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A B S T R A C T

Remote sensing is a crucial tool for soil assessment, yet soil complexity and sensor limitations hinder accurate 
analysis. This study integrates active and passive remote sensing data with Machine Learning (ML) methods to 
predict the physicochemical properties of degraded sandy soils in the Brazilian Cerrado. The 1197 ha area was 
divided into management zones. Soil samples were collected from each management zone at 0–0.2 m and 
0.2–0.4 m depths. The samples were then bulked (n = 99) and analyzed for texture (clay, silt, sand), pH, soil 
organic matter (SOM), cation exchange capacity (CEC), effective CEC (ECEC), base saturation (V), and macro- 
and micronutrients (e.g., Ca, Mg, K, Fe, Mn). Composite samples from management zones, were matched with 
128 orbital variables from Sentinel-1, Sentinel-2 (2023), and ALOS-PALSAR-1. The variables include spectral 
bands, vegetation and soil indices, gray-level co-occurrence matrices (GLCM), backscatter coefficients, polari
metric decompositions, and topographic indices. A key innovation was evaluating statistical metrics beyond the 
mean—such as medians, sums, and variances—within MZs. The models were processed using Random Forest 
(RF), with variable selection assessed via the Boruta algorithm. The tested approaches included (T1) RF with 
mean-based variables, (T2) RF + Boruta, (T3) RF with the highest correlation metrics, and (T4) RF + Boruta with 
correlation-based metrics. Results showed that Boruta-enhanced models (T2 + T4) improved performance in 
89 % of cases. Correlation-based metrics (T3/T4) were more effective in 72 % of models than mean-based ap
proaches (T1/T2). The best models demonstrated high accuracy for clay (R² = 0.81; RMSE = 25.2 %), CEC (0.73; 
23.6 %), silt (0.71; 44.7 %), and K (0.62; 44.3 %) in the 0–0.2 m layer. In the 0.2–0.4 m layer, top-performing 
attributes included clay (R² = 0.86; RMSE = 19.1 %), sand (0.78; 10.6 %), silt (0.76; 39.3 %), and SOM (0.68; 
21 %). Elevation and GLCM metrics emerged as key predictors across depths. These findings highlight the 
effectiveness of integrating diverse remote sensing data with ML for soil attributes mapping, particularly for clay 
and CEC.

1. Introduction

Remote sensing (RS) has become an indispensable tool for assessing 
soil physical and chemical properties, providing cost-effective, large- 
scale insights into landscape variability (Diaz-Gonzalez et al., 2022; 
Wang et al., 2023). Its applications extend to optimizing field sampling, 
evaluating soil degradation, and analyzing land cover, all critical for 
environmental monitoring and sustainable agricultural management 
(Bégué et al., 2018; Radočaj et al., 2024). Achieving reliable results, 
however, requires integrating diverse predictor variables that capture 
the complexities of soil attributes across the electromagnetic spectrum 
(Yüzügüllü et al., 2024). The patterns captured by RS are often 

challenging to interpret and model without advanced machine learning 
(ML) algorithms (Padarian et al., 2020).

ML algorithms are particularly effective in uncovering complex re
lationships between soil attributes and environmental variables, 
improving the precision of soil characterization and mapping (e.g., 
Khanal et al., 2018; Emadi et al., 2020; Folorunso et al., 2023). Among 
these, Random Forest (RF) excels at managing non-linear relationships, 
handling complex datasets, and reducing overfitting risks (Pichler and 
Hartig, 2023). Integrating RF with variables selection techniques, such 
as Boruta, further enhances predictive accuracy by isolating the most 
relevant predictors (Moradpour et al., 2023; Bouslihim et al., 2024). 
While soil properties are often inferred using average values of orbital 
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variables, this approach may oversimplify field variability. Exploring 
alternative statistical summarizations—such as medians, ranges, and 
variances—can provide deeper insights into soil heterogeneity (Argento 
et al., 2021; Kerry et al., 2024).

