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ABSTRACT: Due to the great global economic importance of coffee, the international market has increasingly focused on the safety
and quality of coffee compounds, such as acrylamide, which forms during the roasting process. The importance of acrylamide lies in
its health risks, including its carcinogenic potential. Various strategies have been developed to mitigate the acrylamide in foods,
including optimizing roasting time and temperature and the use of strains to metabolize the acrylamide by using asparaginase
(preacrylamide precursor) or acrylamidase enzyme (post acrylamide formation). While most of these methodologies have been
extensively studied, limited information exists on the acrylamidase used to mitigate acrylamide in food. Understanding current
acrylamide limits and related factors is essential for the effective management of coffee processing and processing procedures. This
study aims to compile the current acrylamide limits for different foods (including coffee) and to present strains with potential
acrylamidase production.
KEYWORDS: coffee, acrylamidase, scientometric, bibliometric, baking products, acrylamide mitigation

1. INTRODUCTION
The discovery of potential carcinogenic compounds like
acrylamide (AA) and other furfurals, which have proven
negative health effects, in a large portion of foods subjected to
cooking or roasting processes has raised much concern
worldwide. This concern is particularly due to their formation
through complex reactions during the cooking and roasting
process. The production mechanisms of these compounds are
related to high temperatures, chemical molecules, and reducing
sugars.1

This generation of undesirable products during thermal
treatments is known as thermal processing contaminants, with
AA being the most important. It is formed by the degradation
of free asparagine in the presence of sugars.2 The formation of
AA in foods during cooking or frying occurs mainly as a result
of the reaction between amino acids, such as asparagine, and
reducing sugars under high-temperature conditions. Further-
more, the degradation of vegetable oils, especially polyunsa-
turated fatty acids,1 can generate acrolein, which is oxidized to
acrylic acid, a precursor of AA. Strategies such as pretreating
potatoes in acetic acid solution before frying have been
effective in significantly reducing AA formation due to the
release of amino acids and reducing sugars during treatment.3

The International Agency for Research on Cancer (IARC)
classifies AA as probably carcinogenic to humans, as there is
limited evidence of carcinogenicity in humans, but presents
sufficient evidence showing that the substance promotes cancer
in experimental animals studies.4 Moreover, AA has been
characterized as a genotoxic, neurotoxic, and reproductive
toxin.5

Several strategies have been investigated to mitigate AA in
foods, including the use of salts, amino acids, irradiation,
vacuum treatment, supercritical CO2 extraction, high hydro-
static pressure, and a pulsed electric field, among others.
Additionally, biotechnological approaches using microorgan-
isms or cell-free extract/enzymes like asparaginases and
acrylamidases have also been explored.6

Asparaginases are enzymes that are generally abundant in
starch-based foods. They play an essential role in enzymatic
hydrolysis by converting the precursor asparagine into aspartic
acid, a compound that deactivates the AA production pathway,
thereby controlling the levels of AA generated.7 On the other
hand, acrylamidases or amidohydrolases are enzymes that
catalyze the decomposition of carboxylic amides into
carboxylic acids and ammonia.8,9 These enzymes are found
in various natural environments8 and play a crucial role in the
transformation and recycling of nitrogen compounds in the
environmental, contributing to the nitrogen cycle.10

Bibliometrics is a scientometric quantitative research
method used to study the scientific literature. It is essential
in review studies as it is a systematic approach, ensuring the
quality of information and providing evidence from the
scientific literature. This method helps understand the history,
evolution, and current state of the art, identify patterns and
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trends, and provide insights to pinpoint research gaps, thereby
aiding in decision-making for future studies.11,12 An additional
advantage of bibliometrics is its ability to offer a
comprehensive overview of a specific topic and identify
emerging concerns.13 It also enables the creation of a
distinctive viewpoint through sufficiently in-depth analysis.14

There is a lack of studies regarding scientometric techniques of
AA mitigation on foods.

Since coffee has a significant commercial strength world-
wide, it could be considered a relevant source of exposure for
AA. In this sense, there is a gap to be filled with effective
solutions to adequately reduce AA for industrial-scale
implementation, keeping the sensory qualities of coffee
products. This study aims to conduct a bibliometric analysis,
identify strains with potential for acrylamidase production,
compile the current acrylamide limits for various foods
(including coffee), and suggest possible future research
directions.

2. BIBLIOMETRIC ASSAY FOR HISTORY, CURRENT
STATE, AND TRENDS IN ACRYLAMIDE IN FOODS

2.1. Methods. The Web of Science (WoS) database was
utilized to collect relevant scientific articles. The query, based
on details provided in Figure 1, was conducted on 20

September 20, 2024. In the first phase, the keywords (1.
“acrylamide”; 2. “acrylamide” AND “food”; and 3. “acrylamide”
AND “food” AND “mitigation”) were searched in titles,
abstracts, keywords, and keyword plus. Only articles and
review papers from the period 1966−2024 were considered.

In the second phase, the bibliographic data for the selected
articles were exported as “Plain text files” and “Tab-delimited
files” for use in “R” and VOSviewer, respectively. The data
were then processed to analyze annual production, country-
wise production, keyword co-occurrence expressed as an
overlay network, and emerging themes. The third phase
focused on interpreting the results and discussing findings
related to acrylamide in food and its mitigation.

