being strongly influenced by 

soil moisture characteristics. All Sorghum samples are from the CFI region in the farm “Tarnee", 

fields “BT” and “Comet B”, and only three seasons under variable rainfall distribution ranging 

from average to above average rain fall deciles, in 2001 and 2005, to very above average rain fall 

deciles in 1998. 

Table 5.9: Correlation coefficients, by year and region, between Yi and Si values from EM31V, 

EM38H, and EM38V monitoring data. 

* 
Significant correlation for α = 0.05. 

Si in SPAA Si in Riverine Si in CFI  
Year Fields (31V) 

r 

(38H) 

r 

(38V) 

r 

Fields (31V) 

r 

(38H) 

r 

(38V) 

r 

Fields (31V) 

r 

(38H) 

r 

(38V) 

r 

1999 4 -0.13 0.44 -0.40 2 - - - 1 - - - 

2000 4 0.02 0.38 -0.27 4 0.25 0.19 0.53 2 - - - 

2001 4 -0.32 0.37 -0.49 4 0.76 0.81 0.55 1 - - - 

2002 6 -0.40 0.42 -0.51 4 0.60 0.62 0.78 1 - - - 

2003 6 -0.06 -0.04 -0.20 4 0.93
*
 0.91

*
 0.79 4 0.04 0.08 -0.25 

2004 6 0.60 0.15 0.49 4 0.82 0.87 0.78 3 -0.55 -0.79 -0.89 

2005 5 0.03 0.74 -0.17 1 - - - 4 -0.07 0.58 0.31 
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Table 5.10: Correlation and ranked correlation coefficients (r and ρ), by crop, between Yi and 

Si values from EM31V, EM38H, and EM38V monitoring data. 
* 

Signif

icant 

correl

ation 

for α 

= 

0.05;
 

† 

Significant correlation for α = 0.02; and
 § 

Significant correlation for α = 0.01. 

5.5.4 - The Ii compared among commonly used vegetation indexes 

For the larger imagery dataset (87 field-seasons) used in the systematic evaluation of the Ii 

determinations, results have shown significant correlations for two of the common indices (Ii_NDVI 

and Ii_PCD) (Table 5.11). The Ii_PPR was the least correlated across regions except for SPAA, 

where it presented the only positive ranked correlation among generally weak negative 

correlations across the indices. The Ii_NDVI and Ii_PCD have shown to be very suitable alternatives 

for variability monitoring in CFI and Riverine regions, with Ii_PCD having a better ranked 

correlation in both. Regionalism is again clear in this analysis, with strong positive correlations 

for all available Ii in Riverine, moderate relationships for most of the indices in CFI, and no 

significant relationships at all in SPAA. In contrast with previous ranked correlation analysis, 

Table 5.11 shows improved correlations for all vegetation indices. High positive correlations 

have shown a good potential for indices obtained from less common crop reflectance indices, 

such as Ii_TrVI and Ii_PVR (respectively r = 0.81 and r = 0.76). Of the indices trialled, only the 

Ii_MSAVI index gave for a negative correlation (r = -0.32).  

Other suitable applications of the Ii_NDVI values may include the prediction of final crop variation 

or the timely support for short-term variability assessment. Alternatively, the potential in the Ii 

use may be further computed with alternative vegetation indices such as the Ii_TrVI and the Ii_PVR, 

which have proved highly correlated matching the final production variation even if with limited 

number of observations.  

 

Si_All EM Si_31V Si_38H Si_38V Crop Years 
Field-

Years r ρ 

Field-

Years r ρ r ρ r ρ 

barley 5 21 0.03 0.06 7 -0.09 -0.07 0.43 0.36 -0.23 -0.14 

canola 6 45 0.51 0.48 15 0.52* 0.51* 0.58* 0.59* 0.43 0.36 

chick pea 5 15 -0.18 -0.39 5 -0.06 -0.15 -0.39 -0.56 -0.36 -0.87
*
 

faba bean 4 15 0.62
†
 0.60

†
 5 0.59 0.67 0.81 0.87

*
 0.55 0.15 

sorghum 3 12 0.93
§
 0.79

§
 4 0.97

*
 0.89 0.97

*
 0.89 0.97

*
 0.89 

wheat 10 126 0.05 0.06 42 -0.06 -0.05 0.23 0.23 0.01 0.02 
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Table 5.11: Correlation and ranked correlation coefficients (r and ρ), by region, between Yi 

and Ii (NDVI, PCD, PPR and the best vegetation index) from all available imagery 

data (field-season samples).  

* 
Significant correlation for α = 0.05;

 † 
Significant correlation for α = 0.02; and

 § 
Significant correlation for α = 0.01. 

5.6 - General discussion 

Yi results are calculated from historical production data and so reflect the ‘opportunity’ captured 

in past seasons based on the associated crop type and management interactions. The methods 

developed have responded with stable ranges of absolute index values (Table 5.1) from input 

data with completely different characteristics (e.g., distribution histograms, density of 

observation, spatial resolution, survey frequency, stationarity, crop growth stage, and physical 

process response). In addition to the robustness and flexibility of the final index response, both 

new applications of the index (Ii and Si) have shown an ability to incorporate both aspects (Mv 

and Sv) of the encountered production variability in a manner that matches our understanding of 

the agronomic process involved and the nature of the data gathered by the respective sensing 

systems (Table 5.2). For example the EMI data is expected to show lower Mv than the imagery 

data due to physical differences in the attributes being observed. The EMI data should show a 

higher Sv due to the differences in sampling resolution. 

The Si appears to be a more relevant indicator of the potential ‘opportunity’ realized in the final 

yield than the Ii. While the Si result for the overall correlation (all years and regions) was 

marginally lower than that of the overall imagery correlation (Table 5.3), it was always positive 

and more strongly correlated in all regions (Table 5.7) when individual ECa instruments were 

analysed. Further analyses of coefficients by region, year, sensor and crop have suggested 

All Regions CFI Riverine SPAA Vegetation 

Index 
Samples 

r ρ 
Samples 

r ρ 
Samples 

r ρ 
Samples 

r ρ 

NDVI 87 0.36
§
 0.39

§
 56 0.27

*
 0.32

†
 13 0.68

§
 0.44 18 -0.14 -0.13 

PCD 87 0.33
§
 0.38

§
 56 0.25

*
 0.37

§
 13 0.67

†
 0.52 18 -0.07 -0.02 

PPR 87 0.08 0.12 56 0.11 0.14 13 0.36 0.24 18 -0.13 0.08 

OSAVI 24 0.35 0.30 13 0.12 0.16 2 - - 9 -0.09 -0.08 

MSAVI 9 -0.32 -0.28 7 -0.16 -0.11 1 - - 1 - - 

GNDVI 6 0.30 0.75 5 0.49 0.82 1 - - 0 - - 

VI 6 0.19 0.37 3 -1.00
§
 -1.00

§
 1 - - 2 - - 

TrVI 5 0.81 0.90
*
 4 0.86 0.80 0 - - 1 - - 

PVR 3 0.76 0.50 1 - - 2 - - 0 - - 
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seasonal relationship patterns for specific crop-region-rainfall combinations. They have also 

shown a high correlation for the Si_38H with Yi, including strong positive coefficients over the 

majority of region, season, and crop comparisons (Tables 5.8, 5.9, and 5.10). These results are 

interesting in light of the penetrative depth of ECa surveys using the EM38H, which indicates 

higher correlations between soil variation in the root zone and final production variability. 

The relevance of Ii calculations to final yield harvested in a paddock appear to be very specific to 

paddock and season. Overall correlations of the imagery index (Ii) in the 3 regions only showed 

weak and not always positive correlations (Table 5.3). Specific correlations for the most used 

vegetation indexes (i.e. Ii_NDVI, Ii_PCD, and Ii_PPR) were systematically lower than Si_38H 

coefficients. Still, the Ii has shown potential for more specific analysis with greater data 

availability. The correlation analysis of common vegetation indices over the full available 

imagery dataset (87 field-seasons in Table 5.11) has indicated this imagery based variability 

assessment as a valid optional approach for middle-season management decisions. The value of 

this imagery index increases as a pragmatic decision support if imagery gathering becomes 

cheaper, spectral resolution advances, and novel crop reflectance indices can be validated. 

With the evolution of remote sensing technologies, a higher spectral and spatial resolution 

combined with a lower cost and flight mission flexibility will play in favor of routine mapping 

and decision support. Therefore, the Ii can be foreseen as a tool to improve the assessment for 

variation in plant, or weed, development and spatial distribution. Temporal differences of 

variability index values from imagery data (Ii) in-crop could be assessed by determining the Ii 

from images taken weeks apart. This variation in indices combined with knowledge from 

common growth rates of crop and weed, time of emergence, differences in vigor and differential 

stages of inflorescence would give farm managers the ability to monitor the effectiveness of past 

or current management strategies and dynamically adjust chemical and fertilizer spraying 

requirements. Attending research requirements from the weed management literature, the Ii could 

deliver effective means of quantitative assessment of weed patch distributions, which can 

improve weed identification and the understanding of weed’s emergence and growth behavior. 

Also in the light of new multi-sensor platform technologies like the Greenseeker® mapping 

systems, temporal series of variability indices, which would be determined for pre-, early-, mid- 

and post- season, could offer a pragmatic tool for adaptive operational management, supporting 

the analysis of in-season progress in spatial patterns and crop growth limiting factors.  
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The Si may be more useful in a general long-term assessment, for which multitemporal 

assessment of soil variation indices would only be relevant when considering sensors of more 

dynamic soil properties (e.g. soil pH or water and nitrogen availability). In contrast, the Ii would 

be useful in a single season comparison and particularly under conditions of good growing 

conditions. Such assessments would provide valuable information in ranking fields for further 

investment in site-specific management technologies or in-season variation monitoring.  

The use of these indices in crops other than broad acre would also be appropriate. The Si may be 

particularly useful in perennial cropping enterprises such as vineyards and orchards where the 

seasonal conditions and imagery capture requirements would cause less discrepancy with Yi. 

Finally, an overall analysis of results reinforces the sensitivity of the Yieldex methods to 

environmental properties and the intrinsic characteristics of the input data source. The Si and Ii 

indices show potential for use in situations where an assessment of the production variability 

between fields and farms is required, but where no yield data is available. 

5.7 - Concluding remarks 

The extraction of management information from remote and proximal fine-scale data monitoring 

activities is fundamental to the adoption of PA. The accurate measurement of within-field 

variability and the ranking of the opportunity given by the quantity and patterns of variation 

would be useful to farmers when contemplating further investment in site-specific crop 

management. Opportunity indices calculated from soil ECa and crop reflectance imagery have 

shown promise to support farmer’s decisions in instances where spatially dense data on crop 

yield are unavailable. These results suggest a new aspect in the original concept for the 

“opportunity index” Oi. Besides incorporating ecological and economic aspects for the final 

“opportunity” assessments, the within-field variability aspect could be determined using the same 

parametric methods with different monitoring sources, in accordance to specific production 

system context and/or technological adoption levels (i.e. Yi, Si_38H, Ii_NDVI, Si_31V, Ii_TrVI, 

Si_Veris3100). Comprehensive evaluation of the variability index using data from new vegetation 

indices is further suggested for research, in particular considering the Ii for GNDVI, TRVI, and 

PVR over the available Australian dataset. 
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CChhaapptteerr  66  
  

  

AA  ddeecciissiioonn  ttrreeee  ffoorr  tthhee  ooppppoorrttuunniittyy  iinn  aaddooppttiinngg  SSSSCCMM  tteecchhnnoollooggyy  
 

 

Summary 

The investigation in this chapter targets the requirements for simple tools supporting site-

specific management decisions in analysing the pathways and risks in PA adoption. It aims to 

address basic questions about the adoption of differential management technology from initial 

to advanced users by means of crop variation indices ranking the opportunity given by crop 

and soil related spatial production variability. A simple decision analysis tool is suggested for 

systematic support of farm investments in continuous differential actions, by defining 

pathways for opportunity in the use of alternative field monitoring devices. A decision tree 

model is defined according to the knowledge acquired with the use of the quantitative method 

of measuring production variation based on geostatistical parameters, as introduced in 

Chapters 4 & 5.  

It considers a pathway for the potential use of alternative field monitoring devices, 

electromagnetic induction and imagery, through their respective indices of production related 

factors; soil ECa (Si) and crop vigour (Ii), to support long term strategic decisions at initial 

phases of adoption for differential management of grain crop fields. Support for the use of 

individual yield monitoring and historical datasets is given with threshold values for single 

field-season yield variability index (Yi) and field median variation index (Y% i). This yield 

monitor based decision pathway directly helps intermediate adopters and further suggests the 

use of combined index analysis for advanced users considering in-season sort-term 

management decisions. 

The proposed decision tree model is evaluated against actual production monitoring datasets 

from historical grain industry yield monitors, crop vigour imagery, and crop related soil 

parameters in three different agroclimatic Australian regions. Results show that thresholds 

from scientific experimentation can provide indicators to guide users through a decision 

pathway.
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6.1 - Introduction 

This chapter focuses on how to incorporate new knowledge, acquired from empirical 

observations with different field variability indices, into main stream farm decision making. 

Crop production variability indices have been obtained by parametric methods from 

variogram analysis of the magnitude and the spatial structure of within-field variations as 

determined by alternative intensive monitoring devices. 

By using some knowledge gathered in the quantitative assessments of crop production 

variability, questions on the opportunity for the adoption of SSCM technology are 

systematized within practical processes of farm management. The availability of several 

spatial-related crop variation indices offers the opportunity to define optimal pathways for the 

adoption of SSCM technology. Pathways can be defined according to different stages of 

technological adoption, from initial adopters to advanced users, and supported by simple 

numerical indices normalized across different agronomic production systems. Initial adopters 

are likely to question the permanent investments in yield monitoring devices by assessing 

crop variation indices from monitoring services readily available, while advanced users would 

be searching for simple analytical tools optimizing variable-rate interventions. In addition, the 

systematic use of indices ranking the opportunity in crop variation expressed in terms of 

spatial measures can help management knowledge to be built over time, increasingly 

supporting different decision-making levels (e.g. crops per field, fields per farm, and farms 

per region).   

In this generalized adoption decision context, fundamental constraints in the decision model 

for the adoption of SSCM technology introduced by Whelan & McBratney (2000) are 

considered. In their model, the opportunity to change from uniform field management to the 

adoption of SSCM is limited by the amount of crop yield variation. In this work, the use of 

the Yieldex method (Section 4.5.2) appears suitable for determining threshold values of 

adoption pathways when comparing the opportunity in using alternative field monitoring 

devices such as: for yield monitors (Yi), soil electromagnetic induction (Si), and crop vigour 

imagery (Ii). In the decision model suggested here, the flow of decisions branch into pathways 

supporting long-term strategic decisions at initial phases of adoption and later on in-season 

operational management decisions. Decisions are supported using: a single field-season 

variability index (Yi, Si, or Ii) for farmers at initial phases of adoption; median yield variation 

index (Y% i) for farmers with some experience, or a combined analysis for farmers with 

historical investments in fine-tuning site specific actions. 
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Classic decision analysis graphs (Howard, 1964) are used in modelling meaningful patterns of 

individual farm actions and agribusiness knowledge in the form of a SSCM adoption decision 

tree. Further attention to information and knowledge representation aspects in agricultural 

DSS (Section 1.4.3) are related to system design issues, which are now a well recognized 

concern in knowledge intensive farm management activities (Rosskopf & Wagner, 2005; De 

& Bezuglov, 2006; Llewellyn, 2007; Lisec et al., 2008). For this, the conceptual decision tree 

model has been also mapped into an Activity Diagram according to contemporary 

recommendations addressing unified model driven approaches and open system developments 

(Booch et al., 1999; OMG, 2001). 

The proposed decision tree represents processes assessing the opportunity for adoption of 

SSCM based on threshold values from field variability indices. It considers their correlations 

with the actual production variation associated with different crop-seasons, fields, farm, and 

regions. Thresholds have been established across historical datasets and production 

knowledge for three PA farmer groups (SPAA, Riverine, and CFI) from distinct production 

systems. According to Llewellyn (2007), this type of information can support decisions 

reducing the waiting time and/or the risk of making a premature decision about adopting new 

management strategies. A simple and straight forward decision technique guiding individual 

decisions through numerical indices is expected to contribute to improvements in information 

quality that can reduce uncertainty related to spatial crop yield variation. 

Experimental correlations between indices and actual production variation have had limited 

analysis by crop type and region due to the uneven distribution of available samples (e.g. 

field-seasons by crop). At this stage of site specific DSS developments, it seems that the 

determination of a minimum number of samples within specific characteristics to underpin an 

effective supporting tool for the optimal approach for farm management at different levels 

(e.g. strategic, tactical, and operational) is still missing. Addressing this knowledge gap, a 

tentative table defining the type of decisions, which are suitable according to a minimum 

sample population, is introduced. This knowledge management is expected to be built up over 

time, increasing the number of simpler decision steps that could be supported by individual 

farmers. The idea is that these decision processes wouldn’t necessarily require from farmers a 

comprehensive understanding of the analytical interpretation of their paddock’s variation. 

Examples of fields showing high and low adoption opportunity indices have been selected 

where different adoption pathways from the conceptual decision tree have been matched by 

actual production historical monitoring. Results from this preliminary decision approach have 
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shown promising application of the variability index method as a spatial related utility 

function for SSCM adoption decision analysis. 

6.2 - Knowledge support & decision analysis 

6.2.1 - Knowledge support in agricultural decision making 

The impact of improved knowledge management systems supporting effective farm decision-

making is well accepted by the system approach community (Wagner, 1993; McCown, 2002; 

Rosskopf & Wagner, 2005; Llewellyn, 2007). Knowledge exchange via semantic service 

networks have also been defined for the strategic framework of FAO (Food & Agriculture 

Organization), in which knowledge is defined as a function of the coverage, quantity, 

timeliness and accessibility of the information being collected, stored, and disseminated 

(Fisseha et al., 2001). 

In fact, these new system development approaches just represent practical development 

solutions for classic concepts of “strategic control” (Mintzberg & Waters, 1985). From 

decision making theory, Mintzberg & Waters (1985) suggest the importance of learning how 

managers track the realized strategies of their own organizations in order to infer researcher’s 

knowledge into streams of organizational actions. In this context, pattern discovery in 

management processes are likely to provide farmers with facilitated learning and self-

awareness of potential pathways of their own actions and related consequences over time. 

This would be well suited for intensive crop monitoring as suggested by Wong & Wang 

(2003) as a framework towards knowledge support by analysing large amounts of data with a 

mixture of continuous and categorical values. 

Wagner (1993) has explored knowledge-based systems as composed either by several 

production rules or production functions, where only hybrid solutions could support some 

improved farm performance. Garcia et al. (2001) suggested two reinforcement learning 

methods considering a sequence of crop management decision problems modelled as a 

Markov Decision Problem (Kennedy, 1988), from which only very simple decision rules were 

considered appropriate. These were also lacking hierarchical representations that may 

distinguish overall planning and operational activities. Cortés et al. (2000) present an 

overview of Environmental Decision Support System (EDSS) development that have been 

impacted by AI techniques (e.g. neural networks, decision trees, knowledge engineering, 

genetic algorithms, machine learning). They conclude with a selection of successful 
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applications of the AI technology that have reached the implementation phase but never 

effectively getting to the market of routine farm management processes. 

A recent review of tools for farm management decision support is presented in Matthews et 

al. (2008), who were searching for explanations for the lack of success in aDSS. They identify 

suitable aDSS functionalities and suggest best methods for a tool to be deployed, and 

undertook market research on the nature of requirements and commercialization potential. 

Matthews et al. (2008) reinforce that even facing practical limitations, end-users are still 

recognizing the functionality that a proper aDSS may offer to farm management. 

 

6.2.2 - Decision analysis tools 

Decision analysis is a decision theory approach that promotes choosing the decision of which 

the consequences have the maximum expected utility (Howard, 1964), and it has been used to 

represent business knowledge in a variety of applied fields (Howard, 1977). Decision trees are 

a commonly used graphical model for decision analysis problems, and they are here 

understood as a pathway that maximizes the probability of achieving an aspiration level, i.e. 

the opportunity for adoption of differential management technology. Although there are 

concerns that these tools may not improve decision making (Klien, 2003), decision trees have 

for a long time been accepted as a simple and practical decision tool in decision theory 

(Fischhoff et al., 1982) and in applied fields of agriculture (Breman & van Reuler, 2002). 

There are basically three levels of decision-making as defined in the science of management 

decisions (Simon, 1960). They can be characterized in the time and/or space dimensions 

usually describing: i) short-term operational control decisions, mostly involving predictable 

task operations; ii) periodic tactical control decision, involving monitoring activities to rectify 

problems; and iii) long-term strategic decision, often requiring analysis for new methods and 

investment in technology. Similar farm management information flow has been suggested in 

the PA context for different levels of SSCM decision making (Fountas et al., 2006). 

Information flow diagrams introduced in Fountas et al. (2006) represent a hierarchical 

decision framework for several generic farm management functions.  

In particular for complex multistage decisions, decision trees are systematic tools widely used 

for direct contact with farmers knowledge and simplified agronomic decision-making (Struif 

Bontkes & Wopereis, 2003). Decision trees have been suggested among technologies helping 
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to increase the efficiency of use of fertilizer nitrogen (Giller et al., 2004). Also at field level, 

they have been used for simple field assessment analysis, allowing the translation of 

production indices as a form of discussion between farmers and technology development 

teams (Giller, 2000); and for associations between averages of corn yield, management and 

soil information (Lapen et al., 2001). At the whole farm management level, conceptual 

models have been introduced by Fountas et al. (2006) for a multilevel farm management 

information flow and by Perini & Susi (2004) for development of a DSS for integrated 

production agriculture, however no key evaluation is suggested that maximises a probability 

function for the best decision action. At landscape level De & Bezuglov (2006) suggest an 

UML Activity Diagram representing the tree of actions related to decision processes for 

efficient nutrient management, as modelled for a Web knowledge base service. Similar 

standards in system design have been introduced in Lisec et al. (2008), addressing modelling 

diagrams for the activities related with procedures in rural land transactions in a system that 

provides land market analysis for basic spatial planing. Other agricultural applications using 

UML diagrams to represent crop management activities have been introduced by Blackmore 

et al. (2002) concerning a better control of autonomous tractor behavioural transitions in a 

State Diagram; and by Nash et al. (2006) representing an Activity Diagram for soil testing 

activities in a Web field control service for PA that uses the AgroXML schemes optimizing 

vector data exchange. 

The term “decision tree” is also related to the applied data mining field of predictive models, 

in particular to cluster classification techniques. Extensively used for natural resource 

assessments (e.g. forestry, soil, and irrigation systems), this data mining technique has been 

also applied for site-specific management related research, although is not the subject of this 

research. Often using NDVI or another index from imagery data, some examples of this 

approach for the mapping of field level variations include: different crop and weed 

populations (Yang et al., 2004); weed and nitrogen stress detection in corn (Karimi et al., 

2005); soil texture (Zhai et al., 2006); categories of water stress, presence of weeds and 

nitrogen application rates in corn plots (Waheed et al., 2006); economic benefits of site-

specific decision rules for nitrogen fertilization (Wagner & Schneider, 2007); sunflower yield 

affected by infestation (Gutiérrez et al., 2008); in-season N management (Shanahan et al., 

2008).  
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6.3 - A decision tree for the adoption of SSCM technology 

6.3.1 - Factors influencing the decision of technological adoption 

Basic constraints for the adoption of SSCM 

Conditional factors influencing the opportunity for the adoption of PA technology have been 

investigated in Whelan & McBratney (2000), and related to the assessment of both economic 

and environmental components that affect the risk perception associated with the management 

of complex cropping system. In their premises, the null hypothesis of PA implies that the 

variation of soil and crop requirements within a field has been properly characterized across 

space and time dimensions. Whelan & McBratney (2000) provide an example of the PA 

decision process employing a study of field variability, where a simple model based on crop 

yield and the economic imperative is represented in a management decision-tree for the 

adoption of SSCM (Figure 6.1). In this model, differential treatment strategies are examined 

as an option based on: i) the degree of variation; ii) the cause’s of variation; and iii) the 

suitability for management intervention. 

Addressing the proper characterization of spatial and temporal crop production variation, this 

study is focused on basic adoption questions from farmers concerning investments in new 

SSCM technology. Basic questions like: “Should I stay in uniform field management or 

should I go for within-field differential management?” are here directly associated with the 

assessment of the spatial and temporal variation in crop production and influencing factors. 

The opportunities for continuously variable treatment or the delineation of management sub-

units will be determined as a function of the spatial dependency observed in intensive 

monitoring datasets. 

As observed in Whelan & McBratney (2000), the type of answers required by present 

adoption questions associated with differential crop management are mostly complex, 

variable from field to field, and as yet unclear or limited by technological and agronomic 

knowledge gaps. In which case, simple decision tree models are likely to support and suggest 

decisions under high risk perceptions, and provide potential pathways for the optimal 

technology adoption. 
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Figure 6.1: A management decision tree for SSCM in Whelan & McBratney (2000). 

