

AGROECOSSISTEMAS MULTIFUNCIONAIS SUSTENTÁVEIS AUMENTAM A RESILIÊNCIA DO CULTIVO DO MELOEIRO AMARELO IRRIGADO NO SEMIÁRIDO FRENTE ÀS MUDANÇAS CLIMÁTICAS?

Márcia Vitória de Macedo¹
Bruna Barbosa Costa²
Vitória Rodrigues de Oliveira³
Regina Lúcia Félix de Aguiar Lima⁴
Alessandra Monteiro Salviano⁵
Diana Signor Deon⁶

RESUMO

Os agroecossistemas desempenham papéis cruciais na regulação e suporte ecológico associados a práticas conservacionistas, favorecendo a sustentabilidade agrícola. Este estudo avalia a qualidade física e micorrízica do solo no cultivo de meloeiro com o uso de agroecossistemas multifuncionais compostos pela combinação de misturas de plantas de cobertura e manejo de solo. O manejo do solo, sem revolvimento, resultou na melhoria das condições físicas do solo, principalmente relacionadas à sua capacidade de reter e fornecer água para as culturas e na atividade dos fungos micorrízicos arbusculares, importante para o aumento da ciclagem e da eficiência de uso de nutrientes pelas plantas.

¹Mestranda em Ciência e Tecnologia Ambiental. Universidade de Pernambuco-(UPE-Petrolina). marciavitoriademacedo@gmail.com. ORCID: 0000-0002-5928-6694.

²Mestranda em Ciência e Tecnologia Ambiental.Universidade de Pernambuco-(UPE-Petrolina). bruna.barbosacosta@upe.br. ORCID: 0009-0003-8381-8886.

³Mestranda em Ciência e Tecnologia Ambiental.Universidade de Pernambuco-(UPE-Petrolina). oliveiravr812@gmail.com. ORCID: 0000-0002-7745-4196.

⁴Doutora em Engenharias Energéticas. Universidade de Pernambuco-(UPE-Petrolina). regina.aguiar@upe.br. ORCID: 0000-0003-4618-9147.

⁵Pesquisadora da Embrapa Solos-Unidade de Execução de Pesquisa e Desenvolvimento (UEP), Recife (PE), Brasil. alessandra.salviano@embrapa.br. ORCID: 0000-0003-3503-6655.

⁶Pesquisadora da Embrapa Semiárido, Petrolina (PE), Brasil. <u>diana.signor@embrapa.br</u>. ORCID: 0000-0003-1627-3890

Palavras-chave: Plantas de cobertura; Plantio direto; Fruticultura irrigada.

INTRODUÇÃO

Os agroecossistemas são sistemas complexos que envolvem diversas espécies em interação, sua implantação e desenvolvimento destinados ao cultivo de espécies de importância agrícola, e que influenciam funções e serviços de regulação e suporte ecossistêmico. Dentre os benefícios está o aumento da retenção de água no solo e da colonização de fungos micorrízicos arbusculares (FMAs) que contribuem para a mitigação dos impactos ambientais advindos dos efeitos das mudanças climáticas (Giongo *et al.*, 2021).

Ainda persiste uma considerável hesitação entre fruticultores em transitar para uma agricultura menos intensiva. Parte dessa resistência pode ser superada através da ampliação dos dados ecológicos, biofísicos e econômicos, facilitando práticas sustentáveis. Assim, esse estudo objetiva avaliar a qualidade física e micorrízica do solo cultivado com meloeiro em diferentes agroecossistemas com uso de plantas de cobertura e manejos do solo.

METODOLOGIA

Os dados são resultados do experimento conduzido desde 2012 na Embrapa Semiárido, Petrolina, PE. Os tratamentos são compostos por três tipos de misturas de plantas de cobertura (MP) (1-predominância de leguminosas, 2-50% gramíneas e oleaginosas e 50% leguminosas e 3-vegetação espontânea), dois tipos de manejo de solo (CR-com revolvimento e SR-sem revolvimento). Detalhes das espécies, semeadura e manejo são descritos em Giongo *et al.* (2021).