2.2. Results and Discussion of Bibliometrics. The
initial query for “acrylamide” yielded 35,393 published
documents, restricted to English language articles and reviews
(Figure 1). The first document was published in 1966 (Figure
2a). The query was then refined using the keywords

“acrylamide” AND “food”, resulting in 4,618 documents.
Finally, the keywords “acrylamide” AND “food” AND
“mitigation” were used, resulting in 455 documents.

For the results corresponding to the “acrylamide” AND
“food” keywords, although the first scientific publication on AA
appeared in 1966, there was limited interest from the scientific
community until 2002. This is evident as the number of
publications varied from 1 to 13 papers per year. After 2002,
the number of publications increased linearly, reaching a peak
of 381 publications in 2022. A similar trend was observed for
the keywords “acrylamide” AND “food” AND “mitigation”,
with no publications on AA mitigation until 2004, followed by
a linear increase over time.

Figure 2b highlights the countries addressing the issue of AA
mitigation, with Iran, India, Italy, China, Spain, the USA, and
Brazil being prominent in that order. Since Brazil is the major
coffee producer,15 its concern about AA mitigation is still a
huge challenge due to the necessity to achieve the AA limits
imposed by the governments of the countries that serve as the
final destination for Brazilian coffee products, and well as other
food products which contribute to the dietary exposure to
AA.16

The overlay visualization from VOSviewer (Figure 3a) for
the article keywords in the latest query (using “acrylamide”
AND “food” AND “mitigation”) illustrates the most co-
occurring keywords over time. The colors blue, green, and
yellow indicate the most used keywords in the oldest,
intermediate, and newest years, respectively. These findings
are generally consistent with the trend topic distribution by the
bibliometric package of R (Figure 3b), which shows the
elapsed time and the average year when the keyword was most
used. Therefore, Figure 3, panels a and b are considered
complementary. Overall, Figure 3 helps researchers analyze

Figure 1. Methodology steps for the bibliometric analysis.

Figure 2. Annual scientific production (a) and country publication
map (b).
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older and newer study interests, aligning their efforts with the
most relevant and emerging research areas.11,14

Some of the earliest keywords (Figure 3a,b) such as
asparagine, temperature, glycine, processing conditions, free

Figure 3. Overlay visualization (a) and trend topics distribution (b) of keywords on publication regarding query using “acrylamide” AND “food”
AND “mitigation”.
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amino acids, Mallard reaction, and others were more used in
the years from 2007 to 2018. Conversely, terms like mitigation,
reducing acrylamide, rats, asparaginase, risk assessment, food
safety, metabolism, and neurotoxicity are the newest terms that
point out the potential shift in the AA mitigation concerns and
challenges around the world.

Additionally, these findings help researchers to detect
potential gaps in the literature. For example, the absence of
the word “acrylamidase” suggests an insufficient number of
studies focusing on this mitigation option, despite its advantage
of acting directly on AA molecules after the food production
process.

3. ACRYLAMIDE
Acrylamide (AA) (Figure 4a) is a colorless, odorless, white
crystalline aliphatic amide molecule, also known as 2-

propenamide, acrylic amide, ethylene-carbamide, propenoic
amide, vinyl amide, propenamide, and acrylamide monomer. In
terms of its physical characteristics, it has a molecular weight of
71, a relatively high melting point of 84.5 °C, and a high
boiling point of 136 °C at 3.3 KPa. AA is highly reactive and
serves as a key compound in polyacrylamide formation. AA is
highly polar soluble in water, alcohols, acetone, and
acetonitrile, and slightly soluble in ethyl acetate and dichloro-
methane.17 However, it is insoluble in hexane and other
alkanes and alkenes. While it exhibits low but significant
volatility, it does not show significant UV absorption above
220 nm and does not display fluorescence.18

AA is not present in fresh food, and it has been found in all
food types prepared at high temperatures (>160 °C), including
meat, bread, and potato products. Less amounts can be
detected in cooked and microwaved foods. Even toasted tea

leaves and roasted barley grains contain acrylamide in
concentrations up to 570 and 320 ng/g, respectively. AA is
generated in carbohydrate-rich foods such as frying, baking,
roasting, and extrusion. However, it can form in low-moisture
foods starting at 120 °C.17 Both commercially processed foods
and homemade meals tend to increase in AA with prolonged
time and temperature of preparation. The surface color of
products shows a significant correlation with AA levels in
foods: the darker the surface, the higher the amount of
acrylamide present.18

The acceptable levels of AA in food are outlined in EU
Regulation 2017/2158. For example, the levels for roasted
coffee and instant coffee are set at 400 and 850 μg/kg,
respectively. These regulated levels are crucial, as research
conducted in more than 20 countries has shown that European
citizens consume AA daily at levels ranging from 140 to 1310
μg/kg of body weight, which are similar to levels observed in
the USA. In adult and elderly populations (ages 20−79), coffee
is a source of AA intake, accounting for 9 to 29% of total AA
intake. This percentage increases to 38% to 60% for baked
goods and snacks, depending on the country of origin.19