 

Different adoption phases 

As previously detailed in Section 1.3.1, agricultural decision making processes may be 

categorized in different ways. They are generally abstracted either in terms of a spatial scale 

(e.g. Bouma, 2000; Hayman, 2004; Blackmore et al., 2007); a managerial scale (e.g. 

McCown, 2002; Fountas et al., 2006); or a time frame (e.g. Struif Bontkes & Wopereis, 2003; 

Sadler et al., 2007). Struif Bontkes & Wopereis (2003) for instance, suggest a simple 

categorization defining farm decisions through time frames that are also related to three levels 

of managerial decisions, typifying them as of: i) short-term (e.g. when and where to apply 
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fertilizer); ii) medium-term (e.g. choice of crop variety); or iii) long-term (decision to start 

new management ). 

In contrast, an overview of a number of DSS given by Struif Bontkes & Wopereis (2003) 

provides a guide to overcome constraints of a variety of tools, showing a common agreement 

by several authors when distinguishing five phases of a decision making process. These 

decision phases can be understood as reassembling the continuum of five main process for 

adoption of different components in SSCM as illustrated in Whelan (1998), and they are 

defined within a research development continuum including: 

• The strategic site selection phase, in which suitable zones are identified for a particular 

technology satisfying a number of criteria; 

• The diagnosis/analysis phase, in which problems are identified and analysed;  

• The options identification phase, in which options for improvement are identified and 

evaluated (e.g. financial consequences and risk analysis); 

• The evaluation phase, in which results obtained in the field are evaluated and interpreted, 

also supporting the improvement of tools; and 

• The technology diffusion phase, in which the likelihood of success of a technology is 

evaluated for different sets of environmental and management conditions. 

In this study, a simplified categorization of three SSCM adoption phases is used covering the 

relevant decision phases defined above, as a cyclical process. Farmers in the process of 

adoption of SSCM are then identified as initial, mid-term, or advanced adopters. Initial 

adopters of PA technology are likely to assess the risk of long term returns, the need for 

historical yield monitoring interventions, and the evaluation of alternative monitoring devices. 

Another aspect in initial phases of adoption is related to spatial referencing for field level 

operational processes, in which attention is mostly given to machinery related efficiencies 

which are not considered in the decision context investigated here (e.g. GPS accuracy, auto 

steering, robotic harvesting). Mid-term adopters are involved in tactical management 

decisions, observing the opportunity in the spatial and temporal variation of crop production 

at specific fields. Advanced adopters have historical investments in the technology, being able 

to consider in-season tactical management decisions, based on temporal indices, and strategic 

decisions prioritizing fields for future investments. 

A contribution to the establishment of the necessary amount of observations that may be 

required to minimize risk in site-specific at different decision processes is suggested in Table 

6.1. This table tries to quantity the minimum number of specific field monitoring observations 
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that are required to support different adoption phases, according to decision scale and type. It 

is observed that for several farm management levels, the knowledge about the required 

information to support specific decisions is not available (na), while other datasets have been 

empirically or preliminary suggested. 

Considering the response of the different indices, it is suggested that new multi-sensor 

platforms and simple sensors are to be considered in early phases of adoption. From results 

discussed in the next section, it is possible to observe that the combined use of different 

monitoring devices can support an improved analysis of the spatial related crop variation even 

when field yield index averages only reflect average suitability for the opportunity in the 

adoption of differential crop management (e.g. fields Road and 44). Therefore the minimum 

of 7 observations including different measures of production variation is suggested for 

intermediate phases of adoption, such as for supporting field to farm management levels of 

tactical decisions. As an example of the potential of developing normalized variability indices 

by crop, the minimum of 30 field-seasons is suggested (as computed in Section 4.5.3) for the 

determination of wheat crop threshold values supporting specific crop decisions.  

 

Table 6.1: Tentative table of data requirements at different SSCM adoption phases. 
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The importance of temporal assessments 

For advanced adopters, the use of combined measures of field and crop variation can be 

considered by using several alternative monitoring devices. A multi-platform monitoring 

system can support high dimensional information analysis, by observing several influencing 

factors at different spatial and temporal scales of correlation. This complete overview analysis 

is then suitable for precise in-season action, considering spatial and temporal variation in crop 

growth, pre-season soil variation, and post-season crop yield variation. 

Preliminary research in Shanahan et al. (2008) supports this concept when addressing the 

spatial variability within the growing season in order to synchronize nitrogen inputs to timely 

match crop nitrogen uptake and minimize levels of inorganic soil nitrogen formation before 

crop uptake. In a dynamic field intervention context, Shanahan et al. (2008) also suggest a 

promising response from ground-based active-light reflectance measurements converted to 

several crop vigour indices. The analysis of in-season variability factors in wheat is suggested 

in Vrindts et al. (2003) by the integration of crop and soil properties correlations with 

continuous monitoring of nitrogen inputs, temporal NDVI, and pre-season ECa information 

layers. Pena-Yewtukhiw (2008) gives another example using airborne imagery for 

determining an appropriated observation scale, when analysing patterns of NDVI spatial 

structure for early predictions of wheat canopy variation. Another temporal aspect is 

investigated in Massey et al. (2008) using long-term multiple-crop yield-map for the 

generation of profitability maps, considering the potential for different investment returns. 

6.3.2 – A preliminary decision-tree for the opportunity in adopting SSCM 

The opportunity for the adoption of differential crop management is addressed in a simple and 

generic decision support model that follows a tree-structure of sequential questions providing 

optimal pathways for technological adoption. The gradual and cyclic adoption of different 

monitoring technologies follows threshold values from variability index obtained in Chapters 

4 and 5, providing the basis for pathways regarding the spatial-temporal production variation. 

Spatial-related crop variation indices can support questions in the process of SSCM adoption 

(Whelan & McBratney, 2000), in which the opportunity to change from uniform management 

to SSCM is limited by the amount of crop yield variation. Therefore, a quantitative analysis of 

the magnitude and the spatial structure of within-field variations are used to determine 

optimal pathways for the opportunity of adoption of site-specific management technology. 
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Pathways are abstracted according to different stages of technological adoption, considering 

the availability of alternative monitoring devices. 

A basic assumption in the suggested decision model is that crop variation is a key signal that 

differential management might be warranted, which considers the economic imperative of 

optimizing crop production as a major management decision. The opportunity for differential 

treatment is then examined as an option based on: i) different technological adoption phases 

(initial adopters and advanced users); ii) the degree of field variation in relation to average 

thresholds from historical field monitoring datasets; and iii) the suitability for management 

interventions using alternative data source devices (yield monitors, EMI, or imagery). 

The use of the Yieldex method (Section 4.5.2) seams suitable when determining specific 

threshold values of adoption pathways that may consider alternative field monitoring devices. 

Indices are calculated using parameters from crop production variogram analysis from: yield 

monitors (Yi); soil electromagnetic induction sensors (Si); and crop vigour imagery (Ii). 

Figure 6.2 introduces the logic for the decision process employed towards a strategic 

evaluation of field variability. The flow of decisions branches into pathways guiding long-

term strategic decisions at initial phases of adoption and in-season operational management. 

Decisions are supported according to the data availability and accessibility as: i) single field-

season variability index (Yi, Si, or Ii) for farmers at initial phases of adoption; ii) median yield 

variation index (Y% i) for farmers with some PA experience; or iii) a combined analysis for 

farmers with historical investments in fine-tuning site specific actions. The decision tree uses 

threshold values from field variability indices, having considering their correlations with the 

actual production variation associated with many different crop-seasons, fields, farms, and 

regions. Thresholds have been established across 10 years of historical datasets from broad-

acre grain crop fields from three Australian farmer’s associations in different regions. 

From initial adopters to advanced users, a simple numerical decision tree underpinned by 

relevant crop variation indices should be understood as a systematic tool that can be directly 

used by farmers, promoting improved management knowledge, learning on crop variation 

analysis and simplified agronomic decision-making. Initial adopters are likely to question 

permanent investments in yield monitoring by assessing crop variation indices from 

monitoring services readily available. Based on normalized index thresholds and correlations 

across different agronomic production systems, first time adopters may first invest in 

alternative monitoring devices and the associated indices to help decide about future 

investments in yield monitoring equipment. 
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Figure 6.2: An opportunity decision-tree for the adoption of SSCM technology. 
*
 Different index thresholds (Yi, Si, and Ii) obtained from average values from datasets introduced in Chapters 4 and 5. 

It is considered that a minimum of three years of yield monitor data by itself is usually 

required to show whether or not there are specific field areas with consistently better or poorer 

yields. This consideration addresses advanced users that would be searching for simple 

analytical tools optimizing farm level variable-rate interventions, ranking priority fields for 

differential management. Finally, the systematic use of indices ranking the opportunity in 

crop variation can help management knowledge to be built over time, increasingly supporting 

different decision-making levels (e.g. crops per field, fields per farm, and farms per region). 

6.3.3 - Testing the decision-tree 

Although the ultimate assessment and treatment of crop variation is expected to be undertaken 

in real time at the scale of minimum equipment restrictions, current agronomic and 

technological developments are mostly limited to the identification of relevant layers of 

information to assess distinct management areas within a paddock. The present knowledge 

gap has in one direction inhibited adoption by farmers, and for the research side restricted the 

number of available observations that could support models characterizing crop production 

variation. 



R.P. de Oliveira - Contributions Towards Decision Support for SSCM. 

 

 158 

 

It is clear that the levels of feasible decisions are directly related to the availability of well 

distributed observations across different fields, crops, seasons and regions. Such a database is 

presently unavailable. Limited adoption of PA and the potential data waste due to non-expert 

equipment operation have also restricted a wider scope of analysis. 

Still, the empirical experimentation conducted in this research has shown a great variation of 

index correlation outcomes, from which some particular conclusions can be drawn. Specific 

opportunities from results in the Australian production areas considered can be further 

mapped in the decision model, extending a particular case of the general decision-tree to 

different production systems as suggested in Figure 6.3. Although based on a limited number 

of samples, highly significant correlations where observed with imagery responses to all 

regions using the vegetation index for Photosynthetic Vigour Ratio (PVR) and with all EMI 

measures (31V, 38V, and 38H) in sorghum crops. Other crops like barley, canola, chick pea, 

and faba bean were detailed as extending decision pathways related to the opportune use of 

NDVI and/or EMI information as good predictors for the management opportunity given by 

the final production variation for specific crops and regions (Figure 6.3). 

For the specific cases of agronomic regions in Australia, thresholds were considered 

according to particular cases of high significant correlations between alternative indices and 

the actual production index. As for the example, the EM38H data that was a significant 

predictor for faba bean (87%), in particular in the Riverine region (93%), while EM38V and 

EM31V appear to respond better to chick pea (87%) and canola (60%) respectively across all 

regions. For the NDVI index, particular cases were observed by region for barley (85%) in 

SPAA, canola (96%) and wheat (80%) in Riverine. The capability for decision making using 

these quantitative indices for crop production variation will increase when more 

homogeneously distributed datasets became available. 

Feasible SSCM decisions are likely to require a significant number of field monitoring 

interventions to match practical management processes and reduce the risk perception in 

equipment investments from optimising tactical and operational actions. Knowledge is still 

being built in incorporating tailored on-field trials research developments within routine 

procedures for efficient farm economic, ecologic, logistic, and spatial management. 
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Figure 6.3: Extending the opportunity decision-tree for specific areas in Australia. 

*
 Different index thresholds (Si and Ii) obtained from average values from datasets introduced in Chapter 5. 

6.3.4 – A system design of actions and decisions in SSCM 

This last methodological section introduces the use of standard recommendations for generic 

system development technics in the software industry, which has been applied in the design of 

knowledge management systems (Breuker & van de Velde, 1994; Schreiber et al., 2001). The 

Activity Diagram is part of the UML methodology (Booch et al., 1999; OMG, 2007) as 

previously introduced in Section 3.4 and presents a logical system overview of activities and 

decisions. In this sense, the diagram describes actions concerning pathways of decision 

processes for the adoption of SSCM technology and complements the conceptual framework 

for knowledge support, introduced in Section 3.5, with a business view of the specific farm 

management decision-making. 
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Figure 6.4 suggests a new method of application of the Activity describing the basic flows of 

activities and core decisions when supporting the analysis of the opportunity for differential 

crop treatment. The idea is to add a knowledge system representation perspective that could 

enrich the understanding of the practical flow of the possible adoption pathways described in 

the decision tree suggested in Figure 6.2. It is also understood that the diagram representation 

in Figure 6.4 offers a simple way of communication with farmers for participative actions 

either validating or extending the decision pathways proposed. 

The Activity Diagram is a visual representation of any system activity basically used to 

describe either flows of data or decisions between activities. It is based on standard UML 

notations, as described by the Java IDE (Interactive Development Environment) used for open 

development in this research (NetBeans IDE 6.1, www.netbeans.org). This approach favours 

both the cooperative exchange of the conceptual design API’s (Application Public Interfaces) 

for model reuse or change, and the automatic object class generation of software source 

codes. However, this system design approach has received limited attention within the 

agronomic sector, in particular to PA developments, being relatively behind the commercial 

and industrial sector (Papajorgji, 2007).  

Few examples address the representation of practical decision-making models in agribusiness, 

in particular as related to field level abstractions (De & Bezuglov, 2006; Nash et al., 2007; 

Lisec et al., 2008). These authors have mostly described system architectures related to new 

agronomic proposes in WEB service developments. De & Bezuglov (2006) introduce a data 

model supporting a Web module for a knowledge base in nutrient management. This model 

description also includes an Activity Diagram that supports decisions of nutrient allocation 

that account for spatio-temporal actions at a field level. Relative to data flows for intensive 

field soil testing, Nash et al. (2007) illustrates an Activity Diagram for optimization of open 

geospatial Web services in PA. Nash et al. (2007) show the potential of this design technique 

when dealing with parallel treads when exchanging field level maps across three decentralized 

Web map services: a geological survey agency; a topographic mapping agency; and a soil-

testing consultant. An example of Activity Diagrams representing comprehensive decision 

flows is given by Lisec et al. (2008) for rural land transaction procedures. Although less 

related with site-specific management questions, Lisec et al. (2008) shows how several Use 

Case designs composing many simultaneous parcel related transactions could be summarized 

into two easy to read diagrams. 

 



 161 

Figure 6.4: Activity diagram representing synchronized or concurrent actions of different 
actors involved in decision-making for the opportunity of SSCM adoption. 

The Activity Diagram shown in Figure 6.4 describes the farmer interaction with assessment 

actors (software modules) of a knowledge support system, thus: soil related field variation, 

crop vigour related imagery variation, and final production related crop yield variation. The 

system interaction is abstracted through two main phases of technological adoption as also 
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considered in the decision model pathways described in Section 6.3.2. The conceptual system 

interaction is designed to automate field intensive data management procedures and the 

computation of variability indices. In conjunction with the Sequence Diagram introduced in 

the preliminary framework design previously introduced (Section 3.5.2), the Activity 

Diagram in Figure 6.4 provides a clear picture of the synchronism and concurrence of actions 

and decisions in processes for the adoption of differential management 

6.4 - Applying the decision model 

From the overall dataset, fields monitored by several different sensors were selected from all 

different agronomic regions, when showing high and low Yieldex means over three (3) or 

more cropping seasons (including occurrences of non-stationary crop variation) are used as 

critical cases to describe variation in production. Selected fields of high mean yield variation 

include: the Road field, at Brook Park farm (SPAA); the BT field, at Tarnee farm (CFI); and 

fields 44 and WC, respectively at Grandview and Glenmore farms (Riverine). Low mean 

yield variation fields include: the Blackflat field, at Clifton farm (SPAA), and the Swamp 

field, at Kiewa farm (CFI). 

Figures 6.5 to 6.10 present kriged yield maps interpolated from historical monitoring datasets 

of the selected fields, showing the response of indices related with the actual production 

variation. Using the ArcGIS® environment for georeferencing and information overlay, 

colour palettes were standardized across all available crop yield ranges for individual field-

season observations, ECa, and vegetation index maps. This standardization facilitates the 

visual interpretation of the spatial variation in crop yield magnitude. Mean index values by 

field are displayed against yield mean value maps, which were obtained from raster 

calculations over all seasons by field. 

Through the observation of maps, quantitative indices, and related follow up of branches in 

the decision-tree, three types of analysis are possible as will be presented in the following 

sub-sections. General responses of alternative sensors (i.e. EMI & Air-borne Imagery) can be 

observed in relation to crop and region. A whole-farm analysis that includes selected fields in 

the SPAA region is feasible due to recent reports on economic returns (SPAA, 2008) 

advanced PA adoption farms (i.e. Brook Park and Clifton Farms). Finally, a detailed 

observation of the information extraction obtained by the use of the indices delineates the 

decision flow of each individual field. 
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6.4.1 - Response from alternative sensors 

The overall response for EMI indices (Si) was positively correlated (Table 5.8) with the final 

crop production variation index (Yi), in general with better responses for the EMI 38H index 

(Si_38H) as observed for fields WC (Figure 6.7) and 44 (Figure 6.8) in the Riverine region. 

The field Road (Figure 6.5) is one example of low correlations between Si_38H and Yi values 

mostly particular to wheat crops (r = 0.23; Table 5.10). Yield maps for wheat seasons in 

Figure 6.5 (i.e. 1999, 2002, 2003, and 2005) poorly match patterns of ECa variation either in 

spatial structure or in the magnitude of variations, even if the EM38H index (Si_38H = 4.7) 

conforms to the decision function for ECa variation measures (Si ≥ 4) and is significantly 

higher than other EMI observations for the same year in Road (Si_38V = 2.2 and Si_31V = 2.5). 

These findings could support a threshold to decisions on the use of EM38H as a predictor of 

final wheat production variation, which could also support similar decision pathways if 

observing dissimilar variation patterns between EMI and wheat yield maps for field 44 

(Figure 6.8). Another good Si correlation, but now considering low figures for Yi and Si 

(Figure 6.10, Faba Beans 2004, average yield, and EMI 2004), is shown in field Blackflat 

where no clear pattern association can be observed. In Swamp (Figure 6.9) the higher 

temporal variation appears once more to indicate lower opportunity for the isolated use of Si, 

whereby the incorporation of imagery indices in analysis is mostly opportune. 

In relation to overall imagery indices, low variability correlations of NDVI to wheat yield (i.e. 

2003 and 2005) in crop production from the Road paddock in the SPAA region (14%) can be 

observed in poorly correlated variability patterns shown in imagery samples from field Road 

(Figure 6.5). This contrasts with the significant similarity between patterns in the Field Peas 

yield map and the 2004 NDVI imagery, also reflected on index values in both cases (Yi = 4.2 

and Ii = 8.6). These observations would lead to decision pathways where EMI measures 

would be assessed in combination with the in-season temporal aspect given by the NDVI 

monitoring in order to evaluate the opportunity assessing spatial-temporal production 

variation. This indicates a higher opportunity in temporal yield variations for this field, which 

matches the bigger multi-year average yield index than most of the individual crop-seasons 

(Figure 6.5). A similar temporal analysis is also suitable to field 44, which presents a strong 

temporal variation in production in a region (Riverine) that correlates better with NDVI 

predictions (Figure 6.8, i.e. canola 2003, wheat 2004, barley 2005, average yield and NDVI 

2004) and requires a lower threshold for the opportune use of imagery (Figure 6.3, Ii = 6.5). 
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Another example of short-term management capability offered by imagery variability indices 

is given in the field BT (Figure 6.6), showing imagery indices for 2005 (Ii = 9.4) and two in-

season flights in August (Ii = 9.8) and September (Ii = 16.1) of 2006. These properly indicate 

the opportunity for adoption also shown in high Yieldex values for both the final wheat 

production variation in the same year (Yi = 6.4), and the median Yi (Y% i = 8.3) over 5 years 

(1998, 2001, 2003, 2005, 2006). Although showing relative spatial pattern stability in 

production (Figure 6.6) that is also characterized with high measures of Soil ECa variation 

(Si_38H = 5.7, Si_38V = 5.9, and Si_31V = 6.8), questions remain in this field when considering the 

scattered nature in patterns of variation and a temporal stability in large yield magnitude 

variations (from 2 to 6 ton/ha per year). Applications of the Ii may include timely predictions 

of final crop variation or short-term variability assessment, which should consider the 

computation of alternative vegetation indices as previously discussed in Section 5.5.4. 

6.4.2 - Response from whole-farm economic returns 

The more detailed decision model suggested in Figure 6.3 can be better analysed for whole-

farm management decision pathways using field observations for the South Australian region 

(SPAA), where reports on the economic returns of investments in site-specific management 

for broad-acre farms include overall figures for Brook Park and Clifton Farms (SPAA, 2008). 

These figures could be used to evaluate decision-tree outcomes for fields in advanced stage of 

SSCM adoption. Returns for the Brook Park Farm (1,600 ha) are estimated in AU$12.60/ha 

per year across the whole farm, that include fields Road (112 ha) and Bills (52 ha) under 

intensive field monitoring. The field Road (Y% i = 7.0) accounts for 13 multiplatform 

observations (7 yield monitor, 3 EMI’s, and 3 Imageries) from 1999 to 2005, and the field 

Bills (Y% i = 5.5) accounts for 9 multiplatform observations (4 yield monitor, 3 EMI’s, and 2 

Imageries) from 2002 to 2005. Investments in differential crop management for these fields 

can be considered as opportune, showing yield variation means around the condition of 

manageable spatial variation (Y% i ≥ 6). Accounting for long run returns (around 5 years) the 

benefits could reach the AU$62.00/ha investment break even point (SPAA, 2008). The strong 

temporal yield variation that can be observed in Road (Figure 6.5) may question the relative 

SSCM opportunity given by the spatial variation in crop yield, which is mostly characterized 

around the average Yi value, with the exception of the outstanding measure for wheat season 

in 2002 (Yi = 17.3). The strong temporal aspect in Road could suggest two farm management 

alternatives regarding the relative opportunity of spatial yield variations: an advanced 

operational decision (Table 6.1) considering in-season imagery monitoring for Road; and a 
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shift to strategic decisions towards intermediate monitoring investments in Bills, increasing 

the number of observations that can improve future decision pathways. 

The same type of whole farm analysis prioritizing fields for site-specific investments would 

support a single pathway outcome for the adoption decisions drawn out of the Clifton Farm 

(960 ha) dataset. According to SPAA (2008), PA investments of AU$64.00/ha from 1997 to 

2006 have now estimated returns of AU$37.00/ha per year (around two years to break even 

investments) that include fields Blackflat (42 ha, Y% i = 4.2 over 8 crop-seasons), Barn (40 ha, 

Y% i = 4.4 over 2 crop-seasons), and Top D (22 ha, Y% i = 5.2 over 4 crop-seasons). In this farm, a 

clear pathway is determined by highly temporal and spatially unstructured variations in 

Blackflat (Figure 6.10), diminishing adoption opportunities as shown by its lower mean 

variation index. The observed indices would prioritize monitoring investments in Top D, 

being the only field satisfying the utility function for differential management in 2 out of 4 

yield monitoring observations.  

6.4.3 - Response from multi-temporal field data 

For field Road (112 ha), an investigation phase for the adoption of SSCM (Table 6.1) that 

considers the EMI (Si_38H = 4.7) or imagery (Ii = 8.6) monitoring in 2004 would positively 

lead decisions along the pathway through thresholds (Si ≥ 4 or Ii ≥ 8 respectively) towards the 

“opportunity assessing the spatial-temporal variation” (Figure 6.3). This suggested 

management pathway of investments for intermediate levels of technological adoption, in 

2004, actually matches the opportunity given by the final production variability observed for 

wheat in 2005 (Yi = 5.9). A simulation for an intermediate decision phase would consider an 

average yield variation index across all seasons (Road Y% i = 7.0) above the conditional value 

(Y% i ≥ 6), leading pathways towards advanced levels of adoption to “instigate differential 

management”. These decision pathways for Road simulations at different management levels 

match the actual opportunity for the adoption of SSCM as shown by estimated returns around 

AU$12.00/ha recently reported (SPAA, 2008). 

Although showing significant yield magnitude variations (up to 3 ton/ha in one season) and 

some consistent patterns of variation, a closer observation of the Road dataset shows that a 

high Yieldex mean (Y% i = 7.0) is mostly influenced by an outstanding Yieldex value (Yi = 

17.3) for wheat production in 2002, which is associated with a large range in magnitude and a 

spatially well structured variation (Figure 6.5). This analysis may to some extent put in 

question the suggested opportunity for SSCM adoption in Road, perhaps accounting for 
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knowledge gaps on the proper assessment of temporal variations across several crop seasons 

that could overtake the opportunity given by the stable and manageable spatial variation. 

 

Figure 6.5: Maps of the field Road dataset showing relative opportunity. 
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For the field BT (135 ha) dataset, observations from 1998 to 2006 show a relative temporal 

variation of spatial patterns contrasting with a manageable production variation, accounting 

for large ranges of yield magnitude and some stable spatial features (Figure 6.6). The overall 

assessment of the production variation has mostly shown high indices, with a mean index over 

5 crop-seasons (Y% i = 8.3) clearly driving final decision pathways towards differential crop 

management. In addition, all observations have shown indices (Figure 6.6) satisfying all 

conditional pathways (i.e. Si ≥ 4; Ii ≥ 8; Yi ≥ 5; and Y% i ≥ 6) of the SSCM adoption decision 

model (Figure 6.2). Therefore, opportunities to consider other specific multiplatform 

investments can be also observed, for examples EM38H variation patterns indicating 

persistent areas of lower and higher yield across different crops (sorghum, lentil, and wheat) 

or in-season temporal NDVI indices readily reflecting for the opportunity in wheat crop 

variation in a very dry season (2006).  