Raízes de meloeiro coletadas aos 29 dias após o transplantio (DAT) foram processadas, coradas e avaliadas quanto ao grau de colonização: micorrízica total, hifal, vesicular e arbuscular (Mico T, H, V e A) quantificado pelo método de análises de segmentos (Prates Junior *et al.*, 2021).

Após a colheita, coletaram-se amostras de solo (0-20 cm) para determinação da densidade do solo (Ds) e densidade de partículas (Dp), granulometria, porosidade total (Pt), macroporosidade (Ma) e microporosidade (Mi) (Donagema *et al.*, 2011) e teste de infiltração de água do solo (CC).

Os dados foram submetidos à análise de componentes principais (ACP) utilizando-se os fatores Manejo do solo (M) e MP foram utilizados como variáveis suplementares (VS).

RESULTADOS E DISCUSSÃO

A ACP permitiu a extração de 3 componentes que juntas explicaram 91% da variabilidade dos dados. A CP1 (50,83%) representou a qualidade física do solo, relacionada à porosidade e que influenciam importantes funções do solo como armazenar e suprir água, permitir o crescimento das raízes e a conservação do solo. A CP2 (30,77%) caracteriza-se pela CC e atividade biológica (Mico T e Mico H), com correlação positiva entre as variáveis. O uso das VS permitiu observar que o manejo foi o fator preponderante para a explicação das diferenças entre os tratamentos, como corroborado pelos 3 grupos de agroecossistemas formados: G1-MP1 e MP2 associadas ao manejo SR; G2-VE associada ao SR e MP2 ao CR e o G3-VE e MP1 associadas ao CR.

O G1 apresentou maiores CC e micorrização (H, T e A), com aumentos de até 46,48% na capacidade de retenção de água em relação aos agroecossistemas que incorporam a biomassa ao solo (CR). Esse resultado é de extrema importância, considerando a textura arenosa do solo e a representatividades destes nas principais áreas de produção irrigada do Semiárido brasileiro. No G2 destaca-se o uso da VE, composta por plantas adaptadas às condições locais, associada ao SR permite resultados de qualidade do solo semelhante ao MP1CR, com a vantagem de não apresentar custo de implantação, podendo ser alternativa para pequenos agricultores. Esse grupo apresentou qualidade física e biológica do solo intermediárias entre o G1

e o G3, sendo este último o que proporcionou menor desempenho entre os agroecossistemas. Ainda assim, acredita-se que a adoção de qualquer um dos agroecossistemas multifuncionais traga mais benefícios ao solo que o cultivo intensivo atualmente utilizado para cultivo do meloeiro, com maior impacto com uso do manejo SR. Giongo *et al.* (2021) destacam benefícios ocasionados pelo mesmo tipo de agroecossistema, como maior formação de agregados no solo, diversidade biológica e colonização por FMAs, aeração do solo pela expansão do sistema radicular e aumento de estoques de C.

CONSIDERAÇÕES FINAIS

O uso de agroecossistemas que adicionem maiores quantidades de resíduos vegetais ao solo (MP1 e MP2) associados ao não revolvimento aumenta qualidade física, medida pela capacidade de suprir água para as plantas, e biológica, avaliada pelos FMAs, em sistemas de produção de meloeiro irrigado no semiárido.

A adoção desses agroecossistemas, além de produzir alimentos, permitem a melhoria da prestação de serviços ambientais como a ciclagem de nutrientes e armazenamento de água, aumentar o sequestro de C e regular o clima tornando-os mais resilientes e auxiliando na mitigação das mudanças climáticas.

AGRADECIMENTOS

À Empresa Brasileira de Pesquisa Agropecuária (Embrapa) pelo financiamento do projeto.

REFERÊNCIAS

DONAGEMA, G. K. *et al.* (org). **Manual de métodos de análise de solos**. Rio de Janeiro: Embrapa Solos, 2011, 230 p.

GIONGO, V. et al. Desenhos de agroecossistemas multifuncionais para o cultivo de frutícolas irrigadas no Semiárido. **Comunicado técnico**, 182. Petrolina: Embrapa Semiárido, 17 p. il. 2021.

PRATES JÚNIOR, P. *et al.* **Micorrizas arbusculares: conceitos, metodologias e aplicações.** Viçosa, MG: Sociedade Brasileira de Ciência do Solo. 2021.