RS provides the foundation for identifying spatial patterns, ML offers 
a robust analytical framework, and Geographic Information System 
(GIS) tools integrate these insights into spatially explicit maps, enabling 
the analysis of spatial relationships (Sangeetha et al., 2024). Spatial soil 
data is as crucial as, if not more than, numerical data. For example, 
identifying fertility gradients, erosion-prone areas, and compacted zones 
enables targeted and efficient land management practices (Techen et al., 
2020). Consequently, a significant body of work has incorporated soil 
attributes into GIS and RS data layers to spatially model variability and 
enable predictions (Khanal et al., 2018; Yüzügüllü et al., 2020; Singh 
and Sarma, 2023).

In digital agriculture, soil zonation is fundamental for defining 
fertilization strategies. Management zones (MZs)—homogeneous spatial 
units based on soil and landscape characteristics—have gained promi
nence for optimizing field operations and agrochemical applications. 
MZs allow practices tailored to localized soil properties, such as texture 
and cation exchange capacity (Nawar et al., 2017; Belal et al., 2021). 
The integration of RS and GIS has significantly improved the delineation 
of MZs by capturing spatial and temporal variability in soil and vege
tation attributes, guiding data-driven decision-making (Georgi et al., 
2018). Various clustering techniques, including k-means, fuzzy c-means, 
and self-organizing maps, have been employed to define MZs, often 

using spectral indices such as NDVI and OSAVI. These techniques 
demonstrate varying effectiveness depending on regional and dataset 
characteristics (Song et al., 2009; Javadi et al., 2022). However, the 
inherent variability of soils and landscapes challenges identifying a 
universally optimal clustering approach (Sosa et al., 2021; Navarro 
et al., 2023).

Compared to agriculture, livestock farming generally pays less 
attention to soil attributes. The use of MZs for fertilization planning in 
pastures remains uncommon, particularly in the Brazilian Cerrado—the 
country’s primary livestock production biome (Oldoni et al., 2025). 
Several factors contribute to this, including the financial constraints of 
livestock farmers, fluctuations in exchange rates affecting livestock 
prices, and the low return on investment in soil management (Pereira 
et al., 2024). As a result, approximately 60 % of Brazil’s pastur
elands—totaling 109.77 million hectares—exhibit some degree of 
degradation (Bolfe et al., 2024). Studies highlight the ongoing decline in 
soil quality due to inadequate management practices such as insufficient 
pH correction and fertilization, the use of low-fertility seeds, and over
grazing (Locatelli et al., 2023). Poor management or land abandonment 
not only devalues pastures from an economic perspective but also trig
gers passive vegetation regeneration, often dominated by invasive spe
cies (Feltran-Barbieri and Féres, 2021). In both cases, RS data, 
particularly those utilizing vegetation indices, offer valuable tools for 
assessing pasture degradation (Oliveira et al., 2020) and monitoring the 
reestablishment of native Cerrado vegetation (Lewis et al., 2022; Lou
zada et al., 2023).

Fig. 1. Map of the study area (a) within the Continental farm, State of Mato Grosso do Sul. The area belongs to the Conservation Unit of the Nascentes do Rio Taquari 
State Park, within the Upper Taquari River Basin (UTRB) (b). The other three maps are elevation (c), slope (d), and soil types (e). Numbers 1–4 represent some photos 
of georeferenced landscapes throughout the study area.
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Given the context of soil assessments using RS data, we present a case 
study of a degraded pasture undergoing passive vegetation restoration in 
the Brazilian Cerrado, specifically in the Central-West region. This large- 
scale restoration initiative, known as the “Sementes do Taquari” project, 
aims to implement soil management and conservation measures, facil
itate passive vegetation recovery, and plant Cerrado tree species across 
approximately 1200 ha. Our assessment began with integrating a GIS- 
based approach to delineate management zones (MZs) using RS data, 
which guided soil sampling at two depths. We then collected Sentinel-1/ 
2 variables and topographic features to test Random Forest (RF) models, 
evaluating variations in accuracy by applying the Boruta algorithm to 
predict soil physical and chemical properties within the MZs. This study 
aims to identify the most predictive orbital variables and statistical 
summaries, offering actionable insights for sustainable land manage
ment, soil restoration, and carbon sequestration efforts in areas under
going early-stage vegetation recovery.