Located in the Riverine region, the field WC (100 ha) is another example of an overall 

suitability for differential management adoption (Y% i = 8.6), which presents a less intense 

temporal variation, a consistent match of ECa variation patterns with the final production 

variation, and strong correlations between high NDVI and yield variation indices. In part, 

these characteristics present a similar analysis to the one for field BT in the CFI region, 

showing conformity of the proposed decision model for production systems under different 

agronomic conditions. The kriged yield maps for field WC (1999 to 2004) in Figure 6.7 show 

in the 2000 an average yield variation (Yi = 5.5) of wheat, that can be observed with a large 

range in the magnitude of variation (up to 5 ton/ha) contrasting with a poor spatial structure 

due to scattered patterns in yield variation. The particular decision pathway for the use of EMI 

(Si_31V ≥ 4.2) would be satisfied with EMI measures in 2004 (Si_31V = 4.6), from which visual 

matching between spatial patterns of ECa (2004) and canola yield variations (i.e. 1999, 2001, 

and 2003) can be observed (Figure 6.7). 

For field 44 (130 ha) in the Riverine region, the available dataset from 2000 to 2005 may have 

shown a less precise match between quantitative variation measures and visual interpretations 

(Figure 6.8). The overall analysis shows a strong within-field temporal variation across six 

years of diverse crop variety (canola, wheat, triticale, and barley), which mostly accounts for 

average index values. 



R.P. de Oliveira - Contributions Towards Decision Support for SSCM. 

 

 168 

 

Figure 6.6: Maps of the field BT dataset showing high opportunity for 
spatial-temporal monitoring. 
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Figure 6.7: Maps of the field WC dataset (1999-2004) showing higher opportunity. 

 

Following the analysis of adoption pathways proposed in the decision model (Figure 6.2) for 

yield monitoring investments, the field 44 (Figure 6.8) would have 5 years of initial adoption, 

from 2000 to 2004, fully satisfying annual thresholds for adoption (Yi ≥ 5) and strongly 

suggesting differential crop management over 6 years (Y% i = 6.7).  
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  Figure 6.8: Maps from the field 44 dataset (200-2005) showing higher temporal 

variation. 
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Additional monitoring investments in 2004 would have shown average opportunity given by 

soil ECa variations (i.e. Si_38H = 4.3, Si_38V = 4.1, and Si_31V = 3.9), just about to support 

differential management (Si ≥ 4), and a NDVI index (Ii = 6.5) matching the minimum Ii giving 

opportunity in crop imagery variation (Ii ≥ 8) which is latterly confirmed by a final wheat 

production variation of lower index (Yi = 4.8) (Figure 6.8). The NDVI index has strongly 

matched the average opportunity in wheat production variation, visually and numerically, just 

supporting specific decision pathways as predicted for the Riverine region (Figure 6.3). A Y% i 

= 7.0 over 6 years is influenced by an outstanding index value for Triticale in 2002 (Yi = 

17.0), otherwise mostly showing average opportunities (Figure 6.8). In face of a strong 

temporal variation in the field 44, this relative spatial opportunity could question its priority 

for new SSCM investments, once considering other potential fields of the Grandview Farm at 

initial phases of adoption, as field 19 with one year of yield monitoring (Yi = 5.6).  

 

Another way to analyse the applicability of the proposed decision model is to evaluate, over 

the available dataset for the Swamp field (113 ha), how the opportunity for adoption would 

have been better optimized by step wise pathways of adoption. The overall observation of 

maps in Figure 6.9 suggests very strong predictions from EMI and NDVI variation indices; 

however it has opportunity measures that just match thresholds towards new investments in 

spatial-temporal monitoring of crop variation (i.e. Si ≥ 4 and Ii ≥ 8). This suggests that an 

optimal adoption pathway would start with EMI and imagery monitoring in 2003 given 

support on manageable variability of canola and wheat crops in 2003 and 2004 respectively. 

Average soil and imagery variation indices in 2003 (i.e. Si_38H ≥ 3.6 and Ii= 8.9) would have 

in principle predicted a marginal opportunity in the final production spatial variation of chick 

pea (Yi_2003 = 4.9) and wheat (Yi_2004 = 4.2). Finally, a third year of yield monitoring 

characterizing a high magnitude of wheat variation of very random spatial occurrence (Yi_2005 

= 2.9) would discourage further spatial assessments (Y% i = 4.0) in face of predominantly 

temporal variations. Therefore, the opportunity for investments of in-season imagery 

monitoring for temporal assessments of crop variation would be mostly advised for this field. 
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Figure 6.9: Maps for field Swamp (2003-2005) showing higher temporal variation. 

Another example where the strong temporal variation has mostly promoted low opportunity 

for single year and average yield variations is given in field Blackflat (42 ha). The monitoring 

dataset (1998 to 2006) for this field with respective variability indices are shown in Figure 

6.10. This field is characterized by strong temporal variations for large ranges of yield 

magnitude variation, which have not shown any structured spatial variability across 8 years of 

yield monitoring (Y% i = 4.0). In addition, very low EMI and imagery indices further support a 

spatial variation mismatch observed between crop yield, ECa and NDVI maps (Figure 6.10). 

The lack of SSCM opportunity as related to spatial variations is observed in this field having 

most of the variation indices well bellow averages (i.e. Yi ≤ 5, Si ≤ 4, & Ii ≤ 8), but wheat 

yield in 1998 (Yi = 6.8). This case would suggest other field’s priority for investments as 

previously discussed in this section. 
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Figure 6.10: Maps for field Blackflat (1998-2005) showing higher temporal variation. 
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An overview of the historical adoption of SSCM technology is given in Table 6.2 for the 

selected fields, where the historical adoption of SSCM technology of several fields support 

with real numbers the threshold analysis patterns introduced in Figure 6.2. The opportunity of 

using alternative indices can be observed with the matching of decision thresholds provided 

by the decision model. Following the whole-farm analysis ranking fields by farm as 

summarized in the analysis of crop yield variation (Table 4.8) and the application of the 

decision model in Section 6.4.2, the use of the EMI and imagery datasets would characterize 

better decisions for some of the historical pathways of adoption. As an example, investments 

in the field Black Flat of Clifton Farm could be redirected to Top D paddock where the 

previous use of EMI indices would have shown a better opportunity of investments. A better 

adoption strategy would also be possible for Tarnee, where both EMI and imagery indices 

would show better opportunity for field BT rather than for Comet B or Karret, now clear after 

8 years of yield monitor investments. Other positive pathways of decision for the better 

opportunity of fields by farm using alternative sensors are given for the Brook Park and 

Grandview farms with better averages for fields that received more investments. 

6.5 - Concluding remarks 

This chapter has introduced a decision model that aims to incorporate simple quantitative 

methods within the main stream of farm decision processes to assess the opportunity for the 

adoption of PA technology. Strategic adoption pathways are associated with the opportune 

use of several field monitoring technologies that may support optimal investments in 

differential crop management. 

A decision model supporting SSCM adoption is suggested using the simple decision analysis 

technique of dendograms. The model diagram identifies particular adoption phase branches 

and describes the associated decision strategy alternatives that minimize investment risks, by 

accounting for the spatial and temporal variation in crop production. Opportune pathways for 

the adoption of site-specific management are evaluated through decision nodes where 

expected thresholds are to be satisfied by minimum indices obtained from crop variation 

assessments. From the decision nodes, outcomes branch through further decision pathways 

that determine an optimized adoption strategy as based on averaged index values obtained 

from the historical Australian datasets previously discussed in Chapters 4 & 5. 
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Table 6.2: Step-wise PA adoption using the opportunity given by different indices. 

Yield Monitor EMI NDVI 
Farm Field 

1
st
 2

nd
 3

rd
 4

th
 5

th
 6

th
 7

th
 8

th
 Y% i 38H 38V 31V 1

st
 2

nd
 3

rd
 

Road 5.0 5.8 6.8 17.3 5.7 4.2 5.9  5.8 3.6 2.2 2.5 7.3 8.7 7.5 
Brook Park 

Bills 5.7 6.3 4.7 5.2 - - - - 5.5 3.3 2.9 4.9 3.1 9.3  

BT 8.6 9.3 9.7 7.5 6.4 - - - 8.6 5.7 5.9 6.8 9.4 9.8 16.1 

Comet B 10.8 3.7 7.4 10.3 6.3 6.8 5.1 7.1 7.0 2.5 3.7 3.0 9.0 12.8  

Karret 11.0 6.2 4.1 4.4 5.7 - - - 5.7 - - - 18.1 - - 
Tarnee 

TC 6.4 3.8 9.3 5.4 7.8 7.2 - - 6.8 - - - 10.1 - - 

WC 10.9 4.8 9.8 7.3 10.1 7.5 - - 8.6 4.8 4.2 4.6 13.8 15.7 - 
Glenmore 

WA 4.1 4.0 7.7 7.5 6.4 8.3 - - 7.0 4.1 3.2 3.5 7.6 - - 

44 5.8 5.1 17.0 7.7 10.0 3.3 - - 6.7 4.1 4.3 3.9 6.5 - - 
Grandview 

12 7.0 3.7 2.7 6.6 4.5 - - - 4.5 3.5 3.4 3.3 5.5 - - 

Swamp 4.9 4.2 2.9 - - - - - 4.2 3.6 4.9 9.0 16.3 13.4 8.8 Bearbung
*
 

& Kiewa Doolies 6.7 10.5 10.6 6.2 3.8 - - - 6.7 2.0 3.3 5.4 6.5 11.4 7.6 

Black Flat 6.8 3.9 3.0 2.4 3.9 4.8 4.0 4.6 4.0 2.5 3.2 2.7 3.6 7.3 3.4 

Top D 5.2 5.2 3.8 5.2 - - - - 5.2 3.7 4.7 5.3 8.6 7.3 - 
Clifton 

Farm 

Barn 4.8 4.1 - - - - - - 4.4 - - - - - - 

* Same owner farms. 

 
The Yieldex method is used as a utility function when determining the expected value at 

specific decision nodes when addressing crop variability questions in different phases of PA 

adoption. Although the utility function is based on the analysis of several variogram model 

fitting parameters, the decision model has proved to be easy and flexible to follow through all 

its branches. This robust mathematical method that also responds to strong non-stationary 

data, once automated, can provide simple simulation numbers that may facilitate the 

individual decision process and the inference of practical management knowledge. 

A series of decision analysis using actual production variability information from selected 

broad-acre fields are discussed in Section 6.4, showing an effective decision process flow 

through all suggested pathways. Results have mostly matched the actual potential for SSCM 
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adoption as observed in spatial-temporal variations and estimated economic returns. Kriged 

production maps are displayed in single standardized legends for crop yield, soil ECa, and 

NDVI. They provided visual interpretations matching adoption pathways based on the 

opportunity indices computed from the final production data across different crops, farms, and 

regions (Figures 6.5 to 6.10). 

The ability to determine alternative decision strategies relies on a significant number of 

correlated observations. The limited datasets available with homogeneous distribution across 

crops, farms, and regions have imposed on this preliminary decision model a few branches 

that are directly related with the access to continuous monitoring technology. Aiming to 

support future efforts defining new decision tree branches for the adoption of SSCM, a 

tentative table is suggested quantifying the minimum requirements for different types of 

SSCM monitoring observations, which can support effective decision making at different 

decision scales. The availability and the improvement of this type of basic information may be 

of great support when increasing efficiency in SSCM adoption processes. 

The Activity Diagram introduced in Section 6.3.4 translates the simple decision model 

diagram into standardized notations for system modelling and design, which can facilitate 

composition and reuse of the proposed decision model. This system design diagram describes 

sequences of functional activities of the decision-making process, also illustrating the 

importance of different system functional perspectives representing the conceptual model 

abstraction. 

Finally, a simple and straight forward decision technique is presented; guiding individual 

decision-making through numerical indices obtained from actual production systems. 

Decision pathways for SSCM adoption are expected to contribute to a better quality of 

information that can reduce uncertainty related to spatial-temporal crop yield variation. 
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CChhaapptteerr  77  

  
EEvvaalluuaattiinngg  tthhee  ooppppoorrttuunniittyy  ooff  ddiiffffeerreennttiiaall  iinntteerrvveennttiioonnss  ffoorr  NNiittrrooggeenn  

aapppplliiccaattiioonn  uussiinngg  zzoonnee  mmaannaaggeemmeenntt  

Summary 

It is now widely accepted that a proper delineation of within-field areas that are subject to a 

unique combination of crop production influencing factors would allow more accurate 

management of inputs. Furthermore, the consideration of multi-temporal crop production 

responses in combination with other production factors is expected to determine zones for 

crop management that may better conform to strong temporal yield variations and minimize 

investment risk for the adoption of SSCM technology.  

This chapter addresses the evaluation of zone management methods based on k-means 

clustering and morphology-based segmentation. In particular, an integration of the watershed 

transformation, multiresolution, and grow region algorithms are applied with multiple-year 

yield maps. It is suggested that object-oriented image segmentation algorithms may support 

an optimized delineations of MZs, in particular in crop fields of strong spatial yield variation. 

An economic evaluation is conducted as a simple way of comparing zone delineation methods 

applied to field interventions for variable-rate fertilizer applications. Advantages and penalties 

to zone management of Nitrogen are suggested for procedures that consider 2, 3, and 4 

management classes. Financial advantages are based on different values per zone area and the 

occurrence or not of class area predominance. Penalties are estimated using the cost of 

Variable Rate Treatment (VRT) services as per meter of required change in application rate, 

accounting for the number of machinery crosses over the total length of borders between 

zones. Prices refer to previous work in site-specific Nitrogen intervention in wheat crops. 

Results show potential for the use of segmentation methods for optimized delineation of MZs. 

Multiresolution segmentation with a watershed algorithm has systematically resulted in 

greater net worth for differential zone management. 

Finally it is concluded that composite segmentation methods also based on object-oriented 

concepts have potential application for zone management delineations that can better support 

functional descriptions of spatial variation patterns. It is suggested that object-oriented 

segmentation could better support zone management delineations for fields of strong spatial-

temporal yield variation. 
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7.1 - Introduction 

Strategies for crop management unit delineation have long been investigated at the field level 

with the aim of improving fertilizer applications according to local differences in crop yield 

potentials. Several technological tools and agronomic management approaches have been 

considered to address this goal (Fridgen et al. 2004), mainly involving soil grid sampling 

(Sawyer, 1994; Fleming et al., 2000), image processing (Mulla et al., 2000), topographic and 

landform segmentation (Franzen et al., 1998; Martin & Timmer, 2006), crop growth models 

(Miao et al., 2006), different attribute based clustering and fuzzy classification methods 

(Fridgen et al., 2000; Van Alpen & Stoorvogel, 2000; Shatar & McBratney, 2001; Li et al., 

2007). Still, only a few studies have been undertaken to compare or evaluate this diverse 

range of solutions (Whelan, 2005). 

Early PA approaches for Variable-Rate Application (VRA) of fertilizers based on intensive 

discrete soil sampling grids have considered that all areas in a field have the same yield 

potential (Franzen et al., 1994), which could be reached by applying at each sampled point the 

optimum amount of agrochemicals or fertilizes such as Nitrogen (Ferguson et al., 1996) or 

Phosphorus and Potassium (Mallarino & Wittry, 2004). However, this approach has proven to 

be economically and operationally flawed, and it has been overcome by the idea of identifying 

within-field areas of similar yield potentials (McBratney & Whelan, 2001). 

The increasing use of proximal sensing and other new SSCM technologies has brought greater 

opportunity to delineate smaller areas within a field, which may characterize zones of distinct 

soil, slope and microclimate types (Luchiari et al., 2000). These zones are usually called MZs 

and differ from the term management classes, whereby one zone is a spatially contiguous area 

containing only one management class (Taylor et al., 2007). Approaches aiming for the 

optimal delineation of management zones have considered production influencing factors 

such as soil colour, soil ECa, crop yield, crop reflectance, and topography. Input for these 

processes have traditionally used data generated by high resolution sensors for digital 

elevation models, multiple-year yield mapping, crop canopy reflectance and soil properties 

from remote and proximal sensing.  

Statistical classification procedures that use k-means (Shatar & McBratney, 2001) or fuzzy k-

means (Van Alpen & Stoorvogel, 2000) clustering methods are commonly applied as a tool 

for delineating potential management zones. Usually applied for single field-season, this 

decision support approach often uses yield averages (Jaynes et al., 2005) with some advantage 
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in combining other crop production factors, such as soil electrical conductivity and elevation 

(Whelan & McBratney; 2003) when using PCA.  

In contrast to comprehensive single field-season studies, limited solutions have been 

suggested for the use of multiple-year yield maps. The need to consider several years of yield 

mapping is now well accepted, as its use in the characterization of MZs can minimize the risk 

associated with strong temporal yield variations (Schepers et al., 2005; Jaynes et al., 2005). 

However, methods for using multiple-year inputs are still maturing (Whelan, 2005). 

Whether to search for the optimal number of cluster classes (Vrindts et al. 2005) or for the 

number of contiguously manageable polygons (Khosla et al., 2002) is still a great matter of 

investigation. According to Fraisse et al. (1999), the optimal number of zones sub-dividing a 

field may vary from year to year as a function of weather and the crop planted. Recent results 

in Schelde et al. (2007) reinforce the lack of benefits from increasing the number of classes 

beyond four. Still, Shatar & McBratney (2001) have argued that clustering methods often 

produce non contiguous subdivisions, increasing the number of small, random zones in 

contrast to the optimal use of VRT over a few, larger areas.   

7.2 - Opportunity in zone management 

In PA, the use of delineation techniques for management zones has mostly focused on 

thresholding-based methods (Kitchen et al., 1998), mostly considered hard- and fuzzy- 

clustering. Thresholding algorithms used include: isodata segmentation (Fraisse et al., 1999), 

fuzzy dynamic thresholding (García-Pérez et al., 2001, García-Alegre et al., 2001), and several 

unsupervised clustering into a predefined number of classes (Vrindts et al. 2005).  

Simply stating, these are suggested as the pixel-based process whereby a set of entities (e.g. 

crop yield, median crop yield, soil ECa, and PCA) is divided into several clusters of similar 

class membership to each other and different from the members of the other clusters. 

According to Hartigan (1975) clustering methods very often yield different results, making 

their classification and evaluation a difficult task. Although analysed in terms of their 

computational performance (Zaїt & Messatfa, 1997), a few studies have been conducted to 

compare or evaluate the diverse range of results (Whelan, 2005). Processes using the current 

clustering have been documented in Taylor et al. (2007) in a step wise protocol for the 

delineation of site-specific management zones. 

Although a variable number of zones can be expected in a field from year to year (Fraisse et 

al., 1999), Schelde et al. (2007) uses a management zone analyst software to combine several 
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attribute maps and generate 500 zone delineations through fuzzy k-means clustering analysis. 

Results in Schelde et al. (2007) considered zones based on 2 to 8 management classes and 

suggest no benefit from increasing the number of classes beyond four (4). Their findings 

agree with earlier results in Fridgen et al. (2000), whereby no advantage of dividing a field 

into more than four management zones was obtained. 

Alternatively, hybrid segmentation approaches have been suggested (Rushing et al., 2002; 

Frucci & di Baja, 2007; Frucci et al., 2007; Wang, 2008) for generic image segmentation and 

pattern recognition studies and data mining applications in computerised food technology 

(Zheng & Sun, 2008). Many have considered the classic watershed transformation algorithm 

(Beucher & Lantuejoul, 1979; Vincent & Soille, 1991; Meyer & Beucher, 1993) in 

conjunction with associative and behavioural functions of spatial objects. Also, hybrid 

solutions usually combine standard segmentation algorithms either to conform to specific 

feature extraction requirements (Li et al., 2005) for hierarchical- (Fuh et al., 2000) and 

region- (Pitas & Cotsaces, 2000) based segmentations. 

PA experiments that use segmentation approaches are not new for operational robotic vision 

in SSCM (García-Alegre et al., 2001), but just recently has been given attention for strategic 

decisions in the delineation of management zones (Roudier et al., 2008). The watershed 

algorithm (Beucher & Lantuejoul, 1979) has been introduced to morphological image 

processing based on immersion simulation concepts originally from topography (Vincent & 

Soille, 1991; Meyer & Beucher, 1993). In morphological processing images are represented 

as topographical surfaces on which the elevation of each point is assigned as the intensity 

value of the corresponding pixel attribute (Soille, 2000). A clear explanation of the watershed 

transformation is given in Roudier et al. (2008), when modifying the original algorithm, as 

based on the gradient, with constraints of site-specific zone management. Roudier et al. 

(2008) conclude that the objected-oriented approach has proved relevant to zone delineation, 

but they highlight that the use of standard morphological-based segmentation algorithms in 

PA have to be specifically adapted to cope with over-segmentation effects 

7.3 – Evaluating an object-oriented approach to delineate management zones. 

This section describes a simple net worth assessment proposal for a single field intervention 

for variable-rate fertilizer application. This preliminary economic evaluation uses a simple 

way of looking at comparing zone delineation methods. Economic advantages and penalties to 

zone management of site-specific Nitrogen interventions with reference to grain crops are 
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suggested for comparing classic image classification and object-oriented segmentation 

procedures that consider 2, 3, and 4 zone classes. Zone management delineation methods are 

based on k-means clustering; k-means clustering with grow region; and morphology-based 

segmentation algorithms. In particular, a new composite procedure combining 

multiresolution, watershed transformation and grow region segmentations is evaluated when 

applied for multiple-year yield maps. 

Multiple-year maps are here considered as better characterizing more stable spatial and 

temporal crop production variations. Inputs for zone delineation procedures are median yield 

and first PCA component (PC1) maps that were computed over all seasons of available yield 

data from selected broad-acre grain crop fields. Methods for basic yield data organization, 

analysis, and interpolation used in this work have mostly followed preliminary procedures 

suggested by Taylor et al. (2007) in a protocol for a cost-effective approach to management 

zone delineations. However, the use and evaluation of object-oriented segmentation 

algorithms, as proposed here, have required new procedures to be prototyped in a proprietary 

environment. Although contradicting the freeware approach in Taylor et al. (2007), a trial 

version of the Developer 7® software was downloaded from the Definiens AG Homepage 

(http://earth.definiens.com), being fully operational for the procedures used in this work. 

For the evaluation of zone management delineation methods, three (3) fields have been 

selected from the historical dataset used in this thesis. Selection considered one field by 

different agronomic region (i.e. SPAA, CFI, and Riverine) and the opportunity for the 

adoption of SSCM in non-stationary spatial and temporal crop variation, as measured by the 

indices proposed in Chapters 4 and 5 (i.e. Yi, Si, and Ii). The determination for the 

opportunity to zone management follows the net worth of variable Nitrogen applications for 

broad-acre grain crop fields as suggested in Section 7.3.3.  

7.3.1 – Establishing input data for zone management delineation 

Inputs for the three segmentation processes were multi-year yield maps (Figure 7.1), as it has 

been previously suggested for yield map averages by pixel to segment a field into similar 

temporal yield patterns (Jaynes et al., 2005). This use of PCA is suggested as a technique 

showing the significance of the temporal variation altering yield spatial variations. Although 

suggested as yielding better results when combining other crop production factors (Whelan & 

McBratney, 2003) and landscape attributes (Schepers et al., 2005), PCA components are 

calculated here only for yield data as a means of facilitating comparison between results using 
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inputs of median yield and PCA maps. Results for inputs of median yield maps were analysed 

in relation to results for inputs of the first and second principal components (PC1 and PC2, 

respectively) over all years of available yield data (Figure 7.1).  

Median Yield PC1 PC2 

   
Road (112ha SPAA): 46% 27% 

  
WA (81ha Riverine): 60% 16% 

  
BT (98.6ha CFI): 64% 20% 

Figure 7.1: Multi-year yield maps of selected fields for median yield and two principal 
components considered in zone management delineation. 



 183 

The preliminary evaluation has shown however, that PC2 appears to respond more to 

machinery footprints or historical changes in management (e.g. field boundaries and/or land 

use), adding little information that can be associated to actual crop production factors. 

Therefore, no further economic evaluation considering the PC2 as input was carried in this 

investigation. 

The PCA was conducted using JMP 6.0 statistical software (SAS©, 2005), with results for 

first and second components exported as a text file. Principal components summarize the 

variation in the multivariate input for all years of yield monitoring. They are derived from an 

eigenvalue decomposition of the correlation matrix of the variables, where a component can 

be seen to represent a linear model of the multidimensional data (Esbensen, 2000).  