Regarding the formation of AA, the amide group can be
protonated by medium to strong acids. Figure 5 presents the
AA pathway for its formation/degradation. AA has reactive
electrophilic double bonds and a reactive amide group,
exhibiting weakly acidic and basic properties. AA has a very
high technological potential; it can be industrially produced for
the synthesis of polyacrylamide (Figure 4b), and it is
frequently used in various production processes such as
wastewater treatment, gel electrophoresis, paper manufactur-
ing, ore processing, tertiary oil recovery, dye manufacturing,
permanently pressed fabrics, and synthesis of other monomers.
However, AA extensive production can leads to environmental
contamination,20 due to polyacrylamide degradation into
acrylamide, it remains stable in water at elevated concen-
trations, and thus, it is of utmost importance to mitigate this
residual acrylamide to reduce contamination.21

AA has been classified as neurotoxic, genotoxic, and
teratogenic in animals, leading to intensified studies. Neuro-
toxicity has also been observed in humans. There is evidence
regarding acrylamide formation in certain foods. Therefore,

Figure 4. Acrylamide (a) and polyacrylamide (b) molecules.

Figure 5. Pathways for acrylamide formation/degradation.
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efforts to mitigate acrylamide formation have been made by
implementing various strategies aimed at minimizing or
eliminating its precursors22,23

AA can be degraded by acrylamidases or amidohydrolases,
enzymes that catalyze the cleavage of carboxylic amides into
free carboxylic acids and ammonia.9 These enzymes are widely
distributed in nature and are involved in nitrogen metabolism.
However, there is a lack of information about microorganisms
capable of degrading AA for environmental removal. AA
contains a vinyl group (CH2�CH−) which binds to the thiol
group from the microorganism’s protein, causing toxicity.24

AA biodegradation has become increasingly important due
to its negative impact on the environment. At the same time,
there is vast potential and a huge scope for the development of
research focused on more efficient AA degraders probable to
minimize interference with sensorial attributes of food,
especially when considering the application in an extremely
sensorial beverage such as coffee. Thus, acrylamidase could
play a crucial role in AA bioremediation.

3.1. Acrylamide Precursors. Figure 5 illustrates several
metabolic pathways involved in the formation of acrylamide.

Alpha-dicarbonyl (α-DCs) plays a crucial role in the
formation of harmful compounds through the Maillard
reaction such as AA and advanced glycation end products.
These are highly reactive, low molecular weight compounds,25

commonly found in high-sugar or fat foods exposed to high
temperatures. The Maillard reaction begins with the
condensation of the reactive carbonyl of hexoses, like glucose
and fructose, with the amino residue of amino acids/peptide/
protein forming Schiff base and leading to the production of
products through rearrangement and reversible isomeriza-
tion.26 The accumulation of α-DCs and their byproducts in the
human body has been linked to the development of various
chronic diseases. Therefore, it is essential to identify α-DCs in
foods and understand the risks they pose.27

The α-DC also plays a crucial role in the chemical processes
involved in caramelization reactions, different from Maillard
reactions; caramelization promotes the formation of α-DC
through lipid peroxidation and represents a relatively smaller
proportion. It is generated in small quantities via the
peroxidation of unsaturated fatty acids, where unstable primary
oxidation products may decompose into it. α-DC.28

The free amino acid asparagine is likely one of the primary
precursors of AA. Asparagine is a nonessential amino acid first
isolated from asparagus juice in 1806,.29 The addition of amino
acids different from asparagine can decrease the amount of AA
formed in thermal-treated foods. Among these, cysteine (Cys)
is the most reactive, while other less reactive nucleophiles such
as lysine (Lys), arginine (Arg), serine (Ser), and ascorbic acid
produce similar condensation products.30

3.2. Acrylamide Toxicity. Polymeric AA is a harmless
compound, but its monomer is neurotoxic to both humans and
animals. In laboratory studies, AA has been shown to be
carcinogenic in rodents and is considered probably carcino-
genic for humans by the IARC. While AA has not
demonstrated mutagenic properties in certain tests (organisms
that do not have a true nucleus in their cells), long-term
exposure has been linked to tumor formation in rats and mice.
Acrylamide’s neurotoxicity manifests as ataxia, distal skeletal
muscle weakness, and numbness in the hands and feet. In the
human body, acrylamide is oxidized to glycidamide (2,3-
epoxypropionamide) through an enzymatic reaction, possibly
involving cytochrome P450 2E1.31,32

As an unsaturated carbonyl compound with electrophilic
properties, AA can react, via Michael addition, with biological
nucleophilic groups including amines, carboxylates, aromatic
and alkyl hydroxyls, imidazoles, and thiol groups of macro-
molecules (e.g., Cys residues), DNA, and proteins. This
reactivity underpins its toxicity.33

AA and glycidamide can form hemoglobin adducts, although
only glycidamide shows genotoxicity by forming adducts with
DNA amino groups. Elevated AA levels can cause genetic
mutations and cell transformation. Both can be detoxified in
cells via conjugation with glutathione or hydrolysis. Smokers
typically exhibit higher levels of AA hemoglobin adducts due to
the presence of AA in tobacco smoke. Additionally, it is worth
noting that dermal absorption of acrylamide is approximately
7% of oral absorption.34