2. Materials and methods

2.1. Study area

The study area spans 1197 ha and was delineated using the Esri Vivid 
Maxar base map sensor dated 11/07/2023, with a spatial resolution of 
0.31 m. Located within the Nascentes do Rio Taquari State Park Con
servation Unit, it lies between latitudes 18◦07’ S and 18◦11’ S and 
longitudes 53◦16’ W and 53◦20’ W, in the northeastern region of Mato 
Grosso do Sul, Brazil (Fig. 1A). Known as “Continental Farm,” the area 
was acquired by the state government in 2022 after over four decades of 
extensive livestock farming. It is managed for soil and water conserva
tion and ecological restoration under the "Sementes do Taquari" project, 
which serves as a proof of concept for rehabilitating degraded pastures 
and ravines. Detailed project information is available at [https://stor 
ymaps.arcgis.com/stories/ef35a57241114b789de6725ea7f795bf].

Situated in the Cerrado biome, the study area is part of the Upper 
Taquari River Basin (UTRB), a key source of the Pantanal drainage 
system. The region features plateaus and depressions, with a tropical 

climate characterized by a dry winter season (Köppen classification) and 
an average annual rainfall of 1450 mm. Elevation range from 639 to 
840 m above sea level (Fig. 1C), with slopes classified as smooth (3–8 %, 
covering 43 % of the area) and smooth-wavy (8–20 %, covering 57 % of 
the area) (Fig. 1D). The soils are predominantly arenosols (83 %), with 
dystroferric dark red oxisols comprising the remaining 17 %, primarily 
at the toes of slopes (Fig. 1E).

2.2. Flowchart of methodology

The methodology is summarized in Fig. 2 and encompasses soil 
collection, laboratory analysis, image processing to delineate the MZs, 
response variables, and statistical analysis using machine learning (ML).

2.3. Soil samples map

The mapping of soil samples began by dividing the study area into 
1 ha × 1 ha polygons using the grid index tool in ArcGIS®PRO, gener
ating 1238 polygons. Subsequently, these polygons’ centroids were 
extracted, configuring our virtual sampling points (n = 1238) to guide 
field collections (see the virtual points map in Fig. S1). The following 
process was to generate the MZs, given the need to aggregate single 
samples into composite samples in regions with homogeneous charac
teristics. This technique is helpful in digital soil maps to reduce opera
tional costs (collection and segregation) and especially laboratory 
analysis costs without losing variability (Flowers et al., 2005).

To create the MZs, we used the build balance zones tool in ArcGIS®
PRO, which uses a genetic algorithm to create spatially contiguous zones 
(Patel and Padhiyar, 2010). In this method, we chose the criterion 
establishing the number of zones and the attribute target. For the 
number of zones, we set n = 120, with approximately 10 unique sam
pling points in each MZ.

In the attribute target section, the software allows the selection of 
layers (rasters or shapefiles) with weights that represent their impor
tance for creating the zones. In our study, we included four Tasseled Cap 
Vegetation Indices (TC_VEG) (Bannari et al., 1995) from Sentinel 2 A 

Fig. 2. Flowchart of the methodology.
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Level 2 imagery (scene T22KBE), on the dates 2022–09–17, 
2022–12–01, 2023–03–26, and 2023–05–15 (Fig. S2 to S5). In addition, 
we included the slope of the DEM obtained by the ALOS-PALSAR 1 
sensor (12.5 m resolution) as the fifth layer (Fig. S6). The slope was 
weighted twice as much as the TC_VEG indices to account for its influ
ence on soil variability (Lin et al., 2005).

2.4. Soil samples collection

Soil samples were collected by Coperplan Inc. (Dourados, Mato 
Grosso do Sul, Brazil) in August 2023 at 0–0.2 m and 0.2–0.4 m depths. 
The procedure consisted of a semi-mechanized collection using a drill 
and a motorcycle for transportation between MZs.

At the time of collection, some points selected in the original 120 
MZs became inaccessible due to vegetation regeneration or obstacles 
such as erosions (gullies branches), requiring adjustments to the sam
pling plan (final map in Fig. S7). Therefore, these MZs were excluded 
from the final sampling, which consisted of 1016 points of single soil 
samples grouped into 99 MZs or composite samples. On average, we 
obtained 10.26 single samples per MZ, as demonstrated in the histogram 
in Fig. S8. The samples within a MZ were mixed, and the composite 
sample was stored in a clean plastic bag. Some georeferenced photo
graphs are presented in Fig. S10, and the geographic coordinates of the 
single collection points are presented in Table S1.