Percents reported for first (PC1) and second (PC2) principal components measure the amount 

of variation in the input data that has been accounted by the component. The PCs are 

calculated using least square fit, meaning that PC1 will describe the largest part of the total 

variation in the input data. PCA outcomes are imported in ArcGIS (ESRI©, 2003), whereby 

raster maps are generated and exported in compatible format (.img) for inputs in Developer 

7.0. The PC1 raster map is generated by feature to raster conversion and the median yield map 

is computed by raster calculation of yield averages by pixel. PCA components for the three 

selected fields (Figure 7.1) have accounted for PC1 and PC2 respectively as follows: 41% 

and 19% in field Road, 60% and 16% in field WA, and 64% and 20% in field BT. 

7.3.2 – Classification and segmentation using multiple-years yield maps 

This section summarizes the workflow of analysis for the evaluation of a new method of 

application that uses object-oriented image segmentation procedures in a commercially 

available IDE for image processing, Definiens Developer 7© (Definiens®, 2007), with detailed 

process tree code shown in Appendix Section A1.3. This solution has provided a powerful 

means for image object analysis and rule set development. By means of an interactive process 

design interface, rule sets could be easily prototyped and re-used to develop fast ruleware 

(image processing scripts) solutions for the three segmentation approaches considered for the 

economic net worth assessment. 

The commonly used k-means clustering was the first segmentation procedure conducted, for 

comparison with the two other hybrid solutions also evaluated on their economic response. 

Initially, k-means clustering over the histogram of inputs is executed in a statistical software 

(JMP 6.0; SAS© 2005), for the standardization of results with previous work (Whelan et al., 
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2007). Then the pixel-based class thresholding over image objects using object-based 

segmentation and classification algorithms in the IDE is performed. The chess board 

segmentation is defined with object size equal to 1, to simulate the same resolution of the 

input image as for standard pixel-based segmentations. Classification and region merging 

processes further generates k-means clustering outputs for 2, 3, and 4 cluster classes. 

Simple hybrid segmentation has been considered for the second zone segmentation process, 

which combines thresholding- and region- based segmentation algorithms. It is a simple 

extension of the previous histogram clustering process, used for k-means segmentations, with 

an additional reshaping technique for grow region that executes splitting and merging 

operations into sub-objects in the image object domain and allows growing image objects into 

a larger space (Definiens®, 2007). This process is to evaluate the potential of using object 

reshaping techniques to address issues of non contiguous zones usually produced by 

clustering methods (Shatar & McBratney, 2001; Wang, 2008). 

The third segmentation process has focused on the object-oriented image processing 

approach. It proposes an innovative composite segmentation approach that combines a 

multiresolution image segmentation method with other algorithms for watershed 

transformation and grow region, as standard versions available in the IDE. This process is to 

evaluate the potential of using a combination of image segmentation methods that could 

consider spectral and shape features of objects to improve zone management delineations, 

besides solving over-segmentation problems and seeding definitions when using the 

watershed and grow region segmentations. 

Unsupervised multiresolution object segmentation was executed with process parameters that 

could generate small size objects preserving general patterns on the input (Definiens®, 2007). 

A multiresolution segmentation can be implemented with different scale parameters and 

segment homogeneity criterion (i.e. shape and compactness). This image segmentation 

method (Baatz & Schäpe, 1999) is an effective, but proprietary, technology whose full details 

haven’t been public yet (Wang, 2008). By definition, the multiresolution algorithm applies an 

optimization procedure which locally minimizes the average heterogeneity of image objects 

for a given resolution that is determined by scale parameter constraints. The scale parameter is 

used to control the pixel merging process creating primitive objects, which stops a merge 

when the minimal parcel merging cost exceeds its power (Baatz & Schäpe, 2007). A given 

scale determines the maximum allowed heterogeneity for the resulting image objects. 

Consequently, for a given scale parameter more heterogeneous data will result in objects 
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smaller than in more homogeneous data. By modifying the scale parameter value, the size of 

image objects will vary. The idea was to generate primitive image objects out of minimum 

homogeneous areas representing the related agronomic process involved (i.e. yield 

monitoring, approximately 100 m2). This pre-processing step was expected to restrict the 

break down of areas bellow the smallest primitives when applying the following segmentation 

process. The use of the multiresolution segmentation was taken as the first step in the 

composite process for image information extraction, which would avoid over-segmentation 

issues as reported when using the standard watershed algorithm to zone management 

partitioning (Roudier et al., 2008). 

Settings for the next process using the watershed transformation algorithm have considered 

the minimum length factor that could further split sub-objects already generated by the 

multiresolution process, as generating sub-watersheds within broader image objects. After 

class assignments and merging procedures as required for the proper segmentation workflow 

in Developer 7©, a final grow region algorithm is applied to generalize and produce the final 

object-oriented segmentation results for zone managements considering 2, 3, and 4 classes.  

7.3.3 – Advantages and penalties to zone management using a net worth analysis 

Economic advantages and penalties to zone management of Nitrogen are suggested in 

Australian dollars per hectare ($/ha) by class for procedures that consider 2, 3, and 4 clusters 

of management classes. A criterion of different benefit values by management class follows 

the concepts in Robertson et al. (2008). Robertson et al. (2008) suggest that the economic 

advantage to zone over uniform management can be expressed as a continuous function of the 

yield difference between the lowest and highest yielding zones in a field, where the middle 

zone is equal to the mean of the low and high zones. 

After the execution of the MZs delineation procedures zone areas and border lengths were 

extracted from object-feature tables obtained as result of the rule set work flow in Definiens 

Developer 7.0, which were used for the overall net worth computation of each delineation 

process detailed in Section 7.3.2. Finally, the net worth of variable Nitrogen application is 

simply calculated as the difference between advantages to zone management and penalty 

costs of Nitrogen interventions in relation to the number of times fertilizer rates are changed. 
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Advantages to zone management 

Benefits considered in this investigation also assumed different classes, as shown in Tables 

7.1, 7.2, and 7.3, and uses financial values as given in Robertson et al. (2008) for the financial 

significance of the variation in potential yield of wheat crops in Western Australia. Their 

evaluation estimates the potential benefits from yield monitor data in 199 fields and suggests 

economic advantage to three-class zone segmentation (i.e. low, standard, or high yield zones), 

in which standard figures are assumed (i.e. nitrogen cost = $1.2/kg & wheat price = $175/t). 

Figures for the advantage to zone management in Robertson et al. (2008) considered a 

sensitivity analysis of the impact of relative sizes of management zones on the economic 

benefit ($/ha) to zone management for Nitrogen and Phosphorus on a three-class basis. 

Scenarios are then simulated suggesting different benefits ($/ha) to equally distributed area 

percentages between zones (33:33:33), a low class area predominance (70:15:15), or a high 

class area predominance (15:15:70). Sensitivity analysis relative to starting soil fertility status 

have also suggested different net benefits to four scenarios for starting soil fertility differences 

between zones. To keep coherence with segmentation processes that have only used multi-

year yield inputs, benefits suggested in this work (Tables 7.1, 7.2, and 7.3) refer to the 

minimum ($0) and the maximum ($8) values for the advantages to zone management 

(Robertson et al., 2008) found for the two scenarios in which no soil difference in nutrition 

(i.e. N and P) between the zones is incorporated. Results in Robertson et al. (2008) have 

shown that the larger the difference in potential yield between zones, the greater the economic 

benefit from zone management. These findings may support variable price assumptions in this 

investigation, such as detailed in Table 7.1, for a 2 class; Table 7.2, for a 3 class; and Table 

7.3, for a 4 class scenario.  

 

Table 7.1: The advantage to zone management considering 2 management classes. 

Class 
No 

predominance 
(AU$/ha) 

Low yield 
predominance 

(AU$/ha) 

High yield 
predominance 

(AU$/ha) 

ZH 

(higher yields) 
8 5 6 

ZL 

(lower yields) 
0 2 0 
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Table 7.2: The advantage to zone management considering 3 management classes. 

Class 
No 

predominance 
(AU$/ha) 

Low yield 
predominance 

(AU$/ha) 

High yield 
predominance 

(AU$/ha) 

Zone 1 

 (higher yields) 
8 5 6 

Zone 2 

(average yields) 
4 3 3 

Zone 3 

(lower yields) 
0 2 0 

Table 7.3: The advantage to zone management considering 4 management classes. 

Class 
No 

predominance 
(AU$/ha) 

Low yield 
predominance 

(AU$/ha) 

High yield 
predominance 

(AU$/ha) 

Very High 8 5 6 

High 6 4 4 

Low 2 3 1 

Very Low 0 2 0 

Penalties to zone management 

Penalties attributed to differential crop management are estimated using the cost of VRT 

services as per meter ($/m) based on the required change in application rates when the 

machinery footprint crosses boundaries between different zone classes. Therefore, the overall 

penalty for a single field operation of variable Nitrogen application accounts for the number 

of machinery crosses over the total length of borders between management zones. For this, 

the total sum of the border length, in metres, between all zones of a segmentation process is 

divided by a operational swath width, assumed as 10m in this instance, and multiplied by the 

cost of a VRT consultancy service for N intervention as given by Bongiovanni et al. (2007) in 

US dollars for a protein content experiment in Argentina. The cost of US$ 6.00/ha for the 

VRT service is first converted to Australian dollars (AU$), in current exchange rates, and 

square metres (m2), and further square rooted to provide figures in metres (AU$/m). A 

resulting price of AU$ 0.25 is then assumed per crossing of borders between different zone 

classes. 
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7.4 – Results for proposed methods 

Results for the economic evaluation comparing the net worth to zone management have 

considered thresholding-based and morphology-based delineation methods with inputs of 

multiple-year crop production maps. Multiple-year crop information was considered as an 

effective source of strong spatial and temporal variations in crop yield, considering median 

yield and first principal component maps as reflecting different aspects of crop production 

factors and spatial crop variation patterns. 

Although preliminary in nature, the proposed objective function characterizing the net worth 

of variable-rate Nitrogen management interventions has proved robust across different 

segmentation approaches and price assumptions. The idea to consider a simple net balance 

model which would consider the financial advantages, in relation to the contrast between 

yield means, initial soil fertility conditions and the relative size of each zone management 

classes, against the penalty for an increased number of times in which variable-rate equipment 

is activated to change fertilizer application rates has proved efficient. Prices given to the cost 

of VRA services are related to the overuse of variable-rate machinery associated with a larger 

total border length between different zones, which were easy to compute and could be directly 

related to a greater number of zone segments and/or an increased shape contours. 

Outcomes from the three delineation procedures and net worth analysis are shown for 2, 3, 

and 4 classes by individual fields, as for: i) field Road (112 ha), SPAA, in Figure 7.2 for 

median yield, Figure 7.3 for PC1, and Table 7.4; ii) field WA (81 ha), Riverine, in Figure 

7.4 for median yield, Figure 7.5 for PC1, and Table 7.5; and iii) field BT (135 ha), CFI, in 

Figure 7.6 for median yield, and Figure 7.7 for PC1, and Table 7.6. 

Inputs for net worth analysis 

The median yield map appears to preserve some zoning artefacts that can be related to 

procedures during field interventions (e.g. central line in field Road preserved by clustering 

outcomes, Figure 7.2). Such patterns are often associated with harvesting operation 

techniques (e.g. machinery footprints), adding inappropriate inputs for the delineation of crop 

production homogeneity. These zoning artefacts are not present in the PC1 input, as they are 

clearly isolated in the second component of the PCA (Figure 7.1). 
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Figure 7.2: Management zones obtained by different delineation process for 2, 3, 
and 4 classes at field Road, using the median yield input map. 
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Figure 7.3: Management zones obtained by different delineation process for 2, 3, 
and 4 classes at field Road, using the PC1 input map. 
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Table 7.4: Net worth evaluation using the proposed method in this work when applied to 
management zones obtained from different clustering and segmentation 
outputs for field Road.  

Input Delineation  2 Classes 3 Classes 4 Classes 

Advantage $ 410.40 $ 471.20 $ 347.30 

Borders (m) 16,200 26,650 30,255 

Penalty $ 405.00 $ 665.13 $ 756.38 
k-means 

Net Worth $    5.40 - $193.93 - $409.67 

Advantage $ 412.80 $ 476.00 $ 346.80 

Borders (m) 13,410 24,155 26,900 

Penalty $ 335.25 $ 603.88 $ 672.50 

k-means with  

grow region  

Net Worth $   77.55 - $127.88 - $325.70 

Advantage $ 450.40 $ 466.40 $ 566.00 

Borders (m) 6,020 7,980 11,600 

Penalty $ 150.50 $ 199.50 $ 290.00 

Median 

Yield 

Multiresolution 

Watershed 

Segmentation 

Net Worth $ 299.90 $ 266.90 $ 276.00 

Advantage $ 395.20 $ 480.00 $ 528.60 

Borders (m) 10,980 31,755 31,675 

Penalty $ 274.50 $ 793.90 $ 791.88 
k-means 

Net Worth $ 120.70 - $313.88 - $263.28 

Advantage $ 397.60 $ 484.00 $ 531.20 

Borders (m) 9,215 23,820 22,196 

Penalty $ 230.38 $ 595.50 $ 554.90 

k-means with  

grow region 

Net Worth $ 167.22 - $115.50 - $ 23.70 

Advantage $ 524.80 $ 438.00 $ 535.60 

Borders (m) 9,355 13,500 15,735 

Penalty $ 233.88 $ 337.55 $ 393.38 

PC1 

Multiresolution 

Watershed 

Segmentation 

Net Worth $ 290.93 $ 100.50 $ 142.23 
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Figure 7.4: Management zones obtained by different delineation process for 2, 3, 
and 4 classes at field WA, using the median yield input map. 
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Figure 7.5: Management zones obtained by different delineation process for 2, 3, 
and 4 classes at field WA, using the PC1 input map. 
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Table 7.5: Net worth evaluation using the proposed method in this work when applied to 
management zones obtained from different clustering and segmentation 
outputs for field WA.  

Input Delineation  2 Classes 3 Classes 4 Classes 

Advantage $ 360.80 $ 348.40 $ 396.20 

Borders (m) 8,990 14,835 17,255 

Penalty $ 224.75 $ 370.88 $ 431.38 
k-means 

Net Worth $ 136.05 - $ 22.48 - $ 35.18 

Advantage $ 372.00 $ 353.20 $ 402.00 

Borders (m) 8,170 9,685 14,330 

Penalty $ 204.25 $ 242.13 $ 385.25 

k-means with  

grow region 

Net Worth $ 167.75 $ 111.07 $  16.75 

Advantage $ 369.60 $ 356.80 $ 398.60 

Borders (m) 6,815 8,950 9,130 

Penalty $ 170.38 $ 223.88 $ 228.25 

Median 

Yield 

Multiresolution 

Watershed 

Segmentation 

Net Worth $ 199.22 $ 132.92 $ 170.35 

Advantage $ 408.00 $ 342.80 $ 376.60 

Borders (m) 9,120 15,185 17,895 

Penalty $ 228.00 $ 379.63 $ 443.38 
k-means 

Net Worth $ 180.00 - $ 36.83 - $ 66.78 

Advantage $ 410.40 $ 341.20 $ 380.00 

Borders (m) 8,250 13,575 16,275 

Penalty $ 205.37 $ 339.38 $ 406.87 

k-means with  

grow region 

Net Worth $ 205.03 $     1.82 - $ 26.87  

Advantage $ 428.80 $ 345.20 $ 387.80 

Borders (m) 6,905 11,830 15,210 

Penalty $ 172.63 $ 295.75 $ 380.25 

PC1 

Multiresolution 

Watershed 

Segmentation 

Net Worth $ 256.17 $   49.45 $     7.55 

 



 195 

 

 

 

Median Yield 

 

Legends for Zone Management maps 
 

2 classes          3classes                        4 classes 

 

   
k = 2 k = 3 k = 4 

   
k = 2 & grow region k = 3 & grow region k = 4 & grow region 

   
Multiresolution with watershed & grow region segmentation 

Figure 7.6: Management zones obtained by different delineation process for 2, 3, 
and 4 classes at field BT, using the median yield input map. 
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Figure 7.7: Management zones obtained by different delineation process for 2, 3, 
and 4 classes at field BT, using the PC1 input map. 
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Table 7.6: Net worth evaluation using the proposed method in this work when applied to 

management zones obtained from different clustering and segmentation 
outputs for field BT.  

 

Input Delineation  2 Classes 3 Classes 4 Classes 

Advantage $ 444.80 $ 411.20 $ 371.80 

Borders (m) 26,865 32,697 39,632 

Penalty $ 671.62 $ 817.43 $ 990.80 
k-means 

Net Worth -$226.82 -$406.23 -$619.00 

Advantage $ 460.00 $ 407.60 $ 370.84 

Borders (m) 13,955 25,520 27,632 

Penalty $ 348.87 $ 613.00 $ 690.80 

k-means with  

grow region 

Net Worth $ 111.13 -$205.40 - $319.80 

Advantage $ 455.20 $ 389.60 $ 359.20 

Borders (m) 9,700 12,015 13,085 

Penalty $ 242.50 $ 300.38 $ 327.13 

Median 

Yield 

Multiresolution 

Watershed 

Segmentation 

Net Worth $ 242.50 $   89.23 -$  32.08 

Advantage $ 652.00 $ 678.56 $ 506.00 

Borders (m) 18,895 26,449 29,166 

Penalty $ 472.38 $ 661.23 $ 729.15 
k-means 

Net Worth $ 179.62 $   17.34 -$223.15 

Advantage $ 663.20 $ 688.00 $ 539.60 

Borders (m) 16,355 24,060 28,395 

Penalty $ 408.88 $ 601.50 $ 709.88 

k-means with  

grow region 

Net Worth $ 254.32 $   86.50 -$170.28  

Advantage $ 784.80 $ 609.76 $ 518.00 

Borders (m) 11,976 14,575 18,170 

Penalty $ 299.41 $ 382.38 $ 454.25 

PC1 

Multiresolution 

Watershed 

Segmentation 

Net Worth $ 485.39 $ 227.38 $   63.75 
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Clustering and segmentation methods 

Segmentation methods applied to delineate site-specific management zones have shown that 

morphology-based techniques have brought some improvement in generating contiguous 

within-field zone segmentations. Overall results for the economic evaluation using the 

composite segmentation approach, multi-resolution segmentation grow region with watershed 

transformation, have shown a greater opportunity for the delineation of management zones 

using the first principal component (PC1) as input (Figures 7.2 to 7.7). Outcomes have also 

indicated that the commonly used thresholding-based histogram clustering (k-means) may 

have improved results when combined with reshaping techniques, such as the grow region 

algorithm, which are available in the object-oriented image processing IDE used (Definiens 

Developer®, 2007). 

Median yield inputs have systematically responded with less lengthy zone borders than inputs 

of PC1 for the same segmentation process of each field, as shown in Table 7.7 for the 

minimum and maximum length range by field and number of classes for the best delineation 

process indicated by the net worth analysis. This response may be also associated to the fact 

that segmentation processes using median yield as input have shown to be more sensitive to 

the calibration of parameter sets for the composition of homogeneity criterion (e.g. colour, 

shape, smoothness, and/or compactness). It was observed that scale parameters defined with 

median yield inputs systematically required smaller values for best results, ranging from 1 to 

5, when compared with scale parameters for PC1 inputs, ranging from 5 to 8. 

The scale parameter is an abstract term which determines the maximum allowed 

heterogeneity for the resulting image objects in the multiresolution segmentation process. 

According to concepts of the multiresolution segmentation algorithm used (Definiens, 2007), 

the use of smaller segmentation scale parameters for the desired spatial generalization 

suggests that median yield inputs have provided a more spatially homogeneous source of 

information, when compared with principal component inputs.  

In contrast, the more heterogeneous character of PC1 inputs has supported segmentation of 

zones in which the advantage to zone management has been maximized for two class 

segmentations, mostly promoting the best economic net worth for fields of strong spatial and 

temporal variation such as field BT (Y% i = 8.3). In this case, the optimized distribution of zone 

areas promoted by the PC1 input for multiresolution segmentation has provided increased 

advantage with the preponderance of high yield areas (Figure 7.7).  
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Table 7.7: Minimum and maximum border length ranges obtained by field and number of 
management classes with the associated best delineation processes. 

 

The multiresolution with the watershed and grow region segmentation has provided better net 

worth across all fields for all class numbers according to net worth results shown in Table 

7.8. 

Table 7.8: Best net worth from all delineation processes of selected fields. 

Field Classes 
Delineation  

Method 
Input 

Net Worth 

($/ha) 

2 Segmentation Median Yield $ 3.10 

3 Segmentation Median Yield $ 2.38 Road 

4 Segmentation Median Yield $ 2.46 

2 Segmentation PC1 $ 3.16 

3 Segmentation Median Yield $ 1.64 WA 

4 Segmentation Median Yield $ 2.10 

2 Segmentation PC1 $ 4.92 

3 Segmentation PC1 $ 2.31 BT 

4 Segmentation PC1 $ 0.65 

 

Field Classes Range 
Best 

Delineation 

Associated   

Input 

Border Length 

(m) 

Min. Segmentation Median Yield 4,113 
2 

Max. k-means Median Yield 16,200 

Min. Segmentation Median Yield 7,980 
3 

Max. k-means PC1 31,755 

Min. Segmentation Median Yield 11,600 

Road 

4 
Max. k-means PC1 31,675 

Min. Segmentation Median Yield 6,815 
2 

Max. k-means PC1 9,120 

Min. Segmentation Median Yield 8,950 
3 

Max. k-means PC1 15,185 

Min. Segmentation Median Yield 9,130 

WA 

4 
Max. k-means PC1 17,895 

Min. Segmentation Median Yield 9,700 
2 

Max. k-means Median Yield 26,865 

Min. Segmentation Median Yield 12,015 
3 

Max. k-means 

with  grow 

Median Yield 32,697 

Min. Segmentation Median Yield 13,085 

BT 

4 
Max. k-means 

with  grow 

Median Yield 39,632 
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The net worth analysis 

The economic evaluation was mostly meant to support a simple way of looking at comparing 

segmentation methods at this preliminary stage. Although using suggestions from actual 

economic evaluations for site-specific management zones in Western Australia (Robertson et 

al., 2008), assumptions of net benefits as shown in Tables 7.4, 7.5, and 7.6 may have little 

bearing on the real world. For this reason, prices for the advantage to zone management by 

class (Tables 7.1 to 7.3) have been also considered at a 50% higher level than in Western 

Australia. This revised net worth evaluation is shown in Tables 7.9 and 7.10, summarizing 

results from median yield and PC1 inputs respectively, and it may offer a more relevant 

reference for higher value crops, as for agronomic areas considered in this research (i.e. NSW, 

SA, and VIC). Still, final values per field have somehow approach previous reports (Whelan, 

2008). In addition, it could be argued that crops in the Eastern Australia production systems 

are associated with a higher grain production advantages.  

Although following minimum and maximum references for advantages to zone management 

as suggested by an economic assessments of actual crop production systems (Robertson et al., 

2008), price assumptions in this work may have produced net worth results that have little 

support in the real world. Alternative advantage figures, as related to higher value crops in 

Eastern Australia, may be still fictitious, but have reproduced the same best net worth results 

by field and input (Tables 7.9 and 7.10), as for prices given for Western Australian 

production systems (Tables 7.4 to 7.6). This mostly supports the sensitivity analysis of the 

proposed model in relation to price variances, to show the robustness of the simple economic 

model suggested as a function of total border length by zone classes.  

Also, price references were considered from a scenario in which no soil difference in nutrition 

between the zones was initially incorporated (i.e. N and P). This scenario was considered 

adequate for this work since segmentation inputs have not considered soil electrical 

conductivity (ECa) or elevation data in the PCA. However, there are clear evidences of 

improved zone partitioning by means of multivariate analysis combining crop yield, soil ECa, 

and terrain attributes (Whelan & McBratney, 2003; Whelan et al., 2007). For this reason, 

further net worth analysis combining these production factors is considered for the field Road, 

for which previous work on management zones has been conducted and soil sampling data is 

available. A new net worth scenario considering soil related variation is summarized in Table 

7.11, showing a better evaluation over simulations only considering yield inputs on both 

economic advantage and practical management purposes, with output patterns better matching 

general aspects in the input map (Figure 7.8). 
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Table 7.9: Revisited net worth summary for Eastern Australian crops considering the 

best segmentation results with median yield inputs and 50% higher level 
prices than suggested for Western Australia.  