Numerous studies, both in humans and animals, have been
conducted to investigate the precise mechanism behind the
toxicity of AA. Evidence suggests that AA toxicity primarily
occurs due to oxidative stress.35 In vitro studies have
demonstrated that AA induces oxidative stress by forming
Michael-type adducts with cysteine-containing glutathione
(GSH), leading to a rise in reactive oxygen species production
(ROS).36 Moreover, through the action of CYP2E1, AA is
metabolized into a more reactive metabolite, glycidamine
(GA), which binds to GSH, leading to its depletion and further
increasing ROS production, exacerbating oxidative stress.37

The testicular toxicity caused by AA is a public health
concern as it has been shown to harm Sertoli and Leydig cells.
Exposure to AA can induce direct genotoxic damage to DNA
or interfere with reproductive processes, affecting hormonal
balance. This endocrine disruption, including alterations in
gonadal and pituitary hormones, is associated with histopatho-
logical changes and disturbances in spermatogenesis.38 Addi-
tionally, dietary AA consumption has been associated with
changes in sex hormones in women,39 affecting oocyte quality
and triggering oxidative stress, apoptosis, and epigenetic
modifications.40,41 These findings led the World Health
Organization to classify AA as a reproductive toxin.

AA can stimulate gene expression and has been linked to
neuroinflammation and neurotoxicity, contributing to the
manifestation of depressive symptoms.42 Consumption of AA
is also associated with renal damage primarily caused by
oxidative stress and toxicity. Such intoxication reduces
antioxidant activities and increases lipid peroxidation, inducing
inflammation, apoptosis, and DNA damage. AA-induced
nephrotoxicity results in decreased urine volume and increased
plasma levels of creatinine, urea, and blood urea nitrogen.43

Studies show that AA-induced cytotoxicity is closely
associated with oxidative stress, resulting in cytotoxic and
genotoxic effects. Efforts to mitigate the effects of AA have
explored various plant bioactive constituents. Research has
shown that certain plant bioactive constituents, such as black
caraway (Nigella sativa),44 pineapple (Ananas comosus),45

purslane (Portulaca oleracea Linn.),46 and quercetin can
mitigate AA effects.47 Additionally, many fruits, vegetables,
leaves, seeds, and grains, such as capers, red onions, and kale,
contain high resveratrol concentrations.48 Dietary sources of
resveratrol in food include the skin of grapes, blueberries,
raspberries, mulberries, and peanuts. Anthocleista nobilis (G.
Don.),49 Curcumin40 also have the potential to mitigate the
adverse effects of AA, possibly through their antioxidant
properties.40
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Moreover, studies reveal that AA exposure causes extensive
hyaline degeneration, vascular congestion, irregularities in
muscle fibers, and inflammation in cardiac muscle. These
findings corroborate previous studies reporting AA-induced
damage to cardiac tissue, including toxicity in cardiovascular
development in zebrafish.50

3.3. Quantification Methodology for AA. Over the
years, numerous analytical methods have been developed for
detecting AA.51−53 The sample preparation process typically
involves extraction with water and solid-phase extraction for
purification. AA can be analyzed using gas or liquid
chromatography as well as capillary electrophoresis. Liquid
chromatography coupled with mass spectrometry (LC-MS), in
either single or tandem mode, allows for direct analysis of AA
after derivatization. Additionally, UV detection also yields
satisfactory results.31

Gas chromatography (GC) is also used to quantify AA in
foods. In this method, the compounds of interest are vaporized
conserving their structures in this way. AA and its metabolites
were treated without the need for derivatization; in addition,
the use of GC coupled to spectrometry (GC-MS) can isolate
those molecules from their food matrix54

Depending on the matrix (food), AA can be extracted using
water and/or organic solvents, but aqueous extraction is
generally sufficient.55,56 The FDA (Food and Drug Admin-
istration) advises one to avoid heating during AA extraction
because this procedure could produce a large amount of fine
particles that could saturate the solid-phase extraction columns
used in later cleaning steps (FDA, 2003). When dealing with
high fat samples, extraction with organic solvents is more
efficient, with a mixture of water and acetone being
recommended by various studies.57 Another option is to
include a defatting step before or in combination with the
extraction process.58,59

Analytical methods for the identification and quantification
of AA in foods are proposed worldwide. Some of them use LC-
MS,60 others with LC coupled with a tandem mass
spectrometer, used to reduce sample preparation steps and,
consequently, faster analysis, and still be able to work with a
greater number of different matrices,61,62 or LC with ultraviolet
(UV) detection, although its use has been discouraged since
that AA does not have a strong UV spectrum.51 Yang et al.
proposed an efficient method for AA derivatization using the
thiol-olefin reaction with cysteine as the reagent combined
with capacitive coupled contactless conductivity detection
(C4D) for CE analysis. This method enables the analysis of
labeled AA in just 2.0 min, with RSD values for migration time
and peak area below 0.84% and 5.6%, respectively,
demonstrating high precision and selectivity. Additionally,
the C4D signal of the AA derivative shows a satisfactory linear
relationship with AA concentration in the range.63