2.5. Soil laboratory analysis

Laboratory analyses were conducted at Sinergia Laboratório de 
Análises Agronômicas Inc. using standardized methods outlined by 
EMBRAPA (Teixeira et al., 2017). The granulometric analysis involved 
the separation of the sand, clay, and silt fractions. The pH was measured 
one hour after mixing 10 g of soil with 25 ML of CaCl₂ 0.01 mol L⁻¹ . The 
soil organic matter (SOM) content was determined by the difference in 
weight after drying in an oven and subsequent incineration in a muffle 
furnace at 600◦C. The soil’s phosphorus (P) content was extracted using 
the Mehlich-1 solution (0.05 mol L⁻¹ HCl and 0.0125 mol L⁻¹ H2SO4) 
and quantified by ultraviolet spectrometry. Exchangeable potassium 
(K⁺) was determined by flame spectrophotometry. For the exchangeable 
bases calcium (Ca2 +), magnesium (Mg2+), and aluminum (Al3+), 
extraction was performed with KCl 1 mol L⁻¹ , followed by volumetric 
analysis. The concentration of H⁺ cations was measured using 
1 mol L⁻¹ calcium acetate at pH 7. Both exchangeable bases were used to 
calculate the cation exchange capacity (CEC) by the sum of the elements 
K+, Ca2+, Mg2+, Al3+, and H+, and the effective cation exchange ca
pacity (ECEC) excluding the H+ cation. The basis saturation (V%) was 
calculated by the formula: (((K++ Ca2++Mg2+)x100)÷CEC). Finally, 

sulfur (S) was calculated using the turbidimetric method with barium 
chloride (BaCl₂) in macronutrients.

The micronutrients Fe, Mn, Zn, and Cu were analyzed by flame 
atomic absorption spectrometry, following extraction with Mehlich-1 
solution. Boron (B) was extracted from 20 g of soil, subjected to 
boiling water for 5 minutes, added 0.1 mol L⁻¹ CaCl₂, and filtered 
through filter paper before analysis.

2.6. Orbital variables

Soil attributes were evaluated using 128 orbital variables catego
rized into optical, synthetic aperture radar (SAR), and topographic 
indices.

2.6.1. Optical
Optical data, including 118 variables, were derived from Sentinel 

2 A imagery (T22KBE, 08/28/2023) using SNAP 9.0 and ArcGIS®PRO 
(Table 2). In addition to 10 bands of Sentinel 2, we selected soil and 
vegetation indices including the Normalized Difference Vegetation 
Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Transformed Soil 
Adjusted Vegetation Index (TSAVI), Modified Soil Adjusted Vegetation 
Index (MSAVI). The soil radiometric indices of Brightness Index (BI), 
Color Index (CI), and Redness Index (RI). Tasseled cap brightness 
(TC_BRI), Tasseled Cap Soil Brightness (TC_SOIL_BRI), Tasseled Cap 
Vegetation (TC_VEG), and Tasseled Cap Wetness (TC_WET) as the Tas
seled Cap indices. Principal component analysis (PCA) and biophysical 
indices of Fraction of Absorbed Photosynthetically Active Radiation 
(FAPAR), Fraction of Vegetation Cover (FCOVER), and Leaf Area Index 
(LAI). Geology indices, including FERROUS_IRON, FERROUS_OXID, and 
FERROUS_SILICATES, were also included. In addition, we include gray- 
level co-occurrence matrices (GLCM) or texture variables for each band, 
being angular second momentum (ASM), contrast (CON), dissimilarity 
(DIS), entropy (ENT), correlation (CORR), MEAN, variance (VAR), ho
mogeneity (HOM), and maximum probability (MAX). For the optical 
texture variables, we resampled to 10 m resolution (B2), with a 9 × 9 
window size and angles of 0◦, 45◦, 90◦, and 135◦ in the SNAP 9.0 
software.