 

Field Delineation  2 Classes 3 Classes 4 Classes 

Advantage $ 615.60 $ 706.80 $ 520.95 

Penalty $ 405.00 $ 665.13 $ 756.38 k-means 

Net Worth $ 210.60 $   41.16 - $235.43 

Advantage $ 619.20 $ 714.00 $ 520.20 

Penalty $ 335.25 $ 603.88 $ 672.50 
k-means with  

grow region 

Net Worth $ 283.95 $110.12 - $152.30 

Advantage $ 675.60 $ 699.60 $ 849.00 

Penalty $ 150.50 $ 199.50 $ 290.00 

Road 

Multiresolution 

Watershed 

Segmentation 
Net Worth $ 525.10 $ 500.10 $ 559.00 

Advantage $ 541.20 $ 522.60 $ 594.30 

Penalty $ 224.75 $ 370.88 $ 431.38 k-means 

Net Worth $ 316.45 $ 151.72 $ 162.92 

Advantage $ 558.00 $ 529.80 $ 603.00 

Penalty $ 204.25 $ 242.13 $ 385.25 
k-means with  

grow region 

Net Worth $ 353.75 $ 287.67 $ 217.75 

Advantage $ 554.40 $ 535.20 $ 597.90 

Penalty $ 170.38 $ 223.88 $ 228.25 

WA 

Multiresolution 

Watershed 

Segmentation 
Net Worth $ 384.02 $ 311.32 $ 369.65 

Advantage $ 667.20   $ 616.80  $ 557.70  

Penalty $ 671.62 $ 817.43 $ 990.80 k-means 

Net Worth $     4.42 - $200.63 - $433.10 

Advantage $ 690.00 $ 611.40  $ 556.20  

Penalty $ 348.87 $ 613.00 $ 690.80 
k-means with  

grow region 

Net Worth $ 341.13 - $   1.60 - $134.60 

Advantage $ 682.80  $ 584.40  $ 538.80  

Penalty $ 242.50 $ 300.38 $ 327.13 

BT 

Multiresolution 

Watershed 

Segmentation 
Net Worth $ 442.30 $ 284.02 $ 211.67 
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Table 7.10: Revisited net worth summary for Eastern Australian crops considering 
the best segmentation results with PC1 inputs and 50% higher level 
prices than suggested for Western Australia. 

Field Delineation  2 Classes 3 Classes 4 Classes 

Advantage $ 592.80 $ 720.00 $ 792.90 

Penalty $ 274.50 $ 793.90 $ 791.88 k-means 

Net Worth $ 318.30 - $ 73.90 - $   1.02 

Advantage $ 596.40 $ 726.00 $ 796.80 

Penalty $ 230.38 $ 595.50 $ 554.90 
k-means with  

grow region 
Net Worth $ 366.02 $ 130.50 $ 241.90 

Advantage $ 787.20 $ 657.00 $ 803.40 

Penalty $ 233.88 $ 337.55 $ 393.38 

Road 

Multiresolution 

Watershed 

Segmentation 
Net Worth $ 553.32 $ 319.45 $ 410.02 

Advantage $ 612.00 $ 514.20 $ 564.90 

Penalty $ 228.00 $ 370.88 $ 443.38 k-means 

Net Worth $ 384.00 $ 143.32 $ 121.52 

Advantage $ 615.60 $ 511.80 $ 570.00 

Penalty $ 205.37 $ 339.38 $ 406.87 
k-means with  

grow region 
Net Worth $ 410.23 $ 172.42 $ 163.13  

Advantage $ 643.20 $ 517.80 $ 581.70 

Penalty $ 172.63 $ 295.75 $ 380.25 

WA 

Multiresolution 

Watershed 

Segmentation 
Net Worth $ 470.57 $ 222.05 $ 201.45 

Advantage $ 978.00   $1017.84  $ 759.00  

Penalty $ 472.38 $ 661.23 $ 729.15 k-means 

Net Worth $ 505.62 $  356.61 $   29.85 

Advantage $ 994.80  $1032.00  $ 773.70  

Penalty $ 408.88 $ 601.50 $ 709.88 
k-means with  

grow region 
Net Worth $ 585.92 $ 430.50 $   63.82  

Advantage $1177.20  $ 914.40  $ 732.00  

Penalty $ 299.41 $ 382.38 $ 454.25 

BT 

Multiresolution 

Watershed 

Segmentation 
Net Worth $ 877.79 $ 532.02 $ 227.75 
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7.5 – General discussion 

The results suggest that scenarios considering advantages with differences in starting soil 

fertility status between zones are worth investigation. Maximum and minimum values as 

given for this scenario by Robertson et al. (2008), from 21 to 44 ($/ha) in Western Australia 

(WA), contrast a lot with figures previously used, from 0 to 8 ($/ha), as a reference for the 

advantage to zone management (Tables 7.1 to 7.3). New figures for higher level prices in 

Eastern Australian (EA) crops suggest a greater economic significance as shown in Table 

7.12 for net worth of best process by field. These results also appear to correlate with a study 

of financial wastage from uniform fertilizer on 17 field experiments (Whelan, 2008). Whelan 

(2008) suggests an average wastage of fertilizers of $33/ha, which comes close to the average 

net worth obtained for the three selected fields ($29.50/ha), when considering the scenario of 

differences in the starting soil fertility status between different management zones. 

Results show a great potential for the use of new segmentation algorithms for delineation of 

MZs, in particular to fields with strongly segmented spatial patterns as in the case of field BT 

in this investigation. The multiresolution watershed segmentation has systematically resulted 

in greater net worth for differential zone management, with the PC1 input and 2 zone class 

outputs likely to characterize greater net advantages for single intervention for variable-rate 

Nitrogen application. 

The availability of soil core sample information and the site-specific management knowledge 

acquired on previous studies on field Road has offered good means to evaluate delineation 

outcomes in relation to soil attributes. Investigations on management zones for 2 and 3 cluster 

classes have been conducted by means of multivariate analysis (Whelan & McBratney, 2003), 

whereby soil sampling strategies were developed and field segmentation was analysed in 

combination to soil, yield and terrain variations. Some of the soil attributes that support the 

characterization of two main soil types are shown in Table 7.13, where detailed on field trials 

have required additional sampling strategies (Whelan et al., 2007). Soil information has 

characterized the field Road in two major soil types with differing top soil texture (i.e. Sandy 

Loam and Sandy Clay Loam). This core sample information taken from sample sites stratified 

using the previous management zones analysis in 2003 (Figure 7.8d), has been mostly 

matched by several segmentation results, as further discussed in relation to Figure 7.8. This 

comparison between unsupervised segmentation and legacy information about practical 

knowledge on site-specific crop management gives the opportunity to validate the spatial 

response of the composite segmentation processes introduced in this work. 
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Table 7.11: Net worth with different inputs for 2 classes processes in field Road. 

 Median Yield PC1 for Yield 
PC1 for Yield, 

Soil ECa & Elevation 

Advantage $ 450.40 $ 524.80 $ 468.00 

Borders (m) 6,020 9,355 4,683 

Penalty $ 150.50 $ 233.88 $ 117.08 

Net Worth $ 299.90 $ 290.93 $ 350.93 

 

Table 7.12: Best net worth for different scenarios for the advantage in zone management. 

Field 
Net Worth in WA 

($/ha) 

Net Worth in EA 

($/ha) 

Net Worth with soil variation 

($/ha) 

Road 2.60 4.54 20.77 

WA 3.16 5.81 26.98 

Bt 4.92 8.90 40.70 

 

Figure 7.8 shows different segmentation outcomes for field Road, as overlayed with locations 

of soil samples to demonstrate the spatial fit of unsupervised zone partitions with actual soil 

distribution. Figure 7.8a illustrates the response of the hybrid segmentation when applied to 

PC1 data that combines (38.8%) information from crop yield, soil electromagnetic induction, 

and elevation data. This process has yielded the best net worth result ($350.93) for field Road 

with 2 classes (Table 7.8), and its associated map (Figure 7.8a) has conformed all soil 

samples within the appropriate lower or higher soil related yield potential zone. This 

performance has improved the results obtained for the same segmentation process ($290.93) 

in which PC1 was limited to multi-year crop yield information (Figure 7.8b). Another good 

boundary delineation response is observed for the same process with the input of median yield 

for 3 class segmentations. Again the unsupervised hybrid segmentation has shown a response 

for 3 zone classes which managed to precisely contour soil sample locations (Figure 7.8c) 

pertaining to higher yield potential zones (red dots representing Sandy Clay Loam soils). 

Figure 7.8d illustrates legacy knowledge on zone management for this crop production 

system (Whelan & McBratney, 2003; Whelan & Taylor, 2005; Whelan et al., 2007), as a 

means of comparison for results in this work. 
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Figure 7.8: Multiresolution watershed segmentation match using existing soil information, 
for processes of: a) PC1 yield & soil information; b) PC1 yield 2 Classes; c) PC1 yield 
3 classes; and d) k-means zone delineation 2003 (Whelan et al., 2007). 

 

The typical effect of random, small and non-contiguous zones as a result of k-means 

clustering is observed. In their threshold segmentation, Whelan et al. (2007) suggest zones of 

high yield class which are mostly contained in equivalent areas of high yield in the 

morphological segmentation. In addition, Whelan et al. (2007) report figures of potential 

wastage of fertilizers for this field that varies from $8.22/ha to $65.02/ha, a range which 

involves the net worth evaluation for variable-rate Nitrogen applications ($20.77/ha) when 

incorporating differences in starting soil fertility conditions (Table 7.12) 
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Table 7.13: Soil characteristics for 2 classes of zone management in field Road. 

Soil Attributes Lower Yield Zones Higher Yield Zones 

Texture (0-10cm) Sandy Loam 
Light Sandy Clay 

Loam 

Texture (10-30 cm) Clay Loam 
Sandy Clay Loam + 

Lime 

Texture (30-60 cm) Clay Clay Loam + Lime 

CEC (0-10 cm) 16 21 

CEC (10-60 cm) 26 21 

pH(CaCl) (0-10 cm) 6.3 7.8 

NO3
-
 (0-10 cm) 17.5 12.3 

NO3
-
 (10-30 cm) 5.2 7.5 

P (0-10 cm) 57 27 

 

Alternatively, PC1 appears to be more useful for discriminating hot spots of image objects, 

which characterizes big differences between mean yields of boundary neighbours. Therefore, 

soil sampling strategies may be oriented to regions which are characterized by abrupt changes 

in the mean yield of image objects, potentially indicating locations in which further soil 

investigations need to be conducted. This would be the case for the selection of new sampling 

locations not yet considered in previous zone segmentation exercises of advanced PA 

adopters. 

Finally, all findings relative to the investigation of the hybrid segmentation process here 

introduced have added some important points to the extension of current knowledge 

supporting the delineation of site-specific crop management zones. Key factors from the 

segmentation processes here investigated, which can be considered as candidate condition 

supporting decision process flow include: the total border length between zones, zone area 

predominance, and positive net worth balances. Perhaps, it seams premature at this stage to 

establish threshold values for conditional factors influencing decision processes supporting 

the adoption of management zones. Still, a synthesis of the observations in this work has 

allowed the suggestion of additional decision-making steps for management zone 

delineations, which extends the decision-tree diagram proposed in Section 6.3.2 (Figure 6.2) 

for the opportunity for adoption of SSCM. Decision-tree branches extending the support to 

opportune within-field partitioning are shown in the diagram of Figure 7.9. 
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Figure 7.9: Extension of the opportunity decision-tree to support zone segmentation. 

7.6 - Concluding remarks 

Within an empirical study on object-oriented image segmentation algorithms, a simple 

economic objective function has been proposed and applied as a mean to evaluate different 

approaches for the delineation of management zones for SSCM. The use of an interactive 

development environment for the analysis of several image processing workflows has proved 

effective when applying the proposed economic net worth analyses for the opportunity to 

zone management. Commonly applied to the delineation of site-specific management zones, 

two thresholding-based classification algorithms, based on histogram clustering methods (k-

means), are compared with a new segmentation workflow as composed of multiresolution, 

watershed transformation, and grow region segmentation algorithms.  
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This investigation has shown that use of object-oriented concepts has brought semi-automatic 

amendments to image segmentation procedures that mostly require expertise supervision for 

parameter settings and statistical interpretations. 

Given image object features from site-specific crop monitoring, the use of image 

segmentation techniques to evaluate zone management segmentation can be viewed as a 

problem of continuous spatial pattern delineation and the optimization of borders between 

management zones. Classic clustering algorithms may support precise statistical class 

partitioning, perhaps hardly conforming to grain field management zones that are 

operationally feasible. Results show that thresholding classification approaches, which take 

no account for spatial dependencies of image features, generally produce random and 

unstructured spatial patterns. This solution does not match requirements of a few 

homogeneous and continuous management zones that may minimize investment risk to 

farmers.  

Datasets from selected fields are of strong non-stationarity behaviour, on both spatial and 

temporal dimensions. This means the optimal delineation of crop management zones for site-

specific differential applications is a challenging process, which is also difficult to evaluate. 

Still, overall results in this investigation have suggested that object-oriented image processing 

may offer new and efficient approaches to better segmentation of a field into spatially 

contiguous sub-areas of homogeneous yield potential across several crop seasons.  

The combination of segmentation methods by means of an interactive workflow of image 

processing techniques applied to image objects, rather than to image pixels, has provided an 

effective approach to evaluated zone management delineations using hybrid segmentation 

procedures. In particular, the combination of morphological- and topological- based 

segmentation algorithms has shown potential to support decisions on the opportunity for the 

adoption of site-specific zone management in an unsupervised and semi-automated fashion. A 

simple hybrid solution using multiresolution, watershed, and grow region techniques have 

consistently responded better to PCA inputs characterizing multi-year yield data. Also, this 

new object-oriented approach has shown results with contiguous zones that have also 

conformed to local agronomic knowledge and soil characteristics previously reported. 

What the composite method of multiresolution with the watershed transformation and grow 

region segmentation has brought new traditional image clustering algorithms is that the 

delineation of more continuous and agronomic-based zones may rely on functions that can use 

image object features as a source of information (i.e. spectral, shape, and hierarchical 
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characteristics). In addition, the proposed compounded segmentation workflow has addressed 

issues about over-segmentation usually observed when using solo watershed transformation 

or training seed-objects for grow region algorithm 

Several object features are available supporting the functional and spatio-temporal 

relationships in site-specific crop management zones. This type of segmentation response may 

be more appropriate for operational field interventions and whole-farm PA assessments, while 

reducing the investment risk associated with the adoption of SSCM. The use of object-

oriented concepts for image segmentation using morphology-based segmentation algorithms 

seems appropriate for the support of zone management decisions. The potential in future work 

using hybrid or customized object-oriented segmentation involves the description of 

behavioural relationships (e.g. spatial, functional, and/or agronomic) which depends on 

agronomic and managerial knowledge on site-specific zone management that is still under 

investigation. Descriptive object features may also be used to support improvements in the 

economic model by considering shape related features to establish different penalties when 

crossing borders between zone classes with large differences between yield means. 
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CChhaapptteerr  88  

  

OOvveerraallll  ddiissccuussssiioonn,,  ccoonncclluussiioonnss  &&  ffuuttuurree  wwoorrkk  

Summary 

Complementing the detailed discussion specifically provided to each chapter, general aspects 

of decision support for PA are considered within the overall context of exploring simple 

means to characterize the opportunity for the adoption of site-specific differential crop 

management. An evaluation of the applicability of the proposed quantitative methods for 

characterizing within-field variability within a conceptual framework for system design and 

development of decision support systems directly available to farmers and farm management 

advisors is provided. This evaluation adds general points about the implications of this work 

in the development of automated methods for spatio-temporal analysis of site-specific data.  

Overall conclusions are summarized in reference to each chapter, and major aspects regarding 

future work are suggested. 

8.1 - Overall discussion 

Agricultural decision support was originally conceived as a process modelling solution that 

mostly considered discrete descriptions of major production factors (e.g. soil, terrain, and 

climate) as related to single plant development processes. This analytical approach has 

certainly promoted a better understanding about agronomic interactions in crop production, 

even if no or limited spatial and temporal considerations have been incorporated. Typical 

simulations generate precise quantifications at the plant process level, which are assumed as 

averages of homogeneous fields. This information may have already added great support to 

farmers with generic estimations and qualitative conclusions, but proper farm management 

decision support requires more comprehensive evaluations that would incorporate simulation 

models as a decision calculus component of a knowledge intensive management system.  

In contrast to the fast technological improvement in the automation of field operations and 

intensive field monitoring, a technological gap exists in the use and interpretation of site-

specific information. The direct interpretation of field monitoring outputs was not feasible as 

initially expected, with an increase of information layers mostly promoting a decision 

paralysis due to information overload. Beyond the technological appeal for field operations, 
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SSCM is still missing a great deal of research to build up specific knowledge on how to 

properly manage and automate the interpretation of intensive multiplatform-monitor data. 

Methods to promote the proper understanding of the space-time tradeoffs in crop production 

variability are still missing. 

There is a clear need for a better understanding of DSS components, where some of the issues 

involve questions such as: what is a decision tool for farmers?; which questions are important 

for the adoption of site-specific farm management?; how is spatio-temporal variation best 

measured?; and what information technology is available to match system requirements? The 

quantitative models proposed in this thesis may serve as building blocks towards the solution 

of some of these critical questions in SSCM decision support, and opportunely some of the 

conceptual aspects of system development discussed will bring attention to a new generation 

of IT standards potentially useful in farm management decision support. 

The body of this research concerns building the bridge between measures for spatio-temporal 

analysis, as required to support agronomic decisions in SSCM, and the opportunity given by 

new IT open standards, as required for the effective development of software tools which are 

accessible and directly available to farmers. These requirements have been obtained in a truly 

historical review on agricultural decision support solutions (Chapter 1), which has revealed 

not only typical environmental and economic aspects, but in fact an increased concern with 

social and human factors as affecting farm-knowledge management. In addition, the analysis 

of generic DSS typologies has shown that contemporary IT approaches are still limited in use 

by the PA community. This research has extended the literature review through a software 

development perspective (Chapter 2), in which available solutions have shown that even with 

the recently increased focus given to Web solutions, there is still limited compliance with a 

minimum set of basic system design standards and modest investigation on up-coming 

software engineering (e.g. ontologies, knowledge management, and autonomic agents). 

In a very general picture of the outcomes of this work, specific hypothesis are drawn on why 

site-specific datasets have been poorly taken up by the farming community. Investigations 

suggest that the low adoption of SSCM technology is mostly due to agronomic and system 

development knowledge gaps, when searching for methods and processes for integrating site-

specific datasets in the mainstream farm management decision process. As a result, a new 

method of application is used to propose a conceptual framework for the generic concept of 

knowledge intensive management (Chapter 3), in which building blocks for decision support 

relating to the opportunity for SSCM are suggested. The critical issue of assessing the 
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opportunity given by within-field spatio-temporal variations is addressed using parametric 

methods from variogram analysis to measure the magnitude and the spatial structure of crop 

production variation (Chapter 4). This yield variability index has proved robust dealing with 

non-stationary variation and was further applied to soil electrical conductivity and crop 

reflectance imagery (Chapter 5), showing potential to support pre-season (Si), in-season (Ii), 

post-season (Yi) evaluations. Results from these investigations have determined threshold 

values for crop related variability indices (i.e. Yi, Si, and Ii) that could be used to systematize 

the integration of site-specific datasets into management knowledge by means of an 

opportunity decision-tree for the adoption of SSCM technology (Chapter 6). The final 

investigation on the direct and unsupervised use of SSCM datasets (Chapter 7) is conducted 

using methods partitioning contiguous areas of similar yield potentials, addressing the optimal 

number of management classes for the delineation of manageable zones. An economic model 

is proposed as a simple means of assessing the best delineation approach. Object-oriented 

image segmentations introduced by a combined process of morphologic-based algorithms 

appears to show the best potential. 

The overall flow of decisions and processes investigated are summarized in the activity 

diagram (Figure 8.1), which provides a broad picture of the methods introduced in this thesis 

as a module to support decisions about the opportunity for strategic investments and tactical 

changes to field operation. The use of freeware tools supporting prototyping design and code 

implementation (i.e NetBeans IDE and Java SDK) has proven effective, once providing 

costless development means and facilitating model documentation and decision-knowledge 

interchange. 

Figure 8.1 shows an upper-level diagram which is related to detailed activities introduced in 

the diagram for the opportunity of SSCM adoption (Figure 6.4), and incorporates activities 

related to the extension of the opportunity decision-tree to support management zone 

segmentation (Figure 7.12). The “Variability Index” object of the diagram in Figure 8.1 is a 

super-class object for the “Soil Variation”, “Yield Variation”, and “Crop Variation” objects in 

Figure 6.4. The general expectation is that these solutions may lead to improvements in the 

agronomic management of farms (e.g economic and environmental) once they have 

incorporated spatial and temporal considerations from the analysis of information on 

production variation. 
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Figure 8.1: Top-level activity diagram for the opportunity of SSCM adoption. 

 

Considering the potential given by multilayered continuous information, decision tools for 

SSCM should be conceived as a knowledge intensive management and adaptive learning 

environment. This idealistic solution would help farmers to link between local production 

knowledge and agronomic models. Knowledge-based frameworks underlying routine 

decision-making would incorporate autonomic storage, management and analysis of historical 

data, simulated scenarios, and decision outcomes. Specific decision tools would interoperate 

with these distributed frameworks via accessible interfaces which would favour the 
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interpretation of scientific-based solutions through a farm management perspective. In reality, 

there is more to the overall solution than just system development issues, and it may be not 

clear the amount of agronomic and managerial knowledge that is still missing for a full 

understanding of spatio-temporal interactions between SSCM data layers. 

Some of the important findings and major observations collected during the research to fulfil 

the specific aims of each chapter are summarized in the following paragraphs. Aiming to 

understand what is actually required for a conceptual framework and implementation of 

decision tools supporting the adoption of SSCM technology, the literature review in Chapter 

1 shows that site-specific decision-making operations need a means to convert the present 

opportunity analysis into a scientifically-sound, farmer-oriented, and knowledge-based 

decision tool. It is clear that unrealistic expectancies in the technology may have mislead 

farmers’ perceptions about which analytical tools would be actually and timely available for 

SSCM decision support. 

In general, DSS concepts and development approaches involve different operation levels, 

which require several aspects of farm management to be considered. The challenge for SSCM 

supporting tools is to couple several data types and sources, analysis tools, and domain 

specific knowledge, while continuously enabling adaptive change. Although within-field 

intensive data from one field survey may give us a good insight to the contributing factors of 

final production variation in a crop-season, it often doesn’t stand by itself to support next 

season or long term management decision processes. Inconclusive returns at initial adoption 

phases may have contributed to loss or isolation of a great number of single field surveys. 

Negative impacts may have been promoted by this ambiguous situation affecting the 

perceived usefulness of the technology as a decision support. 

The consequent low adoption means less data is available to enable research. In addition, a lot 

of what was gathered has been wasted by the inexperienced use of computer or monitoring 

devices and faulty monitoring interventions. Furthermore, useful raw yield data may have 

been mostly underused, as only a few formal protocols have addressed the proper 

characterization of the magnitude and spatial structure of variation and the opportune 

segmentation of site-specific management zones. In 10 years of data collection for 3 

agronomic regions investing in PA there are still few datasets homogeneously distributed 

across crops, farms, and regions. A reason why results in this work have faced some 

limitation for the determination of index thresholds and significance in correlations. Only 5 

farms in SPAA, 7 in CFI, and 3 in Riverine could provide consistent historical data on PA 
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adoption. And, for 218 field-year samples, from 79 broad acre crop fields, 32 fields have one 

year of yield monitoring, and only 25 with more than 3 years. 

The extended literature review in Chapter 2 illustrates that several methods and tools have 

been successfully used to match some requirements of decision tools for SSCM. Still, long 

term use of those tools has mostly failed. Given the comprehensive PA requirements for 

decision support, it is suggested that the technological tool box providing the required 

functionality has only recently improved to the level of providing composable and integrated 

software solutions. The object-oriented approach has proved to persist as a basis for new open 

developments towards knowledge-based Web services for PA. Current WWW paradigms are 

a definitive trend for the new generation of knowledge-based supporting tools that can aid 

integrated, educative, and adaptive farm management; but the attention given to emerging 

areas like knowledge management, ontologies and autonomic agents is limited. In addition, 

available decision tools lack a minimum of development standards that could sustain effective 

information extraction supporting the build up of agronomic and managerial knowledge about 

the opportune adoption of SSCM technology. OO is a programming standard but proper 

modelling activity is very limited, in particular in the use of UML. Evolutionary software 

development techniques have shown successful applications in support of broad agricultural 

analysis and crop modelling, but have not been systematically applied in relation to 

differential management decision processes.  

Current DSS overload a farmer with computer work, lack spatial reasoning for quantitative 

assessments of environmental-economic factors, and do not provide integrated analysis 

capabilities which couple scientific methods and actual farm business processes. Therefore, a 

conceptual framework using a platform independent design has been introduced for a new 

method of application (Chapter 3) of the UML to the opportunity for adoption of SSCM 

technology, which has proven to be accessible and effective in mapping object class 

relationships.  

It is expected that this model can be broadly used or extended as a template either for design 

or code implementation, since it is developed using an evolutionary, general-purpose and 

standardized modelling architecture. The reuse of this design to support the development of 

SSCM tools will also enable the realization of benefits associated with this modelling 

technology. 

The rationale for an opportunity index (Chapter 4) is to determine whether the observed 

variability warrants differential crop treatment. It is clear that this quantitative approach may 
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support threshold information as a useful reference to identify the areas of a farm where 

investments in SSCM are likely to be best matched by economic and environmental 

outcomes. Additionally, it can also give extra insights into factors affecting variability.  