3.4. Food Safety. Most plant- and animal-derived foods
undergo thermal processes such as high and low temperatures,
sterilization, ultraviolet irradiation, and pasteurization to
preserve their quality, extend their shelf life, and ensure food
safety. However, in an investigation conducted by the FDA
reported in 2021,64 these processes can trigger the Millard
reaction, formatting up to 126 potentially harmful substances.
These α-dicarbonyl compounds are important intermediates
and precursors of harmful products from the Maillard reaction,
such as AA and advanced glycation end compounds, which
exist in many thermally processed foods rich in sugar or fat.65

These compounds impact food quality and serve as biomarkers

for oxidative-stress-related diseases, including α-dialdehydes, α-
diketones, and α-oxoaldehydes. They have been implicated in
various chronic diseases, including diabetes and Alzheimer’s.
They play a significant role in protein glycation, a central
process for Amadori product formation.66 Therefore, the
recognition and inhibition are crucial for food safety and
quality and early disease monitoring.27

3.5. AA Enzymatic Mitigation Strategies. Preliminary
procedures like blanching, saline immersion, storage temper-
ature, and careful monitoring during heating, along with the
addition of amino acids, antioxidants, and organic acids to
lower pH, are effective in reducing aromatic amines. However,
these methods can also impact sensory characteristics,
including texture, flavor, color, and nutritional value of the
final product. For instance, intense potato blanching can lead
to mineral and vitamin loss, lower temperatures, and longer
cooking times increase fat absorption, and substituting
ammonium bicarbonate with sodium bicarbonate in cereal
products reduces AA but increases sodium intake. Therefore,
strategies to mitigate AA must balance food quality (nutri-
tional, rheological, and sensory characteristics) and enzymatic
approaches to decrease AA precursors or hydrolyze already
formed AA.67 Modern genetic techniques, such as chemical
mutagenesis combined with genomics, offer promising
reductions in AA formation.68

AA precursors, such as free asparagine and reducing sugars,
are present in potatoes, coffee, and grains. The relevance of
these agents varies among the species. While reducing sugars is
predominant in cereal grains, the most crucial or limiting factor
in AA formation in bakery products is the concentration of free
asparagine. The asparagine content differs both between and
within grains species. In common cereals, the average free
asparagine content ranges from 426 ± 144 mg/kg to 1179 ±
359 mg/kg.69

The enzymatic hydrolysis of asparagine into aspartic acid
and ammonia, facilitated by asparaginase (amidase), offers a
promising strategy to mitigate heat-induced AA formation.70 In
vivo, deamidation acts as a molecular timer for biological
events, including disease progression, and also forming
significant proteins.71 Factors like pH, buffer ions, ionic
strength, and temperature influence the deamidation of
asparagine residues in peptides and proteins.72 These variables
should also be tested for their effects on free asparagine in food
products.73

The amidase (EC 3.5.1.4) is an intracellular enzyme that
plays a vital role in carbon and nitrogen metabolism by
breaking amide bonds to produce carboxylic acids. However,
its catalysis process is hindered by disadvantages such as low
stability and substrate specificity, which reduce its efficiency.
Even though numerous approaches have been explored to
obtain develop amidases with improved performance, the
success rate is still inadequate.74

Enzymes that operate under moderate reaction conditions
are highly specific and versatile biocatalysts. Nevertheless, their
use in industrial processes is limited due to their low stability
under harsh operational conditions and the challenges
associated with their reuse and recovery, rendering them
practically inaccessible.75 Bacterial acrylamidase, in particular,
deaminates AA to form acrylic acid and ammonia, and the
acrylic acid further supporting bacterial growth.10

3.5.1. Asparaginases. Asparaginase (EC 3.5.1.1) is an
enzyme found in animals, plants, and other organisms that is
responsible for catalyzing the hydrolysis of asparagine into
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aspartic acid and ammonia. Aspartic acid plays a crucial role in
the citric acid cycle and contributes to amino acid metabolism.
In plants, asparagine is essential for energy efficiency and serves
as the primary nitrogen storage form. Elevated levels of free
asparagine are associated with increased AA formation, making
asparagine a key enzyme in mitigation AA strategies.76,77

L-Asparaginase has a wide range of applications, particularly
in the medicine and food industry. One of its important
functions is to reduce the AA formation in foods during
cooking at high temperatures, especially above 100 °C.78 L-
Asparaginase demonstrates potent biochemical activity within
a pH range of 5 to 7, and at ∼37 °C. Although L-asparaginase
is highly specific to asparagine, an amino acid, there exists a
subgroup of enzymes called glutaminase-asparaginases, which
are capable of processing both asparagine and glutamine.
Glutamine, an amino acid, is structurally similar to
asparagine.67

Crystallographic studies have revealed that both glutami-
nase-asparaginase and conventional L-asparaginase share a
similar catalytic mechanism and structure, despite variations in
substrate preference, pH sensitivity, and optimal operating
temperature.79 These insights are crucial for their application
in the medical and food industry.80