2.6.2. Synthetic Aperture Radar (SAR)
The SAR variables (n = 4) were processed in the SNAP 9.0 software 

and divided into two groups (Table 3), where H (entropy) and Alpha 
represent the polarimetric decomposition and backscattering (sigma) 
into VV (SIG_VV) and VH (SIG_VH) polarizations, completing the in
tensity group. The processing sequences followed the routines that Diniz 
et al. (2020) and Louzada et al. (2023) developed. In summary, for 
polarimetry, the process started with deburst, then multi-look, H-Alpha 
dual-pol decomposition, and terrain correction. In backscattering, the 
orbit was applied, followed by the thermal noise removal phase, Sigma 
0 calibration, deburst, multi-look, application of the speckle filter, and 
finally, the terrain correction.

Polarimetry H: pi expresses the appearance probability for each 
contribution; Backscattering intensity: DNi is the digital number of the 
pixel I; A is an absolute calibration constant.

2.6.3. Topographic indices
In addition to orbital variables related to soil and vegetation and 

radar-derived variables, terrain attributes can significantly enhance the 
modeling of soil properties (see examples in Schillaci et al., 2017; 
Hateffard et al., 2019). In this study, six terrain variables were computed 
(Table 4), beginning with Elevation, derived from the Digital Elevation 
Model (DEM) of the ALOS-PALSAR 1 sensor (dated 02/16/2011), ob
tained from the Alaska Satellite Facility website (https://search.asf.ala 
ska.edu/). The second variable, Slope (in degrees), was processed in 
ArcGIS®PRO and served as the foundation for deriving four additional 
indices: Stream Power Index (SPI), Sediment Transport Index (STI), 
Terrain Roughness Index (TRI), and Topographic Wetness Index (TWI).

Table 1 
List of physical attributes and chemical properties of the soil laboratory analysis.

Category Attribute/element Unit

Texture Clay %
Silt %
Sand %

Other attributes pH -
Soil Organic Matter (SOM) g/dm³
Cation Exchange Capacity (CEC) cmol / dm³
Effective Cation Exchange Capacity (ECEC) cmol / dm³
Saturation basis (V) %

Macronutrients Calcium (Ca) cmol / dm³
Magnesium (Mg) cmol / dm³
Potassium (K) mg/dm³
Phosphorus (P) mg/dm³
Sulfur (S) mg/dm³

Micronutrients Boron (B) mg/dm³
Cuprum (Cu) mg/dm³
Iron (Fe) mg/dm³
Manganese (Mn) mg/dm³
Zinc (Zn) mg/dm³
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2.7. Statistical analysis

The response variables were summarized because the sampling units 
comprised polygons formed by aggregating individual soil samples. 
Initially, the first statistical moment (mean or average) was selected as 
the key descriptive statistic due to its recurrence in studies of soil 

Table 2 
Optical variables.

Category Variable Equation Reference

Spectral bands B2, B3, B4, B5, B6, B7, B8, B8A, 
B11, and B12

- -

Soil and vegetation 
indices

NDVI (B8-B4) / (B8 +B4) Rouse et al., 1973
SAVI (1 + L) * (B8-B4) / (B8 +B4 +L) Huete (1988)
MSAVI 2 ∗ B8 + 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2 ∗ B8 + 1)2
− 8 ∗ (B8 − B4)

√

2
Qi et al. (1994)

TSAVI s * (B8 – s * B4 - a) / (s * B8 + B4 - a * s + X * (1 + s * s)) Baret and Guyot 
(1991)

Soil radiometric 
indices

BI ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
B42 + B32/2

√

Mathieu et al. 
(1998)

CI (B4-B3) / (B4 +B3) Escadafal (1989)
RI (B4)2 / (B3)2 Barron and 

Torrent (1986)
Tasseled Cap indices TC_BRI 0.3037 *B2 + 0.2793 *B3 + 0.4743 *B4 + 0.5585 *B8 + 0.1863 *B12 Crist and Cicone 

(1984)
TC_SOIL_BRI 0.332 *B3 + 0.603 *B4 + 0.675 *B6 + 0.262 *B8A Bannari et al. 

(1995)
TC_VEG 2848 *B2 − 0.2435 *B3 − 0.5436 *B4 + 0.7243 *B8 + 0.0840 *B11 − 0.1800 *B12 Bannari et al. 