The yield variation index (Yi) simplifies the parameterization of the magnitude and spatial 

structure of yield variability components; however it still does not address any aspect of the 

opportunity associated with the economic-environmental cost/benefit of SSCM adoption. The 

Yi provided robust results across the entire dataset, though perhaps not systematically 

supporting the ranking of individual season samples per field as initially expected. The 

method can respond to strong non-stationary data and once automated can provide simple 

references that may facilitate decision processes. On the other hand, the multi-year analysis of 

average Yi per field has shown the ability to support different levels of farm management 

decisions in relation to investments in SSCM technology. The field median Yi could prove to 

be useful for whole-farm investment strategy, with the allocation of production alternatives 

using the ranking of opportunity by fields per farm. If a fair distribution of samples by crop 

and region becomes available, the farm median Yi can also be used to rank the opportunity of 

farms per region per season that may be used for regional agro-systems planning and 

environmental regulations. Crop rotation and differential management strategies for a single 

field will be possible when a minimum number of samples per crop type are available 

allowing the ranking of crops per field. Further, crop suitability per field and detailed 

operational plans may be possible if the ranking of single crops per season per field can be 

established. Greater data availability by crop type can additionally support index thresholds 

by crop in the opportunity decision tree. An example of this applicability is given in Chapter 

4, where the amount of available data for wheat has indicated that at least 30 field-years is 

required to characterize a median Yi value that could be used to compare indices in terms of 

crop per field per season (Figure 4.7). 

The extraction of management information from remote and proximal fine-scale data 

monitoring activities is fundamental to the adoption of PA and proved useful for measures of 

within-field variability. The opportunity index method was further applied to soil ECa (Si) and 

crop reflectance imagery (Ii), and have shown promise to support farmer’s decisions in 

instances where spatially dense data on crop yield are unavailable (Chapter 5). Promising 

results are also suggested for index evaluations using alternative vegetation indices suggested 

(e.g. GNDVI, TRVI, and PVR). 
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The decision model introduced in Chapter 6 has shown that it is possible to incorporate 

simple quantitative methods within main stream farm decision processes to assess the 

opportunity for the adoption of PA technology. Strategic adoption pathways could be 

associated with index thresholds (i.e. Yi, Si, and Ii) for the opportune use of several field 

monitoring technologies that may support optimal investments in differential crop 

management. 

The decision-tree model separates particular adoption phases and describes the associated 

decision strategy alternatives that may minimize investment risks, when accounting for the 

spatial and temporal variation in crop production. The opportunity index method is used as a 

utility function when determining the expected value of specific decision nodes, addressing 

questions pertaining to different phases of adoption. Results have mostly matched the actual 

potential for SSCM adoption as observed in spatial-temporal variations and estimated 

economic returns in the literature. In addition, a tentative table is suggested quantifying the 

minimum requirements for different types of SSCM monitoring observations, which can 

support decision making at different decision scales.  

A simple net worth analysis has been applied and proved robust when evaluating different 

image processing techniques used to delineate management zones (Chapter 7). This approach 

has shown that object-oriented segmentation could bring amendments to previous procedures 

using clustering analysis. Results from histogram threshold algorithms also applied have 

supported precise class clustering, but perhaps not producing continuously operational 

management zones. In this case, the use of image segmentation techniques is understood as a 

potential solution for continuous spatial field partitioning and border optimization for crop 

management zones. Object-oriented image processing proved to be an efficient approach to 

improve the delineation of spatially contiguous areas of homogeneous yield potential.  

A composite solution using multiresolution segmentation, watershed, and grow region 

techniques have shown potential to support decisions on the opportunity for the adoption of 

site-specific zone management in an unsupervised and semi-automated fashion. The 

segmentation has consistently responded better to PCA inputs, in particular when considering 

soil ECa and elevation as well as multi-year yield maps. This new segmentation approach has 

also shown results that have also conformed to local agronomic knowledge and soil 

characteristics previously reported. In addition, the object-oriented segmentation approach 

may additionally rely on extra agronomic functions, which could be defined as object’s 

behavioural features (i.e. spectral, topological, and/or hierarchical processes).  
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8.2 - Conclusions 

Final conclusions are here summarized in a single sentence by chapter, followed by a short 

explanatory paragraph as listed below: 

1. A lot of well designed decision support solutions have been developed in the past 

which are very useful to research, but not directly available to farmers. 

Specific and tailored agricultural decision tools have been mostly directed at general farm 

accounting or crop yield simulations, neither supporting spatio-temporal analysis nor fully 

representing actual decision pathways for the adoption of SSCM technology. The increasing 

demand for human-social and environmental-economic aspects in agricultural DSS 

development contrast with the availability of interoperable tools that could interact and 

provide user-friendly interface. Simple quantitative models are required that could represent 

the existing agronomic knowledge and facilitate direct access to farmers. In particular for 

SSCM, these quantitative models need to consider the spatial and temporal characterization 

of crop yield variability. 

2. There is still limited use of new software technology which can potentially provide more 

accessible tools to users. 

Some of the new recommendations and standards in the software industry have had limited 

use in PA solutions. Few examples can be found for practical farm operations and they are 

mostly related to site-specific data gathering processes. Although system developers have 

considered user participation in development and recognized the present trend in Web 

related solutions, few practical analysis tools are directly available to farmers or have 

conformed to open and evolutionary system development approaches. 

3. It is clearly possible to create cooperative, and easy to read system designs for SSCM 

that make use of IDE’s and UML, but the implementation phase is challenging and 

requires advanced object-oriented concepts. 

The multidisciplinary aspect in SSCM often requires the collaborative development of 

decision support modules that need to interoperate. Several examples in PA related areas 

have shown potential application for semantically oriented developments, but no specific 

model for decision processes in SSCM has been conceptualized. The conceptual framework 

introduced in this work may support platform independent developments and serve as a 
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guide for the proposal of new object classes composing an integrated farm knowledge 

management. In addition, it has provided an easy means to identify parts of the system 

which are dependent on the solution of gaps in agronomic knowledge. 

4. As an aid to decision support for site-specific management, an index for assessment of 

yield variation is devised, this takes into account the magnitude and the spatial 

structure of yield variation. 

The proper characterization of crop yield variation is vital to support decisions regarding 

spatial and temporal crop differential management. Few attempts have been made to 

establish measures for yield variation that could be used as an index ranking the opportunity 

to SSCM. The revised opportunity index suggested in this work has proved robust when 

considering non-stationary yield variations and efficiently ranked fields by farm with the 

current available data. The importance of considering components such as the magnitude of 

variation and the spatial structure of variation is clear, as is addition to the economic and 

environmental considerations. The empirical investigation of the Yi has shown the potential 

of several other uses at different scales from field to whole-farm and regional management, 

such as: i) crop suitability per field and directing detailed soil sampling; ii) field specific 

crop rotations and differential management strategies; iii) whole-farm investment strategy 

and allocation of production alternatives; and iv) environmental regulations and agricultural 

system planning. 

5. Besides crop yield, data from Soil ECa and airborne imagery are useful for assessing the 

opportunity for SSCM, particularly supporting temporal and within-season 

management decisions. 

Another aspect in the investigation of the opportunity index is the potential use of 

alternative index components or input data sources, perhaps especially when considering 

index components from production systems other than grain crops (e.g. viticulture, sugar-

cane, and apples). In this study, the use of different inputs has proved the potential to 

characterize other crop production factors at different time spans (i.e. soil attributes and 

crop vigour) and given alternative means of analysis for pre-season and within-season 

decision support. The response of multi-year yield data and alternative input sources has 

potentially added a temporal perspective to the use of the opportunity index, which is still 

dependent on greater data availability for its potential to be fully realised. 
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6. Given the opportunity indices (Yi, Si, Ii), it is possible to propose a tree structure that 

farmers can use to decide whether there is an opportunity to invest in SSCM at 

different scales (i.e. crop season, single field and whole-farm). 

Simple solutions that include quantitative indices summarizing scientific knowledge and 

support optimized pathways for the adoption of SSCM technology are urgently required,. A 

simple decision tree using field variation measures is expected to add value to the 

information flow for site-specific decision-making by defining pathways for the opportunity 

to adopt different monitoring technologies (i.e. yield monitor, EMI, and airborne imagery). 

The application of the decision model to historical datasets has provided opportune 

pathways for adoption that have matched actual production responses, validating the 

potential in the systematic use of indices for adoption decisions such as: i) Should I go for 

PA?; ii) Which technology should I use?; and iii) Where should I apply differential crop 

management? 

7. Based on an objective economic criterion, a combination of multiscale segmentation 

with region growth and watershed transformation algorithms appears to be a very 

useful way for segmenting continuous field areas for zone management. 

The use of object-oriented concepts for image processing has added a valuable approach for 

the specific application in the segmentation of within-field management zones. Morphology-

based segmentation algorithms could be effectively combined through image-object IDE, to 

highlight the potential use in this type of model development technology. The simple 

economic model used to evaluate segmentation outcomes has introduced the concept of 

border crossing amongst different management zones, in which the preliminary computation 

may be further refined. The effective partitioning of selected fields into contiguous areas of 

strong contrast between yield means has mostly matched the actual production knowledge of 

these fields, thereby suggesting a new approach to zone management investigations. 
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8.3 - Future work 

As extensively discussed, there are several issues requiring attention in future work. Several 

aspects in SSCM decision support are still in the infant phases of conceptualization and 

prototyping. As a consequence of a greater availability of data, preliminary approaches in this 

work could be revisited for extended conclusions. In this case, it is expected that the 

conceptual models suggested in this work, using standardized UML diagrams, will facilitate 

specific knowledge transfer as well as the reuse of the model for either insertion of revisions 

or the implementation of applied software. Among the most important points to be addressed 

in future investigations, four have been selected as requiring special and more immediate 

attention: 

• Some detailed work on ABM is required for implementation of tools that may facilitate 

practical farm decisions supported by autonomous agents embedding agronomic 

research knowledge. 

• To implement a Web decision support service that may use the conceptual models 

introduced in chapters 3 and 6 as a base to automate the computation of the variation 

indices and the segmentations for zone management and to offer to farmers an 

accessible tool for SSCM decision support. 

• To improve steps of the decision trees proposed in chapter 6 and 7, more on-farm data 

and experimentation is required to provide a more homogeneous distribution of 

variation observations. 

• Segmentation procedures should be further considered with descriptions of object 

spatial, temporal, and functional behaviours which are based on agronomic 

relationships which are still under investigation. 
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AAppppeennddiixx  11  

  

PPrroottoottyyppee  eexxppeerriimmeennttaattiioonn  ssoouurrccee  ccooddeess  

 

A1.1 – A Java object class for average covariance of the total field (AC) 

   import java.io.*; 

         // (The TextReader class must be available to this program.) 

   public class AveVarioFile { 

   public static void main(String[] args) { 

         TextReader data;        // Character input stream for reading data. 

         PrintWriter result;     // Character output stream for writing data. 

         double[] number = new double[180000];  // An array to hold up to 180,000 records within 1 file. 

         double sum, sumNugOff;   // Total sum of Yield Semivariance. 

         double ave, aveSumOff, aveNugOff;  // Average Yield Semivariance. 

         String inFile = args[0];   // Input File Name from Execution Arguments 

         String OutFile = args[1];   // Output File Name to Execution Arguments 

         int numberCt,nRows,nCols;  // Number Counter of records actually stored in the array. 

 

         try {         // Create the input stream. 

            data = new TextReader(new FileReader(inFile)); 

         } 

         catch (FileNotFoundException e) { 

            System.out.println("Can't find file "+ inFile + " !!"); 

            return;        // End the program by returning from main(). 

         } 

         try {         // Create the output stream. 

            result = new PrintWriter(new FileWriter(OutFile)); 

         } 

         catch (IOException e) { 

            System.out.println("Can't open file " + OutFile + " !!"); 

            System.out.println(e.toString()); 

            data.close();        // Close the input file. 

            return;             // End the program. 

         } 

         System.out.println("file in / Out OK:  " + inFile + "  &  " + OutFile +" !!");   // control          

         try {      // Read the input data file into an input record array. 

            numberCt = 0; 

            while (data.eof() == false) {     // Read until end-of-file. 

             number[numberCt] = data.getlnDouble(); 

                numberCt++; 

             } 

         System.out.println(" Number of Records = "+ numberCt +" !!");    // control          

         System.out.println("In file has been dimentioned "+ inFile +  " !!");   // control 

            // Calculating Sum of Variances. 

             sum = sumNugOff = nCols = nRows = 0; 

    for (int i = 0; i < numberCt; i++) { 

     for (int j = 0; j < numberCt; j++) { 

      sum += (Math.pow((number[i] - number[j]),2)/2); 

      sumNugOff += (Math.pow((number[i] - number[j]),2)/2) - 0.1565; 

         nCols = j;       // control 

     } 

     nRows = i;       // control 

    } 

         System.out.println(" i  =  "+ nRows +" !!");       // control   

         System.out.println(" j  =  "+ nCols +" !!");       // control   

         System.out.println("Sum Done !");        // control 

         System.out.println(" Sum  =  "+ sum +" !!");       // control 
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             // Calculating Average of Total Field Variance. 

 

          ave = sum / Math.pow(numberCt,2); 

          aveNugOff = ave - 0.1565; 

          aveSumOff = sumNugOff / Math.pow(numberCt,2); 

          result.println(" Number of Input Records  =  "+ numberCt); 

          result.println(" ______________________________________________________________");           

          result.println(" ");           

          result.println(" Total Sum of Variance  =  " + sum); 

          result.println(" Total Sum of Variance - Co =  " + sumNugOff); 

          result.println(" ______________________________________________________________");           

          result.println(" ");           

          result.println(" Total Average Semi-Variance  =  " + ave); 

          result.println(" Average Semi-Variance - Co =  " + aveNugOff); 

          result.println(" Average Semi-Variance (Sum - Co) =  " + aveSumOff); 

 

          System.out.println("Done!"); 

          } 

          catch (TextReader.Error e) { 

                   // Some problem reading the data from the input file. 

             System.out.println("Input Error: " + e.getMessage()); 

          } 

          catch (IndexOutOfBoundsException e) { 

                   // Must have tried to put too many numbers in the array. 

             System.out.println("You have more than 50,000 records in data file."); 

             System.out.println("Processing has been aborted."); 

          } 

          finally { 

                   // Finish by closing the files,  

                   //     whatever else may have happened. 

             data.close(); 

             result.close(); 

          } 

      }        // end of main() 

   }        // end of class 
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• k-means Clustering 

 

Process tree for 2 Zones: 

 

 
 

 

Process tree for 3 Zones: 

 

 

 

  

    
Process tree for 4 Zones: 
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• k-means Clustering with grow region 

 

 

Process tree for 2 Zones: 

 

 
 

 

 

Process tree for 3 Zones: 
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Process tree for 4 Zones: 
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AAppppeennddiixx  22  

CCoonncceeppttss  iinn  oobbjjeecctt--oorriieenntteedd  ddeevveellooppmmeenntt  aanndd  WWeebb  eennvviirroonnmmeennttss  

A2.1 - Languages for human-computer interactions 

Programming language typologies can be difficult to establish. They commonly arise from 

combining elements of predecessor languages, being categorizable along multiple axes 

(Binstock, 2005). For example, Java has at least two interpretations, as OOP for reinforcing 

behaviour, or as a concurrent language for managing parallel threads. Mixed classifications 

are also given for scripting languages (e.g. VB, Perl, Python, and Ruby) and markup 

languages (HTML, XML, and GML), being object-oriented as well as domain-specific 

languages. Further references of programming languages can be found on Web sites for the 

evolution of software technology (e.g. O’Reill Media, 2008 - the History of Programming 

Languages Wiki; Nierstrasz and Meijler,  1995 - the Software Composition Portal; Ducasse et 

al., 2005 - the SmallWiki; Rigaux, 2001 - Pixel’s home page in the SourceForge.net Portal). 

Web mark-up languages have a layered topology and are conceived as extensions of basic 

layers of consortia certified standards and specifications which are further introduced in 

Section A2.4. Although a rigid programming categorization has become less relevant, a 

resilient and commonly used classification for procedural, imperative, and declarative 

languages is briefly introduced (Table A2.1). 

Procedural languages specify the explicit sequences of individual steps to follow in order to 

produce an algorithm changing the system state, as an example of structured programming 

languages (e.g. Fortran, Cobol, Pascal). Imperative languages specify the explicit 

manipulations of the system state by describing an input algorithm. The algorithm language 

(Algol) is an example of imperative languages designed for syntax and semantics (van 

Wijngaarden et al., 1973), fitting a wider scope of applications. These concepts are supported 

by languages like C, C++, Java, Ruby, and Phyton (Stroustrup, 2000; Binstock, 2005).  
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Table A2.1: Programming language chronology (modified from Nierstrasz, 2008). 

* 
O/S acronym stands for Operating Systems; CSP for Communicating Sequential Process; LISP for List 

Programming; FP for Function Programming; ML for Modular Language; Prolog for Program Logic, and 

ISWIN for “If you See What I Mean”. 

** 
Underlined names are development leaders who have received the annual A. M. Turing Award by the 

Association for Computing Machinery (ACM); recognized as the Nobel Prize in computer science. 

 

Year 
Programming 

Language 

Team Development 

Leaders 

Language Innovative 

Characteristic 

Early 

50’s 
Assemblers - Machine code languages 

1957 Fortran Backus Procedural high-level language 

1958 Algol Dijkstra and Naur Imperative language 

1960 LISP
*
 McCarthy Procedural/Imperative  language 

1960 Cobol Hopper Business oriented language 

1962 APL
*
 Iverson Array Programming 

1962 Simula Dahl & Nygaard First OOP key concepts 

1964 Basic and PL/I Kemeny; IBM Labs. Interactive O/S
*
 languages 

1966 ISWIM
*
 Landin Abstract/Functional language 

1970 Prolog
*
 Colmerauer & Warren First Logic Language 

1972 C Ritchie O/S
*
 medium-level language 

1975 Pascal and Scheme Wirth; Steele  Educational languages 

1977 FP
*
 Backus Function programming proposal 

1978 CSP
*
 Hoare First concurrency concepts 

1983 Smalltalk and Ada Kay; Ichbiah 
OOP revisited for 

Interoperability 

1984 ML
*
 Backus & Milner First polymorphism concepts 

1986 C++ Stroustrup OOP version for C 

1986 Eiffel Meyer Design by contract concepts 

1988 CLOS and R Keene; Ihaka  Domain Specific OOP 

1990 Haskell Curry Non-strict semantics’ proposal 

1990s Python and JavaScript (Various) Scripting as a mainstream 

1995 Java Gosling OOP revisited for the WEB 

2000 C# Hejlsberg Microsoft .NET version of C++ 
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Declarative languages specify neither explicit sequences nor state manipulations, rather 

focusing on behavioral relationships between variables. They are understood as a composition 

of logic and control, where only the logic is supplied in the source code and the execution 

control is given by the system. Most declarative languages are branches of artificial 

intelligence and automation, including logic lists (LISP), functional (Smalltalk), constraint 

(Prolog), relational (SQL), and definitional (PL/I). 

In fact, all object-oriented approaches are an ultimate language multi-paradigm mix. 

According to Mangold (1996), they can be considered as strongly-typed languages 

(imperative style) of structured constructs (procedural style), also supporting behavioral 

abstractions (declarative style). This actually reflects a cumulative aspect in the evolution of 

programming which was firstly suggested by Backus (1977): “Each successive language 

incorporates, with a little cleaning up, all the features of its predecessors plus a few more”.  

A2.2 - What languages do we speak now? 

As seen in the previous section, programming languages are in a constant and dynamic update 

that is difficult to cope with. In parallel to the natural processes of maintenance or 

improvement of specific application tools, the surging and retreat of proprietary (and some 

times passionate) coding formats have trapped many research driven developments in the 

past. Over the years, an increasing concern with data compatibility and open system 

interoperability (Ramsin and Paige, 2008) has improved system flexibility and code reuse for 

agricultural tools (Kitchen, 2008). 

It is well accepted by the software engineering research community that the object-oriented 

approach has represented the ultimate evolutionary and open architecture development. 

Probably not representing either the ultimate solution for all types of  requirements, or the 

final step in the evolution of methodologies (Ramsin and Paige, 2008). It is recognized that 

many areas - e.g. Graphical User Interfaces (GUI’s), multi-format spatial data handling (GIS), 

and distributed Web services (SOA) - can be supported by object-oriented methods rather 

efficiently. In addition, there are clear evidences in specialized computer magazines and 

online developer communities that OOP is increasingly popular in the software industry 

(Table A2.2). Similar figures are difficult to draw for agriculture, in particular for SSCM, 

where information mostly accounts for computer usage.  
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Table A2.2: The increasing adoption of the OO paradigm. 

Category 
Ratings 

Feb. 2008 

Delta 

Feb. 2007 

Ratings 

Jul. 2008 

Delta 

Jul. 2007 

Object-Oriented Languages  54.8%  +3.1%  56.6%  +3.9%  

Procedural Languages  42.9%  -1.9%  41.1%  -2.3%  

Functional Languages  1.4%  -0.4%  1.7%  -0.3%  

Logical Languages  0.9%  -0.8%  0.7%  -1.2%  

* source: The online TIOBE programming community index. 

 

As previously detailed in Section 2.2, the effective use of the object-oriented approach has 

been reported in agricultural system developments, with an overall recognition of facilitated 

system integration by simplifying system abstractions and increasing code flexibility. The 

relevance of the approach in simulation research has been evaluated for crop models (Beck et 

al., 2002) with flexible ways of model integration improving quantitatively based cropping 

decisions (Hayman, 2003) using specific development protocols for composable simulation 

frameworks (Tolk, 2003; Moore et al., 2007). 

Among object-oriented languages, the popularity of Java is heavily based on open and free 

software communities, who have thoroughly tested, refined, and extended its functionalities. 

In a recent monthly rank of an independent software community (TIOBE Programming 

Community Index, 2008), 8 languages out of the top 10 involved OO architectures, with the 

Java programming language leading the rank (Table A2.3). Other known programming 

languages lower ranked in this survey and their respective usage percentage are as follows: 

Delphi (2.0%, 11
th
), SQL (0.74%, 13

th
), SAS (0.63%, 14

th
), Pascal (0.43%, 16

th
), Cobol 

(0.42%, 17
th
), Ada (0.41%, 19

th
), Fortran (0.29%, 25

th
), MatLab (0.25%, 27

th
), and LabVIEW 

(0.16%, 31
st
).  

The recent increase of PHP and Python popularity can also be highlighted as examples of the 

popularity of a rapid prototyping offered by Web scripting languages, which promote 

dynamic capabilities for animation and data exchange within Web pages. Although offering 

powerful Web interfacing for server centred models, as used in the Yield Prophet solution 

(Hunt et al., 2006), these development approaches do not support further semantic extensions 

and model composability as required for integrated analysis.  
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Table A2.3: Top 10 leading programming languages. 

Programming 

Language 

Position 

Jul 2008 

Ratings 

Jul 2008 

Delta  

Jul 2007 

Java 1 21.35% +0.33% 

C 2 15.95% -0.42% 

C++ 3 10.69% +0.19% 

(Visual) Basic 4 10.45% +0.72% 

PHP 5 9.53% +0.87% 

Perl 6 5.13% -0.20% 

Python 7 4.97% +1.95% 

C# 8 4.00% +0.29% 

JavaScript 9 2.76% +0.24% 

Ruby 10 2.735% +0.64% 

* source: http://www.tiobe.com 

These trends are in agreement with other market related publications that report a software 

developer’s review. Binstock (2005) indicates that long-term trends are clearly in favour of 

object-oriented languages, although this tendency appears not be influencing developments 

like C and C++. In comparison, classic programming languages (e.g. Fortran, Ada, and 

Assembly) and proprietary fourth-generation languages (4GLs) are expected to continue to 

decline, though the market share of these products has been in steady decline for years. 

Additional figures on the adoption of Java are given with reference to uploaded software 

projects in an open development repository (Sourceforge.Net® FLOSSmole, 2005). For a 

better understanding of aspects in the Java technology, a brief introduction of this 

environment is presented in the next section. 

A2.3 - Using objects 

Object-oriented technology is a general tool that can be used to model domain-specific 

problems ranging from software interactions or control of communication protocols to 

physical agronomic processes or scientific methods for data analysis and interpretation. 

Abstractions are centred on objects and the dynamics of message passing among them. Booch 

(1994) gives a classic definition: “abstraction denotes the essential characteristics of an object 

that distinguish it from all other kinds of object and thus provide crisply defined conceptual 

boundaries, relative to the perspective of the viewer”.   
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Object-oriented fundamentals 

Although it is commonly suggested that OOP languages would offer faster learning, these 

claims are often too vague and difficult to evaluate in relation to previous approaches 

(Marston, 2007). The comprehensive set of object-oriented concepts may require some time 

to be properly understood and practiced. Therefore, this section aims at a brief introduction to 

key concepts that are understood as being break-through points in OOP. A simple and straight 

forward definition of OOP is given by Marston (2007): “a programming stile which is 

oriented around objects, thus taking advantage of encapsulation, polymorphism, and 

inheritance to increase code reuse and decrease code maintenance”. These three concepts have 

also been suggested as central to supporting flexibility in advanced simulations (Ascough II et 

al., 2001), GIS applications (Wood, 2002). A summary review of the main object-oriented 

concepts is given in Table A2.4. 

 

Table A2.4: Fundamental concepts supporting object-oriented architectures. 