In medicine, L-asparaginase is used to treat certain cancers,
such as leukemia, by hydrolyzing asparagine and glutamine,
thereby inhibiting malignant cell growth.29 In the food
industry, enzymes play a significant role in reducing AA
formation during the cooking at high-temperature. For
example, asparaginase can be applied to green coffee beans,
to open their pores, ensuring effective contact between the
enzyme and asparagine in the beans. Laboratory-scale
experiments have shown a low dose (2000−6000 ASNU)
applied to green coffee beans reduced AA concentrations by
55%−74%. These findings demonstrated the potential
application of this enzyme in coffee processing.81

The treatment of coffee with asparaginase, combined with
light-medium and medium roasting, has been shown to reduce
the AA concentration by up to 39% in different Arabica coffee
samples. However, when used at enzyme loads (up to 3000
ASNU), asparaginase may increase the acidity of the coffee.16

3.5.2. Acrylamidase. Acrylamidases are enzymes that
facilitate the breakdown of carboxylic amides into free
carboxylic acids and ammonia. Found abundantly in nature,
these enzymes play an essential role in the nitrogen cycle.82

The flavor of coffee can be influenced positively or
negatively by the type of enzymatic treatment process. Arabica
coffee beans, known for their appreciated aroma in the final
beverages, are severely affected, often leading to tasteless
profiles.83,84 Consequently, there is a current need to develop
new methods for mitigating the presence of AA without
generating undesirable secondary effects or negatively influenc-
ing the sensory quality of the coffee. In this context, bacterial
acrylamidase presents a promising solution offering substantial
potential for large-scale application to mitigate the presence of
AA in coffee globally.85

The first studies on acrylamidases (also known as
amidohydrolases or amidases) were conduced between the
1970s and 1980s, focusing on the similarity between
acrylamidase and other hepatic enzymes. Those enzymes
have demonstrated the capability to mitigate AA in levels in a
variety of products, particularly foods.86

However, limited reports exist on microorganisms capable of
effectively degrading AA from the environment. AA contains a

vinyl group (CH2�CH−) that reacts with the sulfhydryl
group in microbial proteins, producing toxic effects. Acryl-
amidase production has been observed in only a few cultures,
typically under stress conditions.82,87 Some of these cultures
are Rhodococcus spp.,88 Pseudomonas aeruginosa BAC-6 isolated
from industrial effluents,89 free and immobilized cells of
Pseudomonas aeruginosa,90 Moraxella osloensis MSU11,91

Bacillus cereus,82 Bacillus clausii92 and Stenotrophomonas
acidaminiphila MSU12.93

The study of Bedade et al, 201710 identified and
characterized a soil-isolate bacteria capable of degrading AA.
It evaluated its optimal growth conditions and range of AA
substrate concentrations that this isolate could degrade. The
enzyme was analyzed for its optimal pH, temperature, substrate
specificity, and activators and inhibitors such as metal ions and
amino acids. This was the first report on the isolation of
acrylamidase from Arthrobacter sp. DBV1 and its ability to
degrade AA.10

According to Dev et. al., 202394 the acrylamidase from
Arthrobacter sp. DBV1 exhibits insensitivity to the presence of
amino acids. These findings suggest that this acrylamidase is a
promising candidate for removal of AA already present in
foods, demonstrating significant potential in a commercial
context.

The sensitivity of acrylamidase to compounds that inhibit
sulfhydryl proteins can also be evaluated. Heavy metals such as
copper, lead, and mercury commonly inhibit amidases due to
the presence of sulfhydryl groups in the enzyme’s active site.
Bedade and Singhal (2018) observed that the activity of
acrylamidase was mildly inhibited by CaCl2, MgCl2, DMSO,
FeCl3, and ammonium persulfate.

3.5.3. Reducing AA Precursors on Raw Materials.
Currently, research on the application of the acrylamidase
enzyme to mitigate AA in various foods postformation remains
limited after its formation. This gap presents numerous
opportunities for further study, particularly in food matrices
such as potato chips, French fries, coffee and soluble coffee,
biscuits, snacks, bread, meat products, and fried snacks.

The reduction of AA precursors significant impacts the final
AA content.95 However, this effect depends on the relative
initial levels of the precursors. When reducing sugars are
present at levels higher than that of asparagine in food,
reducing asparagine has a greater effect on minimizing AA
formation. Several studies have demonstrated that AA
formation is inversely correlated to sugar concentrations in
potatoes, whereas in cereals such as rye and wheat, AA
formation is primarily associated with asparagine content.76

Additionally, the Maillard reaction involving chitosan, glucose,
and asparagine along with the use of chitosans, has proven to
be an efficient method for reducing AA levels.96

3.5.4. Acrylamidase-Producing Cultures. Given the current
demands, there is an increasing need for studies exploring
potential strategies to mitigate AA by using novel microbial
cultures. Table 1 presents the same characteristics of cultures
that produce acrylamidase enzymes.