(1995)
TC_WET 0.1509 *B2 + 0.1973 *B3 + 0.3279 *B4 + 0.3406 *B8 − 0.7112 *B11 − 0.4572 *B12 Crist and Cicone 

(1984)
Principal 

Components 
Analysis*

PCA Calculation method in the SNAP 9.0. All bands were considered after resampling to 10 m spatial 
resolution.

-

Biophysical indices* FAPAR Calculation method in the SNAP 9.0. All bands were considered after resampling to 10 m spatial 
resolution.

Liang (2007)
FCOVER Kallel et al. 

(2007)
LAI Price (1993)

Geology indices FERROUS _IRON B11/B8 Rowan and Mars 
(2003)

FERROUS_OXID B4/B2 Henrich et al. 
(2011)

FERROUS_SILICATES B11/B12 Henrich et al. 
(2011)

Texture* Band_ASM
∑

i

∑

j
{p(i, j)}2

Haralick et al. 
(1973)Band_CON ∑Ng − 1

n=0
n2

{∑Ng

i=1

∑Ng

j=1
p(i, j)

}
, |i − j| = n

Band_DIS ∑Ng − 1
n=1

n
{∑Ng

i=1

∑Ng

j=1
p(i, j)2

}
, |i − j| = n

Band_ENT −
∑

i

∑

j
p(i, j)log(p(i, j))

Band_CORR
∑

i
∑

j(i, j)p(i, j) − μxμy

σxσy

Band_MEAN ∑2Ng

i=2
(ip(x+y)(i))

Band_VAR
∑

i

∑

j
(i − μ)2

∗ p(i, j)

Band_HOM ∑Ng

i

∑Ng

j
p(i, j)

1 + (i − j)2

Band_MAX MAXi,jp(i, j)

Terms of the above equations: B2 (blue), B3 (green), B4 (red), B5 (red edge), B8 (near infrared), B6, B7 and B8A (vegetation red edge), B11 (short infrared wave 1) and 
B12 (short infrared wave 2); SAVI: L is the adjustment factor; TSAVI: a is the soil line intercept; s is the soil line slope; X is the adjustment factor to minimize soil noise; 
Texture: μx, μy, σx, σy are the means and standard deviations for the row- and column-marginal probabilities of the co-occurrence matrix composed of p(i, j). * Pre- 
processing by resampling for 10 m pixels for bands B5, B6, B7, B8A, B11 and B12.

Table 3 
Radar variables.

Polarimetry H
−

∑3
i=1

pilog3pi , pi =
λi

∑3
j=1λj

Moreira et al. (2013)

Alpha arcos(|eIi| )

Intensity SIG_VV DN2
i /A2

i Diniz et al. (2020)
SIG_VH

Table 4 
Terrain variables.

Topographic 
indices

Elevation - -
Slope - -
SPI Astanβ

Wilson and Gallant 
(2000)

STI (
As

22.13

)0.6( sinβ
0.0896

)1.3

TRI Z
[∑(

xi,j − x00
)2

]0.5

TWI
ln
(

As

tanβ

)

SPI: As is the catchment area, and β is the local slope; TRI: Z is the elevation at 
the central cell.
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properties or crop data using remote sensing (RS) techniques (Pôças 
et al., 2015; Tunçay et al., 2021; Burns et al., 2022). In addition to the 
mean, six other descriptive statistics were evaluated: maximum (MAX), 
minimum (MIN), range (interval), median, standard deviation (SD), and 
the 90th percentile (PCT90), which represents values within a 90 % 
confidence interval. These seven metrics were derived using the zonal 
statistics as a table tool in ArcGIS®PRO. Subsequently, Spearman’s 
correlation analysis was performed to evaluate the relationship between 
soil attributes and statistical metrics for each orbital variable.

The analytical tests were divided into four scenarios: T1, using the 
mean of orbital variables as predictors in the Random Forest (RF) model 
(see Section 2.8); T2, incorporating the mean alongside the joint 
application of the RF model and the Boruta algorithm; T3, employing the 
statistical metric with the highest correlation per orbital variable as 
input for the RF model; and T4, integrating the highest correlated metric 
between RF and Boruta.