Concept Concept Definition 

Class 
A class is a blueprint, or prototype, that defines the variables and the 

methods common to all objects of a certain kind. 

Object 

An instance of a class. A class must be instantiated into an object 

before it can be used. More than one instance of the same class can be 

in existence at any one time. 

Encapsulation 
The act of placing data and the operations that performs on that data in 

the same class. The class becomes a container for data and operations. 

Inheritance 

The reuse of a base class (superclass) to derived new classes 

(subclasses). In the class hierarchy, methods and properties of a 

superclass are automatically shared by any subclass, which may also 

add other more specific methods. 

Polymorphism 

The ability to process objects differently depending on their data type 

or class, thus same interface for different implementations. It allows 

substituting one class for another. Different classes may contain the 

same method names, but the result which is returned by each method 

will be different as the code behind it is different in each class. 

* sources: Wood, 2002; Berard, 2006; Marston, 2007. 
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An object is a uniquely identifiable instance of a class which defines both the properties (data) 

and the methods (functions) related with that type of programmatic entity. Object classes are 

simplified representations of specific parts of a larger complex system, which are usually built 

up by several class libraries. Neither the object characteristics (properties) nor the object 

behaviour (methods) should exist outside of its class definition. Class and class hierarchy 

constructs are defined with private and public class interfaces for class security management. 

Published interfaces define the class methods that can be either accessed by message passing 

from other object classes, or extended by class inheritance of new object classes, without 

worrying about the hidden details. 

A strong aspect in OOP is the typing style in which programmers are not limited to the 

definition of variables using classic data types (e.g. integer, float, double, character). It means 

that new types can be created out of specific functions, other object classes, or even existing 

legacy systems (e.g. dynamic link library – DLL’s) that can be required by the system 

structure. In this way, data structures can handle both data and functions. 

Marston (2007) lists distinguishing OOP features centred on the implementation of methods 

contrasting with functions in non-OOP languages, emphasizing that they are defined and 

accessed differently, they have different numbers of entry points and working copies, and they 

use different methods to maintaining the space state. In OOP the system flow is controlled 

through message passing between objects, being executed in synchronous and/or 

asynchronous ways. Object behaviour (methods) and class relationships are the key elements 

defining the system dynamic flow (Tracy, 2001). 

Another OOP aspect is related to modular communication and data transactions over the Web, 

which relies on concepts of encapsulation and polymorphism (Weisfeld, 2008). In this case, 

objects that are remotely used encapsulated their data and behaviours (algorithms that 

manipulate the data) are both transported across a network and executed in the client machine, 

facilitating the construction of platform-independent structures with polymorphic interfaces 

(Papajorgji and Pardalos, 2006). In procedural architectures the data involved in the execution is 

separated from their operations, when information is sent across a network only the relevant 

data is sent expecting that the remote client knows how to process it. 
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Objects in Java 

In terms of platform-independent languages, Java is among the latest in pure object-oriented 

programming designed to meet this goal, particularly in communication between systems via 

the internet. Often mistaken with the Netscape Web scripting language (JavaScript 
®
, 1995), 

Java (Sun Microsystem’s ©, 1991) provides a general purpose and comprehensive software 

development capability that is centred on open platform concepts (e.g. machine independent, 

reusable, and distributed computing) under the slogan “Write once, run anywhere, and reuse 

everywhere”. Also designed for strong typing functionality, Java facilitates the construction of 

objects within higher levels of abstraction which contain in itself small Java applications 

specifically designed to be called from or to be executed in Web servers. These smaller 

applications are  respectively denominated as Applets and Servlets. These specific network 

driven functionalities have made Java the most utilised development language for Internet and 

intranet applications (Tracy, 2001). A summary of the Java technology advantages include the 

given ability for developers to: 

• Write platform independent software; 

• Create programs to run within a web browser and web services; 

• Develop server-side applications for online interoperability; 

• Create highly customized applications or services; and 

• Write applications for mobile phones, remote processors, or network controllers. 

The Java Virtual Machine (JVM) is an abstract computer architecture designed within the 

Java Runtime Environment (JRE) to run an architecture-neutral bytecode (“.class” extensions) 

translated from a Java source code (“.java” extensions) by JRE interpreters (Tracy, 2001; 

Nierstrasz, 2008). A compiled Java byte code can run on any computer with an installed JRE 

which is freely available for all standard operating systems (e.g. UNIX, Macintosh OS, 

Windows, and Linux).  

Java classes can be accessed by other object classes by exposing its public methods and 

attributes across the Internet. The Javadoc program takes Java source codes and creates a Web 

page representing the class application programming interface (API), known as Java API. 

This interface allows public navigation on the exposed parts of a class structure and 

supporting class reuse. In Java, methods of an object class are the core elements for execution 

control. The execution control features are then coordinated by the semantic definition of 
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class relationships (Wood, 2002; Horstmann, 2005; Weisfeld, 2008). Class relationships are 

mostly established through three main constructs: i) inheritance (“is a” relationship – class 

and super-class); ii) aggregation (“has” relationship – generalization or specialization); and 

iii) association (“uses” relationship – functional interactions). 

Java was developed with a unique set of Internet/intranet primitive classes from which 

programs can be designed for use on the World Wide Web. This construct allows Java 

Applets to be developed for downloading from a Web server and run on any Web browser 

client (e.g. Netscape, Internet Explorer, Mozilla). The disadvantage of using Applets is the 

slow processing in relation to programs that are native in the client machine. Servlets which 

are newer developments, have the same function as the Applets, but they are executed at the 

remote Web server (Nierstrasz, 2008). 

Several Java-centric development platforms and software artefacts from Sun Microsystem’s 

are available for developing, building and deploying different types of platform-independent 

architectures. They range from compact operating systems for mobile-devices or desktop 

stand-alone solutions to huge and decentralized enterprise Web service solutions. Some of 

these construction tools are summarized in Table A2.5. 

Additional development support is given by Java Interactive Development Environments 

(IDE).  Java IDE’s  are software  applications  designed for  facilitating programming and 

maximizing productivity. An IDE may offer a source code editor, a compiler and/or 

interpreter, a debugger, a version control system, a visual GUI design, a class browser, an 

object inspector, and other built in code generation automation tools. Several other specialized 

development tools, plug-in technologies, and educational documentation sources are also 

offered by active open communities. Open communities offer a comprehensive list of 

development initiatives options and supporting tools (e.g. java-source.net, gnu.org, 

sourceforge.net, javaworld.com, junit.org, developer.com). 
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Table A2.5: Main Java related technologies. 

Technology Summary Definition 

J2SE 

The Java Standard Edition is an environment for developing 

applications on desktops and servers. The J2SE platform includes 

several component libraries to improve cross-platform performance 

and interoperability (e.g. AWT, JAXP, CORBA, VisualVM). 

J2EE 

The Java Platform Enterprise Edition is an environment for 

developing Web-based applications. It consists of services, APIs, and 

protocols that providing multilayered development, including HTML 

code creation, the Enterprise JavaBeans (EJB’s), the Java Database 

Connectivity (JDBC), and the Java Servlet API. 

J2ME 

The Java Platform Micro Edition developing applications running on 

mobile and other embedded devices (e.g. mobile phones, PDA’s, TV 

set-top boxes, printers) that includes flexible user interfaces, robust 

security, built-in network protocols, and support for networked and 

offline applications that can be downloaded dynamically. 

JFX 
The Java Platform Enterprise Edition is an environment for creating 

dynamic applications for the next generation of web delivered content. 

JSP 

The Java Server Pages is a server-side technology for developing web 

applications with rich user interfaces. JSP technology is a user 

interface framework for building Java-based web server applications 

rending the user interface back to the client. 

JDMK 

The Java Dynamic Management Kit is a toolkit that allows developers 

to rapidly create smart agents based on the Java Management 

Extensions (JMX) specification. 

JADE 
The Java Agent Development Environment is for agent-based 

developments. 

JESS 

The Java Expert System Shell is an environment for automating 

domain specific rule-based decision trees. The JESS rule engine 

evaluates and executes rules expressed as if-then statements, 

separating knowledge from its implementation logic. 

Applet 
A small Internet-based program written in Java that can be 

downloaded by any computer and executed within a Web browser. 

Servlet 

A small Internet-based Java program, which can be remotely executed 

on a Web server from any client computer, and, if required, 

downloads the output to the client. 

JavaBeans A specification that defines how Java objects interact. An object that 

conforms to this specification is called JavaBeans. 

* source: Sun Microsystem’s ( http://java.sun.com/; last accessed 12/08/08). 
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Abstracting objects 

Some distinguishing advantages confered on OOP were never in fact unique to OOP 

languages. These techniques have been in fact inherited from previous programming styles, 

therefore they cannot be used to differentiate them. If OOP improves code reuse and software 

modularity, it does not imply that code reuse is not possible using other languages. The 

advantage of class reuse depends more on the proper coding than on the language in which it 

is written (Marston, 2007). Modularity is another concept that has been used in procedural 

languages for many years. The ability given by OOP to perform individual object code 

maintenance without imposing revisions in other parts of the system, does not assure that the 

class abstractions have been done in a way to facilitate a modular maintenance (Berrard, 

2006). Therefore, ideas around the "off the shelf" components for evolutionary developments 

with customized solutions are more likely to be related with the quality of system design 

phases, than with the choice of programming. 

It is actually possible to implement a procedural algorithm design (like classic Fortran 

routines) by means of any object-oriented language, whether or not making use of the specific 

OO functionalities is relevant to the system design (Wood, 2002). Still, there is a common 

agreement on the high suitability of the OO architecture for network developments, and it has 

been suggested (Binstock, 2005) that OOP languages are among the few programming 

languages which are likely to keep a net increase in investment (e.g. Java, PHP, C#, Python, 

and Ruby). 

Finally, OO design methods, such as the Unified Modelling Language (UML; Rumbaugh et 

al., 1999), in association with integrated development tools (e.g. Java NetBeans IDE) are 

expected to work in achieving development benefits, in particular for spatio-temporal 

analysis. These methods are further detailed and used in Chapter 3 for in an innovative 

method of application design supporting SSCM decision-making processes. 



 278 

A2.4 - The Web world 

 The growth of the World Wide Web (WWW) can be measured by the number of Web pages 

that are published; 176,000,000 web sites (Netcraft, 2007); and the number of links between 

pages. This fast growth is associated with the effective, relatively easy, and free form way in 

which a Web page can be written, maintained, and linked to other pages. (Sheth and Miller, 

2003; Baer, 2007). A Web page has no formal coordination from central authorities over the 

open HyperText Transfer Protocol (HTTP) which allows information flow regardless of 

volume, content or ownership (Bell, 2007). 

The HyperText Markup Language HTML (Berners-Lee, 1989) is a tagged text document 

format that represents the foundation of the WWW. This foundation is appropriate for 

presenting a multitude of Web pages of static content, but problems arise when large volumes 

of data need a consistent look and feel with variable content (Williams, 2007). Initially, the 

HTML had only a small, fixed set of tags, which has been extended and applied to several 

problem solving domains (Wilson, 2005).  

The exponential growth of the WWW has created the challenge of how to get meaningful 

information and knowledge out of a dynamic, free and open media.  The issue is that 

meaningful discovery varies according to the structure, type and content of the resource, and 

also on the individual interests and beliefs of the information service. An integrated farm 

resource management requires the retrieval of information to be drawn from distributed and 

heterogeneous knowledge domains. This may have motivated the  perception of necessary 

semantic representation in Web developments, which was  documented in early initiatives of 

integrated, participative, and adaptive farm management DSS (e.g. Gauthier et al., 1996; 

Lewis et al., 1998; Shaffer et al., 2000; Argent and Grayson, 2001). These requirements are in 

fact part of the general directives of the original Web proposal (Berners-Lee, 2007).  

A summary overview of standards related to Web technologies are introduced in the next sub-

sections as background to these evolutionary and multilayered solutions. The principal 

concepts introduced here are focused on current industrial standards in software developments 

which adhere to technologies aimed towards Web Services. New developments are conceived 

as extensions of embedded functionalities from basic layers of the Web multilayered 

architecture (Figure A2.1). This common and expandable media, “One Web”, is centred on 

certified standards and specifications from consortiums like W3C and OpenGIS.  

It is believed that many of the Web technologies may represent new opportunities to diminish 

technical barriers to data and systems integration in SSCM decision support. Emerging 
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technologies underlying the next semantic Web generation, refereed as “Web 2.0” or “Web of 

knowledge”, are also introduced later in this section (The Semantic Web). These semantic 

architectures have concepts centred on ontology mapping and autonomous agents, aiming to 

further extend the present Web functionality (the Web 1.0). They may potentially address 

advanced levels of knowledge integration supporting SSCM decision processes. Examples 

from the Web technology offered for agricultural decision support are discussed. System 

solutions for other application domains closely related to site-specific management (e.g. 

climate, soil, environment, simulation models, and GIS) are also illustrated for means of 

highlighting the relative limited attention given to Web solutions by the PA research 

community. 

A multilayered architecture 

The development of the Web was rolled out over the existing Internet without requiring any 

changes to it. Its architecture is depicted as a series of layers, each building on top of the 

other. This technology stack is built according to standards and recommendations given by 

the World Wide Web Consortium (W3C). This separation in layers of concerns (Figure A2.1) 

allows each component of the Internet and the applications that run on top of it to be capable 

of development and improving independently (Berners-Lee, 2007).  

In this technology stack there are six major development activities: Web application, mobile, 

voice, Web services, semantic Web, and privacy-security (W3C, 2005). The evolution of this 

stack is realized through the extendibility of markup languages. The first IBM Generalized 

Markup Language, GML (Goldfarb et al., 1969) was extended by the ISO 8879 standard 

metalanguage, the Standard Generalized Markup Language – SGML, and after that 

descendant markup languages (e.g. XML) have been compliant with the rules for tagging 

elements recommended by the SGML, while establishing different ways in which tags can 

then be interpreted within rules of a specific application or business process. 

Because of the open nature of the Internet's design, this layered architecture allows 

simultaneous but autonomous innovation to occur at many levels (Berners-Lee, 2007). Within 

a higher level of abstraction, Web related packages and technologies replicate the concept of 

“self-describing” and “self-contained” distributed components as part of a multi-tiered 

architecture to enable flexible interoperability of links, composability of services, or 

autonomic computing (Barry, 2003; Papazoglou and Georgakopoulos, 2003; Baer, 2007; 

Bloomberg, 2007; Berners-Lee, 2007).  
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The Internet Layer:   TCP/IP    FTP 

 Technology:   Class Libraries DBMS       UML 

 Development:    IDE’s     MDA      Agile      UML 

 Interface:        API’s Packages  UML 

 

Distributed and 

Heterogeneous 

Applications 

 Ontology Layer:  RDF     RDFS        OWL 

 Service Layer:  SOAP    WSDL           UDDI 

 Document Layer:  HTML   XML    PHP    JavaScript    XHTML 

 Resource Layer:   URL  HTTP 

 

Web 2.0 

 

 

 

Web 1.0 

Use & Extension of Open Standards 

The Web is now more than a practical media for document exchange. It has also been a 

platform for innovative commercial applications based on open standards and royalty-free 

technologies (e.g. J2EE and .NET) that underpin the Web (e.g. the eBay online auctions, the 

Google Earth Web GIS, Yahoo, Amazon.com selling platform). Innovation in the research 

and government areas has been equally robust. Leading efforts to make the process more open 

and transparent (e.g. Wiki and Grid Computing Communities) have pioneered new 

collaborate styles of information sharing (Pullen et al., 2005; Berners-Lee, 2007). 

One of the potentials for changes to the Web service standard is apparent on applications 

called “mash-ups”, which involve the ability to automatically match and mix multiple sources 

into one dynamic entity. Business locators (e.g. Yellow- and White- pages.com) and hotel 

booking services (e.g. lastminute.com, wotif.com) are a few examples where a search for a 

service returns the requested information, business address or accommodation prices, with 

additional value added by matching other relevant references, a location map or room pictures 

respectively. This type of functionality illustrates initial endeavours within the concept of 

“smart services”, where information is automatically selected and tailored to suit specific 

needs of a consumer request. 

 

Figure A2.1: The integrative and multilayered architecture of the Web evolution. 

* source: http://www.w3.org/Consortium/technology.html#techstack and http://www.service-

architecture.com/web-services/articles; last accessed 12/08/08). 
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Web services 

The W3C defines web services as “a software application identified by a Universal Resource 

Identifier (URI), whose interfaces and bindings are capable of being defined, described, and 

discovered as XML artefacts” (Bell et al., 2007). Less technical definitions are given in 

Papazoglou and Georgakopoulos (2003) and Sommaruga (2003), the former defined services 

as ‘‘self-describing, open components supporting rapid low-cost compositions’’. Web 

services are many times referred to as an information bus, in analogy to the data bus of a 

personal computer where various different hardware devices and circuit boards can be 

plugged in and exchange data in a common way.  

To support robust, composable, and reusable integration, Web services consist of a set of 

universally agreed standards and specifications, which are summarized in Table A2.6, 

including XML, SOAP (Simple Object Access Protocol), WSDL (Web Services Description 

Language) and UDDI (Universal Description, Discovery and Integration) (Tsalgatidou and 

Pilioura, 2002; Ferris and Farrell, 2003). The self-describing nature of XML and WSDL 

allows dissimilar software components to understand each other. The messaging protocol 

SOAP supports the interaction between software components. The UDDI represents a set of 

protocols for the description, registration, lookup and integration of software components 

(Zhao et al., 2005) 

Table A2.6: Main standards of Web services. 

Standard Summary Definition 

WSDL 

An XML-based language protocol developed by Microsoft and IBM 

describing service's abilities as collections of communication 

endpoints capable of exchanging messages.  

XML 

The eXtensible Markup Language, a specification by the W3C, is a 

pared-down version of SGML, designed especially for Web 

documents. It allows designers to create their own customized tags, 

enabling the definition, transmission, validation, and interpretation of 

data between applications. 

SOAP 

An XML-based messaging protocol used to encode the information 

contained in a service request and response messages before sending 

them over a network. Encoded messages are platform independent and 

transported via Internet protocols (e.g. SMTP, MIME, and HTTP). 

UDDI 
A public registry that enables services to list themselves on the 

Internet and discover, serving as a means of obtaining contact 

information for available WSDL described services. 

* sources: Ferris and Farrell (2003); Tsalgatidou and Pilioura (2002); Bell et al., 2007. 
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The term Web service describes a standardized way of integrating Web-based applications 

using the XML, SOAP, WSDL and UDDI open standards over an Internet protocol backbone. 

In this approach services can be thought of as remote procedure calls over the web. The 

messaging is XML-based conforming to the SOAP protocol. SOAP essentially provides the 

envelope for sending the Web Services messages, generally using a HTTP connection. The 

form and structure of this service communication is described in the WSDL. The discovery of 

web services is typically carried out using the public UDDI registry, which provides a yellow 

page style lookup on available services. There are specific discovery directories dedicated to 

agriculture, like the Finnish Agronet (www.agronet.fi) and the German DAINet 

(www.dainet.de), where reliable information services from independent organizations are 

made available within the same web site. 

In short, XML is used to tag the data, SOAP is used to transfer the data, WSDL is used for 

describing the services available and UDDI is used for listing what services are available. The 

approach relies on common business and service categorizations having utility across a 

community (Bell et al., 2007). The core technology has been driven by three communities: (1) 

The standards groups of the W3C, the Organization for the Advancement of Structured 

Information Standards (OASIS) and the Global Grid Forum (GGF); (2) Middleware vendor 

adoption and; (3) The open-source community.  

The five steps involved in providing and consuming a Web service are: i) a service provider 

describes his service using WSDL, publishing it to a directory of services (e.g. UDDI, 

ebXML Registry); ii) a service consumer issues one or more queries to the directory of 

services, locating a service and communicating with that service; iii) part of the  provided  

WSDL  is  passed  to  the  service  consumer,  telling what the requests and responses are for 

that service; iv) the consumer uses the WSDL to send a request to the provider; and v) the 

service provides the expected response to the service consumer. The use of XML and web 

service developments is suggested as providing a low learning curve and slowing the prospect 

to faster a wider technology (Sheth & Miller, 2003) adoption.  

Finally, distributed program-to-program interactions add extra threads on top of current Web 

security schemes (e.g. the secure sockets layer - SSL). As a result, The Web service 

technology has been proposing new XML-based security schemes on top of existing 

structures (e.g. digital signatures, key specification, ebXML Message Service). 
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The semantic Web 

Ontological analysis has been shown to be an effective first step in the construction of robust 

knowledge based systems. The use of these techniques over the open Web media has been 

supporting developments towards intelligent systems. Among an outstanding range of 

applications, biosystem design (Priami and Quaglia, 2004) and mechanistic simulation models 

(Benjamin et al., 2006) are likely to take advantage of semantic development standards, re-

usable application and domain reference models. 

In a simple sentence, the Semantic Web makes use of tagged text documents representing 

knowledge of a specific domain. This paradigm was first proposed by Berners-Lee et al. 

(2001) as the ultimate goal of the WWW, in which information is given well-defined 

meaning, better enabling computers and people to work in co-operation. This ontology layer 

has been added to the classic Web stack (Figure A2.1) by means of semantic languages 

which enabled the relation between web resources to be made explicit (Bell et al., 2007). 

Cesare et al. (2007) suggested that Semantic Web initiatives have introduced a new set of 

concepts and tools aiming to facilitate and/or enable the dynamic integration between 

different representations (and understandings) of real world phenomena, usually denominated 

as “ontology mapping”. In brief, the required support for semantic driven technology is given 

by structures such as the Resource Description Framework (RDF), the Resource Description 

Schema (RDFS), and the Web Ontology Language (OWL). Such semantic Web system 

architecture is referred to as "ontology services".  

One of the central aspects in the development and use of ontology acquisition methods is the 

build up of a wide range of domain ontologies (Benjamin et al., 2006). These ontology 

libraries aim to reduce inefficient knowledge management, where redundant efforts are 

expended in capturing or recreating information that has already been encoded elsewhere. The 

idea underpinning the build up of ontology libraries is to offer a large and revisable collection 

of knowledge-bases of structured, domain specific, meaningful information which can be put 

to several uses for multiple application situations.  

According to Benjamin et al. (2006), this information infrastructure is essential for enabling 

intelligent system developments, being the core component of software systems searching to 

facilitate knowledge sharing. The importance of knowledge sharing is evidenced by the large 

body of research directed toward the development of tools and methods to support a 

knowledge sharing approach to integration (Neches 1991; Gruber 1992; Benjamin et. al 
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2006). They discuss specific roles played by ontologies in a distributed simulation modelling 

framework, further detailing activities associated with multiple levels of abstraction, 

integration of tools, and development of component based virtual repositories. 

The generic reuse of simulation models via semantic Web service architectures has been 

proposed in Bell et al. (2007), who provided a novel approach that explores the evolutionary 

and cooperative development of simulation components. They use WSDL (Table A2.6) and 

OWL for an ontology mapping of the health service simulation domain comprising remote 

access to hospital procedures and national blood service databases. This type of solution can 

potentially support generic DSS requirements related to human-computer interactions and 

system interoperability between heterogeneous data structures.  

The semantic approach potentially supports requirements from several farm management 

decision support studies such as: for intelligent DSS (Ginzberg and Stohr, 1982; Kozai and 

Hoshi, 1989; Leung and Leung, 1993; Deursen, 1995; Stein et al., 1995; Smaalen, 1996; 

Petrov and Stoyen, 2000; Recio et al. 2003), knowledge-based systems (Jacucci and Uhrik, 

1993; Cloutier et al., 1998; Sonka and Coaldrake, 1997; Button, 2001), and integrated farm 

management analysis and simulation (Steyaert and Goodchild, 1994; Egenhofer, 1996; 

Gauthier and Néel, 1996; Lewis, 1998; Sheffer et al., 2000; Kelly et al., 2001). 

Ontology reference models such as the Suggested Upper Merged Ontology (SUMO - 

http://www.ontologyportal.org/) are available on the Internet. SUMO forms a free formal 

public ontology with 20,000 terms and 70,000 axioms from all its domain ontologies, being 

the first merged ontology mapped to the entire WordNet® (http://wordnet.princeton.edu/) 

lexical database of English. Similar models in agriculture involve endeavours such as the 

Agricultural Ontology Service (AOS), from FAO, and other PA relevant ontology services as 

previously discussed in Section 2.4. 
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A2.5 - Survey form on methods for DSS developments in SSCM 

Introduction 

Gaining views on your effort and experience developing software applications in Precision Agriculture (PA) is an 

important part of a research thesis aiming to evaluate present implementation standards and foresee potential 

pathways in software design. Results of this survey will be used in formulating a conceptual system framework 

to serve as a reference for near-future improvements in applied software. There will not be any individual 

evaluation or comparative matrix compiled as result, as only summary information will be used for reference 

and this will also be fed back to you. The underlying motivation is to identify and report common requirements 

to promote better standards of software accessibility, modularity, composability and reverse engineering. We 

believe that identifying these requirements could help the development of more pragmatic tools for decision 

support in the adoption and operation of site-specific management, if they are matched with both commercial 

implementation and process modelling research. Please take a few minutes to complete this survey form and 

return it to the address below. 