Acrylamidase from Cupriadivus oxalaticus ICTDB921
demonstrated versatility and effectiveness in mitigating AA.
This culture thrives in a medium with a pH range of 3 to 9 and
temperature range of 30 to 80 °C. Additionally, it exhibits high
resistance and robust growth across diverse pH and temper-
ature conditions, making it a promising candidate for
application in various matrices.97
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Stenotrophomonas acidaminiphila, MSU12 is a strictly
aerobic, Gram-negative rod-shaped, nonfermentative (glu-
cose), nonspore-forming strain. It exhibits positive catalase
and oxidase activity but tests negative for indole and urease
activity. Optimal performance is achieved at 32 °C and pH 7.0,
making it an effective acrylamidase with neutral pH ranges,
although it has limitations in certain products. Under these
conditions, it can degrade high AA concentrations (30 mM)
without ecological effects.93

The Geobacillus thermoglucosidasius demonstrated optimal
acrylamidase production in phosphate-citrate buffer (pH 2.5−
6.5) and Tris-HCl buffer (pH 7.0−8.5). The enzyme functions
best at pH values ranging from 3.2 to 9.2 for a temperature
from 60 to 70 °C.98

Ralstonia eutropha retains its enzymatic activity at high
concentrations of AA, (up to 28 mM), under aerobic
conditions at 30 °C. The ideal pH for its activity is between
2.5 and 8.2, with pH peak activity at 6.0. Above pH 7.2, the
enzyme activity decreases drastically. The pH dependence
curve and ideal pH are similar to those of amidase from
Arthrobacter sp. The optimal temperature for enzymatic activity
is between 45 and 65 °Ct at 37 °C.86

Moraxella osloensis MSU11 is a Gram-negative Diplobacillus
strain that is nonmotile, catalase-positive, and oxidase-positive
and does not produce acid from carbohydrates. Optimal
growth occurs at 30 °C at pH 7.0. The strain can assimilate
glucose, sorbitol, mannitol, lactose, and sucrose. The purified
degrading enzyme shows a specific of 52 U/mg of protein, with
a final recovery of approximately 7%. It exhibits rapid AA
degradation and exhibits preferential growth in tropical
conditions, highlighting its potential for AA biodegradation
and enzyme production.91

3.5.5. Bacteria that Metabolize AA. Another important and
currently trending strategy for AA reduction involves the use of
bacterial cultures that utilize AA as a carbon source for the
cellular metabolism of these cultures. Table 2 highlights the
characteristics of these bacterial cultures that produce
acrylamidase enzymes.
Pseudomonas aeruginosa is a Gram-negative bacterial species

recognized for its sensitivity and significant degradation
capability when using immobilized cells for up to 48 h, after
which activity decreases. The degradation process is inhibited
by compounds, such as Cr6+, Hg2+, and Ni2+. Compared to
Xanthomonas maltophilia, Pseudomonas aeruginosa metabolizes
AA more slowly under identical conditions, with maximal
accumulations of acrylic acid and ammonia observed after 48
h. It effectively degrades AA across all tested concentrations
(1−5%), with ammonia production detected after 48 h. The
highest degradation is achieved at concentrations of 1−2%.90,99

Bacillus cereus exhibits optimal performance at temperatures
between 25 and 30 °C and within a pH range of 6.8 to 7.0. Its
growth is supported by a variety of carbon sources including
glucose, fructose, lactose, maltose, mannitol, citric acid, and
sucrose, with glucose being the most effective. Bacillus cereus
responds to AA concentrations from 100 to 4000 mg/L
demonstrating greater effectiveness at concentrations AA
between 500 and 1500 mg/L.82

Enterobacter aerogenes effectively degrades AA at concen-
trations of 0.5% (w/v), within a pH range of 6.0 and 9.0, and at
25 °C. It also shows moderate degradation for other amides,
including formamide, benzamide, acetamide, cyanoacetamide,
and propionamide. These characteristics highlight the potentialT
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of this bacterium in the environmental cleanup of AA/
amides.100

3.6. Main Affected Foods. 3.6.1. French Fries. Studies
suggest that genetic modifying potato varieties to reduce or
eliminate the reducing sugars and free asparagine amino acid
before processing may be a practical strategy.101 Furthermore,
the amount of asparagine in potatoes is influenced by the sulfur
content in the agricultural soil. Lower sulfur leads to lower
asparagine content and consequently less AA formation after
processing.3

3.6.2. Bakery Products. According to the Brazilian
Association of Bakery and Confectionery Industry (Abip),
there are over 70,000 bakeries in Brazil. In 2021, the bakery
and confectionery market generated revenue of R$ 105.85
billion, reflecting a growth of 15.3% compared to 2020, as
reported by the Association’s president.102

The baking process is a significant contributor to AA
production due to the Maillard reaction. This reaction greatly
impacts the chemical, physical, and sensory properties of the
final product while also promoting the development of
bioactive and antioxidant compounds. Higher levels of AA
are commonly detected in foods subjected to thermal
processes such as frying and browning potatoes, cocoa beans,
coffee roasting, and the baking of cereals and cakes.103

3.6.3. Coffee. Coffee is one of the most popular beverages
worldwide, largely due to its pleasant aroma, which arises from
the diverse volatile compounds produced during roasting. The
International Coffee Organization (ICO) estimated that global
coffee consumption increased by 4.2% to 175.6 million 60 kg
bags in 2021/22, representing €165 billion annually.104

Arabica coffee (Cof fea arabica L.) and Robusta coffee
(Cof fea canephora) are two important varieties in the coffee
industry. Arabica is valued for its aromatic qualities, sweet
flavor, and variety of tastes, whereas Robusta is associated with
less desirable sensory characteristics, such as bitterness due to
its high caffeine content and lower sweetness and acidity.
These sensory differences, alongside with the production costs
associated with each variety, contribute to the superior value of
Arabica coffee beans.105 This initial differentiation of products
was based on caffeine content (Arabica vs Robusta), reflecting
interspecific difference within the Cof fea genus secondary
differences, such as pre- and postharvest treatments (fermen-
tation and roasting), further driving market differentiation.
Arabica coffee is often treated as a specialty coffee owing to its
higher presence of volatile compounds. However, increasing
the productivity of Arabic coffee productivity has become
increasingly challenging in recent years.106

Roasting is a traditional method of thermal treatment to
achieve the desired flavor, dark coloration, and a brittle, porous
texture in the beans, ideal for subsequent grinding and
preparation. However, the high temperatures involved in
roasting trigger a series of chemical reactions, dehydration, and
significant changes in the microscopic structure. However, this
process can also result in the formation of undesirable
compounds, such as AA and furans.19

Sucrose is the main precursor of furans and methylfurans,
while asparagine is the main precursor of AA. These findings
shed light on the mechanisms behind the formation of these
undesirable compounds in coffee.107

Unlike annual crops, such as potatoes and cereals, coffee is a
tropical perennial crop that does not require annual sowing or
planting. Annual crops can be easily manipulated to reduce the
formation of AA precursors by altering varieties or changingT
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production locations. However, this flexibility is not applicable
to perennial crops like coffee. The quality of coffee beans and
the final product is determined by factors such as soil
composition, temperature, altitude, and water availability.
Climate change, particularly rising temperatures, poses
significant challenges to coffee production. Although strategies
have been proposed to manage plantations, explore old species
and varieties, and develop new hybrids to address climate
effects, these efforts primarily focus on yield and flavor rather
than AA precursors.19

Ground coffee can contain relatively high levels of AA,
reaching up to 400 ng/g of powder. After brewing, no AA is
detected in the coffee powder, suggesting that all of the AA
transfers to the water. On the other hand, the AA thermal
stability of AA has been extensibility reported. For example
Strocchi et. al., 202219 found no significant decrease in AA
levels in coffee, even after 5 h of heating. Table 3 presents the
current AA limits.

3.6.4. Challenges to Mitigating AA in Coffee. During
coffee roasting, complex reactions take place, leading to the
formation of undesirable compounds, such as AA and other
furfural compounds, which are considered harmful to health.
These substances, categorized as thermal processing contam-
inants, are produced through a network of reactions during the

thermal treatment of coffee beans. Among these, AA is the
most significant contaminant, formed by the generated of free
asparagine in the presence of sugars.2 Interestingly, the same
concentration of solids responsible for forming these harmful
compounds also plays a critical role in developing the aroma
and color of the final coffee products.

4. FINAL CONSIDERATIONS
This study successfully carried out a comprehensive biblio-
metric analysis, identified promising strains for acrylamidase
production, and compiled the current acrylamide limits for
various foods, including coffee. These findings provide a
valuable foundation for understanding the current landscape of
acrylamide research and mitigation strategies. Furthermore, the
study highlights critical areas for future research, emphasizing
the need for continued exploration of acrylamidase-producing
strains and the development of innovative approaches to
reduce acrylamide levels in food products. With possible
advancements in technology and discoveries regarding sensory
and physicochemical qualities, further studies are essential to
maximizing microbiological and sensory quality results while
mitigating the presence of acrylamide in foods. This will ensure
that the final product achieves greater food safety for
exportation or commercialization purposes, contributing to
ongoing efforts to enhance food safety and public health.
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Table 3. Acrylamide Limits for Different Foods According
to Regulation (EU) 2017/2158 of the Commission of 20
November 20, 2017a

food category
reference

level (μg/kg)
French fries (ready to eat) 500
Packaged potato chips made from flesh potatoes and potato
dough

750

Potato-based savory crackers 750
Other potato products made from potato dough 750
Fresh bread
Wheat-based bread 50
Fresh bead excluding wheat-based bread 100
Breakfast cereals (excluding porridge)
Bran-based and whole grain cereals, grains puffed by gun
puffing process

300

Wheat and rye-based products 300
Corn, oat, spelt, barley, and lice-based products 150
Cookies and wafers 350
Savory crackers excluding potato-based crackers 400
Crispbread 350
Gingerbread 800
Products similar to other products in this category 300
Roasted coffee 400
Instant coffee (soluble) 850
Coffee substitutes
a) Coffee substitutes exclusively from cereals 500
b) Coffee substitutes made from a mixture of cereals and
chicory

500

c) Coffee substitutes exclusively from chicory 4000
Baby foods, cereal-based foods intended for infants and
young children, excluding cookies and rusks

40

Cookies and rusks for infants and young children 150

aNon-whole grain cereals and/or not bran-based. The cereal present
in the greatest quantity determines the category. The reference level
applied to coffee substitutes made from a mixture of cereals and
chicory considers the relative proportion of these ingredients in the
final product. As defined in Regulation (EU) No 609/2013.
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