 

Section A: Aims to compile a contact list of PA software which will be posted (with links) on the ACPA 

website. 

Company Name: 
Contact Name: 
Address: 
Tel:    Fax: 
eMail:    URL: 

 

Section B: Aims to identify present patterns and approaches in PA software development. 

Software Name(s) Software Version(s): 

  

  

 

1. Has your software development process used object-oriented design methodologies (OOD)? 

1 = Yes  2 = No   

If “Yes”, please indicate the method(s) from the options below: 

□  UML (Unified Modelling Language) 

□  OMS (Object Modelling System) 

□  SOA (Service-Oriented Architecture) 

□  Visual DFD (Data Flow Diagram) 

□  Visual ADE (Application Development Environment) 

□  Semantic or Ontology Representation Schemes 

□  Other: ________________________________________________________ 

 
 If “No”, which design approach was used? 
 

 _________________________________________________________________ 
 
 
 

2. Has your software development used object-oriented programming languages (OOP)? 

1 = Yes  2 = No   
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If “Yes”, please indicate the language(s) selecting from the options below: 

□  JavaScript 

□  Perl, PHP or Python 

□  Ruby 

□  Java 
□  C++ 

□  Visual Basic 

□  XML 

□  Other: ________________________________________________________ 

 
 If “No”, which programming language was used? 
 

 _________________________________________________________________ 
 
 
 

3. Have you made use of any IDE (Interactive Design Environment) in your PA software?  

1 = Yes  2 = No  

If “Yes”, mark the concept(s) which you considered most useful. 

 □  Encapsulation 

□  Prototyping 

□  Inheritance 
□  Class Interface 

□  Other: ________________________________________________________ 

 

 

4. Do you use open-source code in your PA applications? 

1 = Yes  2 = No 3 = Plan to within a year  4 = Don’t know  

 

 

5. Have you developed PA applications for Linux operating system? 

1 = Yes  2 = No 3 = Plan to within a year  4 = Don’t know  

 

 

6. Do you develop Web-Service application? 

1 = Yes  2 = No 3 = Plan to within a year  4 = Don’t know  

 

 

7. Did your application involve the canvassing of user requirements? 

1 = Yes  2 = No  

If “yes”, please indicate the user profile(s) from the options below. 

□  Farmer 

□  Agronomist /Consultants 

□  Other Technology Providers 
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□  Researcher 

□  Other: ________________________________________________________ 

 

8. What type of decision support modules are already implemented in your solution?  

(Please, indicate the analysis capability from the option(s) below) 

□  Crop Management & Proximal Sensor Record-keeping 

□  Spatial Information Management & GIS 

□  Economic Analysis 

□  Variogram Analysis and Kriging 

□  Crop Growth Simulation 

□  Image Processing 

□  Input Recommendations & Prescription Mapping 

□  Analysis of Management Zones 

□  Analysis of Production Logistics  

□  Other: ________________________________________________________ 

 

 

Section C: Aims to summarise future trends in Decision Support Systems (DSS) architecture. 

 

1. What type of upcoming technology could influence future developments of your software solution?  

□  SOA 

□  Semantic Web 

□  Knowledge Engineering 

□  MABM (Multi-Agent Based Modelling)  

□  Grid Computing and Simulation 

□  Open Source Development 

□  Other: ________________________________________________________ 

 

2. Do you have active communication with users via a proprietary Web site? 

1 = Yes  2 = No  

If “yes”, please indicate the user profile(s) from the options below. 

□  Farmer 

□  Agronomist /Consultants 

□  Other Technology Providers 

□  Researcher 

□  Other: ________________________________________________________ 

 

 

3. Indicate which type of Internet resources are used for client interactions and data exchange:  

1 = eMail  2 = FTP   3 = P2P  4 = cooperative data warehouse  5 = not relevant 
 

 

4. Where has the use of your software solution been reported? 

(Please, indicate publication type(s) and media from the options below.) 
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□  Agribusiness Magazines    □  Press 

□  Software Magazines    □  Web 

□  Technical Consultancy Reports   □  eMail 

□  Workshop or Field Day Reports 

□  Conference Proceedings 

□  Scientific Journals 
 

 
5. Comparison of your software with other products in the marketplace is useful in evaluating and upgrading 
your product. 

(Please, choose an answer to indicate which statement best matches your opinion.) 

1 = strongly agree  2 = agree   3 = disagree  4 = strongly disagree  5 = not relevant 
 
 
6. The opportunity to interact with users, about changes and new implementation requirements, is or will be 
better facilitated by a Web-Service application. 

(Please, choose an answer to indicate which statement best matches your opinion.) 

1 = strongly agree  2 = agree   3 = disagree  4 = strongly disagree  5 = not relevant 
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AAppppeennddiixx    33  

BBaassiicc  ccoonncceeppttss  iinn  ccuurrrreenntt  ssyysstteemm  ddeevveellooppmmeenntt  ssttaannddaarrddss  

A3.1 - System Development Methodologies (SDM) 

System development may be characterized as a general problem solving activity, ideally 

including system analysis, requirement engineering, system design and implementation. As 

for any other knowledge domain, biosystems tools are first modelled (hypotheses), then 

implemented and tested (experiments) to refine/validate the model (feedback loop) (Priami 

and Quaglia, 2004). System design includes the understanding or conceptualization of a given 

problem and the abstraction of a desired solution. Implementation refers to physical 

manipulation of the problem abstraction, realizing and constructing a solution.  

Analogous to current methods used for DSS design and development, Swedlow et al. (2003) 

describe biological and environmental models as a means to capture knowledge (semantics) 

about problems and solutions. Architectural views are abstractions of the model 

implementation used to organize the problem domain (business) knowledge in accordance 

with a specific programming language syntax. Diagrams are graphical projections of sets of 

model elements, which are used to depict different views of the domain knowledge about 

problems and solutions. 

In software development, modelling is the designing of applications before coding. Models 

aim to raise the level of semantic representation facilitating the prototyping of different 

architectural aspects (e.g. business rule representation, process requirement and distribution, 

event synchronism and change in system state). Core design considerations which directly 

influence the final software functionality are given in Table A3.1. 

System design methodologies have progressed from representations of pure software 

programming and data structures to semantic design patterns and comprehensive technology 

supporting business models as well as functional algorithms with reverse engineering. The 

increasing accessibility of these tools and the standardization of concepts and methods is 

strongly related to improvements in software quality and composability (Tolk, 2003; Baxter et 

al., 2006, Ramsin and Paige, 2008). 

The process of gathering, analysing, and incorporating unstructured managerial knowledge 

and decision support requirements into a program design is a complex one that has persisted 

through the evolution of several modelling methodologies (Mintzberg et al., 1976; Ariav and 
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Ginzberg, 1984; Langley et al., 1995; Nakamori et al., 2007). From the engineering 

perspective, software versatility and composability have been a common goal to all system 

design methodologies such as: structured programming (Dijkstra, 1972), functional 

decomposition and object-oriented design (Booch, 1986); Unified Modelling Language (UML 

– Rumbaugh et al., 1999); the model-driven architectures (MDA - OMG, 2001); and agile 

developments (Ambler, 2002). 

Design notations for stronger semantic representations have become central to proper system 

developments, overcoming code and data centred programming approaches (Abrahamssosn et 

al., 2003). The focus on pure object implementation techniques has only become more 

effective with the adoption of object-oriented methods for analysis (OOA) and design (OOD), 

which offer new standards in system development efficiency. Object-oriented design 

techniques were originally conceived with the potential to represent domain-specific 

hierarchical categorizations (Booch, 1994), which is typical of biophysical taxonomies. They 

can improve the way in which environmental and agricultural models are designed (using rich 

semantic representations) and implemented (using modularity and reuse capabilities) 

(Papajorgji, 2005).  

A chronology of general aspects considered in system design methodologies shows that the 

present standards are mostly aligned with semantically rich architectures (Table A3.2), which 

have been associated with significant gains in development quality and efficiency. Only 

recently, design activity has emerged from academia and government projects into the 

mainstreams of business development, due to increasing complexity of today’s enterprise 

applications (Binstock, 2005). Data modeling and process modeling have become popular 

development trends which diminish the gap between user requirements and developer 

specifications. 

A3.2 - The Model Driven Approach (MDA) 

A great deal of wasted investments in software development has been endured due to 

continual changes in technology which have required complete recoding of systems (Dalgarno 

and Fowler, 2008). Approaching the accessibility of open standards, the Object Management 

Group (OMG) has brought some structure to this arena by creating overarching architectures 

such as the Common Object Request Broker Architecture (CORBA) and the Model Driven 

Architecture (MDA). The MDA merges different OMG standards that have been developed 

and used separately into a common view by applying common meta-models. 
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Table A3.1: Design aspects directly influencing final software functionality. 

Aspect Characteristic  &  Resulting Functionality 

Cohesion 
Describes the contents of a module and its degree of interaction. The higher 

the cohesion the simpler to reuse and to extend a method,. 

Coupling 
Describes module interaction by the degree of mutual interdependence 

between components. Lower coupling tends to create more reusable 

methods, and completely decoupled methods can not be executed. 

Visibility 
The ability to assess parts of an imported object. Any method or property 

marked as 'public' is visible, while parts of a class marked as 'private' can not 

be directly accessed. Visibility requires parsimony with class re-use. 

Dependency 
The degree in which one component relies on another to perform its 

responsibilities. High dependency limits code reuse and makes moving 

components to new projects difficult. 

* sources: Ramsin and Paige, 2008. 

Table A3.2: A brief chronology of the evolution in system design methodologies. 

Time Frame General Aspects of Design Methodologies 

1970 to 1980 

The software lifecycle concept; programming and design methodologies; 

requirement engineering and description technologies; and project 

management. The goal is high software reliability and productivity with 

easy-to-change structure. 

1980 to 1990 
Prototyping technologies; process formalization; analysis of dynamic 

methods; and automated development tools (CASE). 

1985 to 1995 
Software Process Model, this includes process programming, CMM, 

integrated environment, and analysing and supporting human factor. 

1999 to 2004 
Network age; object-oriented technologies; distributed and heterogeneous 

computing; open source software development; and Web engineering. 

2002 to Present 
Interoperability (e.g. MDA); Composability (e.g. SOA, Agile); Machine 

Learning; Semantic Web; Autonomic Agents; and Grid computing. 

* sources: Impagliazzo, 2004; Bernard, 2006; Ramsin and Paige, 2008. 

The idea behind the meta-model is: “to use a common stable model, which is language-, 

vendor- and middleware-neutral: a meta-model of the concept” (OMG, 2007). It basically 

means that a conceptual model solving the general problem in the form of a “Meta Model” is 

established first, instead of directly approaching a given problem with a coded solution. The 

MDA comprises standards to address the various facets of interoperability, where the UML 

also serves as a conceptual design solution mostly providing harmonization of processes and 

interfaces 

In agriculture, useful simulation models have been redesigned several times, to suit changing 

hardware configurations, or simply failed over time due to lack of system maintenance. A set 

of methodological recommendations from the OMG have been applied to separate the 
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functional specification for soil-water balance and irrigation scheduling models from their 

coding specification on a specific technology platform (Papajorgji and Pardalos, 2006). The 

system functionality specification, called Platform Independent Model (PIM), for those 

domain models are introduced using UML models (Papajorgji and Shatar, 2004). The 

specification of a system implementation on a particular platform is called Platform-Specific 

Model (PSM). The PSM is usually generated by automatic procedures within Integrated 

Development Environments (IDE’s) (e.g. Eclipse, NetBeans, ,NET), which can be further 

interpreted by code developers and provide guidance for final code generation. 

The final set of MDA standards was only recently completed (MDA
™
 OMG, 2007). These 

standards are strongly supported in grid simulation (Pullen et al., 2005) and Defence sectors 

(Nunrich et al., 2004), where they frame the development of component tools as part of large 

projects for operational and logistic field control. To give an independency of solutions from a 

variety of vendors, MDA uses the UML as a foundation (OMG, 2001) to transform popular 

code-driven UML models into comprehensive business workbench systems. This has 

reinforced the UML as a “de facto” solution in software developments, which are also 

integrated with Web concepts. This new standardized development context strengthens the 

use of UML in this research as a foundation for an evolutionary development of SSCM 

knowledge support tools. 

A3.3 - UML basics 

The UML emerged from the merger of several object-oriented design methodologies 

proposed in late 1980’s (e.g. Booch, 1986; Jacobson, 1986; Rumbaugh, 1987; Loomis et al., 

1987), and unified several modelling concepts and design notations (Rumbaugh et al., 1999). 

Because of its original lower level modelling (code driven perspective), UML could not give 

business benefits when applied to integrated management systems. The use of more 

specialised and abstract modelling elements were introduced by the OMG as part of the MDA 

standard (OMG, 2001). Progress beyond abstractions of “coding objects” has now 

encompassed thirteen standard diagrams, covering architectural, business process and rules, 

and operational aspects considered in different computer, management, and business 

disciplines. 

UML diagrams describe several functional and structural aspects of a system. These aspects 

were initially described through four views (e.g. use-case, logical, component, deployment) of 

the development process (Rumbaugh et al., 1999). Recently, a UML version (UML v.2.1) has 

been split into two complimentary specifications: the infrastructure and the superstructure 
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specifications (OMG, 2007). The infrastructure specification is divided into three main design 

categories: six diagram types representing the static application structure; three representing 

the general types of behaviour; and four representing the different aspects of interactions. 

Structure diagrams emphasize what things must be in the system being modelled. They 

include the class diagram, object diagram, component diagram, composite structure diagram, 

package diagram, and deployment diagram. Behaviour diagrams emphasize what must 

happen in the system being modelled. They include the Use Case Diagram; the Activity 

Diagram, and the State Transition Diagram. The Interaction Diagrams emphasize the flow 

control of data in the system being modelled, being derived from more general behaviour 

diagrams. They include the sequence diagram, communication diagram, timing diagram, and 

interaction overview diagram. A functional description of the diagrams which were 

considered relevant to the design for knowledge support in SSCM is presented in Table A3.3. 

A3.4 - UML related technology 

Several related technologies have used basic UML applications, which further improve the 

interoperability between development methods and tools. Some have been identified as of 

relevance towards the idea of an integrated knowledge suite supporting SSCM. 

Design frameworks 

A framework is a conceptual skeletal solution defining the overall structure of parts and their 

relationships (D’Souza, 2000). It has been suggested for use in agriculture since the early 

phases of integrated system design (e.g. Hodges et al, 1992; Waldman and Rickman, 1996). A 

framework helps define and enforce some aspect of architecture, supporting the reuse of 

software constructs as in Table A3.4. Two further properties of frameworks are: i) 

frameworks can be described at different levels of refinement; and ii) frameworks themselves 

are composed of smaller frameworks.  

According to D’Souza (2003) the systematic reuse of frameworks can include applications 

with diverse domain models (e.g. design patterns, architectural connectors, JavaBeans 

frameworks, or layered frameworks). An example of applied frameworks in PA is given by 

the stepwise evolution of the precision agriculture markup language (PAML; Murakami et al., 

2007). The PALM vocabulary conforms to AGROVOC (FAO, 2006) and extends the 

eMOSAICo Web service (Murakami et al., 2002), which was based on the MOSAICo object-

oriented framework described in UML class diagrams (Saraiva, 1998). The PAML is 

designed for operational management of intensively monitoring georeferenced datasets and 
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has been used in a prototype for a yield monitor data filtering service implementing a legacy 

algorithm (Molin and Menegatti, 2002). 

Design patterns 

Design pattern is a concept inherited from architectural urban planning, with the idea of 

describing core solutions to problems which occur recursively. This is mostly applied as a 

code reuse technique that has the purpose of extending the functionality of basic generalized 

solutions. Papajorgji and Pardalos (2006) introduce the concept as applied to a plant 

simulation interface and a decision support system using a water-balance model (Ritchie, 

1998). Another template using Ritchie (1998) for simulation of irrigation scheduling is given 

in Papajorgji and Shatar (2004). Argent and Grayson (2001) have described an interface 

prototyping for environmental models that is integrated with a water-balance model for farm 

management planning. In upper levels of 

Table A3.3: A description of the function of UML diagrams that were considered in the 

framework design proposed in this research. 

Diagram Type Diagram Design Function 

Use case  

Describes the functionality provided by a system. Shows a dialog in 

terms of actors, their goals represented as use cases, and dependencies 

between use cases. 

Class  

Describes the structure of a system. Shows the system structure and 

hierarchy in terms of classes, interfaces, their attributes, and their 

different degree of relationships (e.g. generalizations, specialization, 

associations, and inheritance). They can be considered equivalent 

to classic entity-relationship diagrams of database structures. 

Collaboration  

Describes both the static structure and dynamic behaviour of a system. 

Shows the communication between objects in terms of objects, 

links of interaction, and messages. They represent the interaction 

between objects combining information taken from class, sequence, and 

use-case diagrams. 

Activity  

Describes the dynamics of a system. Shows the business operational 

workflow of components in terms of their activities and triggering 

decisions. They are essentially flowcharts or data flow diagrams 

used to get the general flow of the system. 

State Transition 

Describes the dynamic behaviour of objects of a system, Shows a 

change from an originating state to a successor state for objects with 

significant dynamic behaviour. They depict statecharts of specific 

action scenarios during an object lifetime. 

Sequence 

Describes the sequence of messages exchanged between objects in a 

system. Shows how processes operate in terms of object interactions 

and time sequence. They depict the order of invocations as well as 

the creation of objects. 

 * sources: OMG, 2007; Quatrani, 2000; NetBeans, 2008. 
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Table A3.4: Characteristics of the reuse of software constructs. 

What to reuse How to reuse 

Code 

Interfaces 

Cut and paste 

White-box inheritance 

Designs 

Problem Domain Models 

Black-box composition 

Code-generation 

* sources: D’Souza, 2003; Papajorgji, 2005; NetBeans, 2008. 

abstraction, a design pattern is understood as a set of interrelated model components defined 

in a package, some of which will be substituted when imported into another package 

(D’Souza, 2003). 

Design patterns are one of the most visible demands placed on top of the UML by new MDA 

specifications for proper treatment of class refinement. Refinement is a relationship between 

two models, one of which is strictly more detailed than the other and which maintains the 

rules made by the other. D’Souza (2003) suggests that a proper class refinement unifies 

design concepts such that:  

• Systems and subsystems became just objects at different levels of abstraction.  

• Use case, action, and activity diagrams realize different abstractions of behavioral 

interactions.  

• Interface, type, and class are established by a realization/abstraction relationship between 

them.  

Object design 

There are other specific methodologies for object design which have been proposed in the 

domain of agriculture in particular to landscape level agroecological models. They usually 

explore concepts and functionalities in behavioural object design focused on interchange of 

class libraries or modelling components. Although strongly promoting modular approaches 

and code-reuse, these solutions support the structural refinement of software functionality, but 

lack description for knowledge of the applied processes and are hardly ever aligned to Web 

interoperabity. 

van Evert and Campbell (1994) introduced a collection of OO simulation models of 

agricultural systems. Kage and Stützel (1999) introduced an object component for generic 

design of dynamic crop systems. As a utility set of mathematical routines facilitating the use 

of model evaluation, Fila et al. (2003) presents a class library for evaluating numerical 

estimates. The use of this technique is extensive in process modeling for plant agronomic 

processes. Some of the examples of modular designs can be found in: Timlin et al. (1996) for 
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a soil-plant modular design; Hodges et al. (1992) and Acock and Reinolds (1997) for crop 

model; Lewis and Bardon (1998) for environmental management in agriculture; Pan et al. 

(2000) for Web-based plant growth simulator; Steward et al. (2001) for integrated Web-based 

data model of a client-property-event agricultural system; Mi et al. (2003) for rice growth 

model; Donatelli et al. (2003) for crop evapotranspiration; Nute et al. (2004) for integration of 

components in ecosystem management model.  

Knowledge design 

The development of knowledge-based methods for decision support and business 

management have mostly used concepts originating from evolutionary development processes 

(e.g. objects, unified methods, template design, cooperative components). An overview of this 

applied technology can clearly illustrate the potential of UML as a basis for knowledge 

management aid tools.  

The CommonKADS methodology introduced in Section 1.3.4 incorporates a common library 

of reusable expert problem solving components (Breuker and van de Velde, 1994), with 

models based on UML diagrams (in particular Class, Activity and State Transition Diagrams) 

and links to ontology languages like Protégé (2006). This methodology has been used as a 

reference for the management of large-scale scientific workflows (Deelman and Gil, 2006) 

and agent-based grid simulation in distributed intelligent management systems (Gil, 2006). 

Other knowledge developments strongly based in UML models can be found. Brimble and 

Sellini (2000) introduce a modelling language for management of engineering knowledge, 

which has been extended to a knowledge development suit of methodology and tools (Stokes, 

2001). These development methods have been well used in mechanical engineering 

applications (Hunter et al., 2006; Ammar-Khodja et al., 2008), but never addressed in PA 

robotics. Dijkstra (2001) discuss the development of knowledge engineers and management 

actors, which offers a combination of methodologies and software tools enabling businesses 

to electronically capture knowledge processes. This technology was also used to assist 

mechanistic process-oriented knowledge acquisition (Cottam, 2000), to design knowledge 

models to map semantic relationships for categorical classifications (Sureephong et al., 2006), 

and to aid competitive clustering of business markets (Sureephong et al., 2007). The 

functionality offered by these types of applications can potentially support both the design of 

agronomic process simulation models and the multidisciplinary integration of those models 

into mainstreams of the farm business management. 
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UML parsers 

Parsing is a classic technique in computer science disciplines, whereby compilers parse source 

code to be able to translate it into machine code. Likewise, applications processing complex 

commands must be able to parse the command parameters. A widely used OMG specification 

to parse UML models into Web solutions is the XML Metadata Interchange (XMI; OMG, 

2008). One of the purposes of the XMI is to enable easy interchange of metadata between 

UML-based modelling tools and MOF-based metadata repositories in distributed 

heterogeneous environments. The transfer of UML models across Web services preserves 

semantics when applied to any metadata expressed in Meta-Object Facility (MOF; OMG, 

2008).  

Most common uses of XMI include the interchange of UML models and the serialization of 

metamodels from other languages. XMI is also applied as the medium by which models are 

passed from modelling tools to software generation tools as part of model-driven engineering. 

No practical solutions using parsing techniques have been reported for PA, in contrast 

examples from several other applied domains translating UML and Java into XML, or vice 

versa have been reported (Grønmo et al., 2004).  
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AAppppeennddiixx  44  
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A4.1 - Variogram parameters for Australian grain crop agriculture 

 

Variogram parameters and components from the computations of the crop yield variation 

index are detailed in Table A4.1 for the 218 field-year observations of yield monitor datasets. 

Best fit parameters were selected and used as described in the Yieldex method (Section 4.5). 
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AAppppeennddiixx  55  

DDiiffffeerreenntt  vveeggeettaattiioonn  iinnddiicceess  &&  ppaarraammeetteerrss  ffoorr  ootthheerr  iinnddiicceess  ((IIii  &&  SSii))  

A5.1 - Several vegetation indices used in agriculture 

Imagery indices used in Chapter 5 considered a range of 11 vegetation indices previously 

used in PA applications (Table A5.1), which were calculated using airborne imagery with 

four wavelengths: blue (450nm), green (550 nm), red (650-670 nm) and infrared (≈ 750 nm).  

Table A5.1: Several vegetation indices already applied to PA. 

Index Formula 

NDVI - Normalized Difference Vegetation Index 
(Rouse et al., 1974) redIR

redIR

+
−

 

NDVI scaled 1001 x
redIR

redIR







 +
+
−

 

VI  
red

IR

 

PPR - Plant Pigment Ratio 
blue

green

 

PVR - Photosynthetic Vigour Ratio 
red

green

 

PCD - Plant Cell Density 
red

IR

 

SAVI(0.5) (0.5 = correction of shine of the soil) 
(Huete, 1988) 

( )5.01
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
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++

−
x

redIR

redIR

 

GNDVI - Green NDVI 
greenIR

greenIR

+
−

 

GNDVI scaled 1001 x
greenIR

greenIR
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



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−

 

TrVI - Triangular Vegetation Index 
(Broge & Leblanc, 2000) 

)](200)(120[5.0 greenredgreenIR −−−  

OSAVI - Optimized Soil Adjusted Vegetation Index 

(Rondeaux et al., 1996) 
( )16.01

16.0
+

++
−
redIR

redIR

 

MSAVI (Modified Soil Adjusted Vegetation Index) 
(Qi et al., 1994) 

( )
2

)(8²1212 redIRIRIR −−+−+

 

TDVI - Transformed Difference Vegetation Index 
(Bannari et al., 2002) 

)
5.0²

(5.1
++

−

redIR

redIR

 

These indices have already used to agriculture mostly to consider crop yield predictions of 

some physiological or physical process modelling.  The NDVI formula is far the most popular 

index for several agronomic applications, while other indices include properties such as: high 

responses for PPR when leaves are strongly pigmented, high responses for PVR for leaves 

with strong chlorophyll absorption, and high responses for PCD for leaves with high density 

of healthy cells. 
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