2.8. Random forest regression

Here, we used the Random Forest (RF) model for its ability to capture 
complex relationships and robustness to outliers and autocollinearity 
(Sheykhmousa et al., 2020). Several works have used this machine 
learning method in soil nutritional assessments with RS 
(Taghizadeh-Mehrjardi et al., 2021; Siqueira et al., 2024). Model pro
cessing was performed in R Software for Statistical Computing v.4.3.3 (R 
Core Team, 2013) with the randomForest and caret packages. 70 % of 
the samples (n = 69) were spared for training and 30 % (n = 30) for 

validation (testing) following other studies applying RF models (see 
examples in Wang et al., 2022; Amankulova et al., 2024; Fu et al., 2024). 
The RF models were fitted using a fixed ntree of 500 and an mtry ranging 
from 1 to 11, representing the integer closest to the square root of the 
maximum number of variables (n = 128). The analysis of the optimal 
mtry was performed by k-fold cross-validation, considering 10 folds. To 
assess overfitting, we also used the Diebold-Mariano test, which ana
lyzes whether there is a significant difference (p > 0.05) between the 
root mean square error (RMSE) of the training and test.

To evaluate variable importance, we considered the increase in mean 
squared error (%IncMSE) and the increase in node purity (IncNode
Purity). Model performance was assessed using the coefficient of 
determination (R2) and percentage root mean square error (RMSE%), 
according to Eqs. (1) and (2), respectively. 

R2 = 1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − yi)

2
(1) 

RMSE% = (

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑n

i=1
(yi − ŷi)

2

√

y
) ∗ 100 (2) 

where yi are the observed values, ŷ1 are the values predicted by the 
model, y is the average of the observed values, and n refers to the 
number of observations.

Fig. 3. Spatial distribution of the 99 Management Zones (MZs) and the maximum value per layer for each soil attribute. The purple and blue colors indicate the 
elements with maximum values for the 0–0.2 m and 0.2–0.4 m layers, respectively.
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Beyond the results of the RF model using all variables, further opti
mization was pursued through the Boruta algorithm in R—a feature 
selection method designed to identify the most relevant predictors 
(Zixian et al., 2021). This analysis compares the original variables 

against random variables, known as "shadow features" generated by the 
model. Variables were classified into three categories based on their 
importance: (1) Accepted, if the importance of the original variable 
exceeds that of the most important shadow feature; (2) Rejected, if the 

Fig. 4. Box plots of laboratory soil analyses in layers 0–0.2 m and 0.2–0.4 m with the p-value results in the Kruskal-Wallis and Mann-Whitney paired tests.
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variable’s importance is significantly lower than the maximum shadow 
feature or comparable to the minimum shadow; and (3) Provisional, if 
the model cannot definitively classify the variable after the specified 
number of iterations (Kursa and Rudnicki, 2010). Typically, only vari
ables classified as accepted by Boruta are included in the final RF model.

3. Results

3.1. Soil fertility analysis results

Fig. 3 shows the spatial distribution of the 99 MZs and the maximum 
values for each soil attribute across layers. Most of the elements pre
sented maximum values in the MZs on the edge of the study area, 
coinciding with the most clayey and highest altitude soils, such as units 
14, 98, 114, 97, 53, 82, and 83. Furthermore, many elements were 
associated in which the highest values were found in the same MZ, for 
example, for Fe (MZ=93), SOM (114), ECEC (98), Ca and Mg (14), and P 
and Zn (65).

The laboratory results of the samples by MZ are presented in the box 
plots of Fig. 4 (see the results of the descriptive statistics in Table S2). 
Half of the attributes (n = 9) showed no statistical difference between 
soil layers (p > 0.05), including clay and sand, CEC, ECEC, and the 
micronutrients B, Cu, Fe, and Zn. On the other hand, the pH, SOM, and P 
(p < 0.01), and silt, Ca, Mg, K, V, and Mn showed even more significant 
variation (p < 0.001). In 78 % of the analyses, the median of the surface 
layer 0–0.2 m was higher than the subsurface layer 0.2–0.4 m, with 
excess clay and silt in the texture. Also, pH and S. Furthermore, some 
characteristics draw attention, such as the high percentage of sand in 
both soil profiles had a high sand content (79.34 ± 14.04 %) and low 
values for pH (4.04 ± 0.1), CEC (3.85 ± 2.26 cmol/dm³), ECEC (0.98 
± 0.38 cmol/dm³), and V (6.07 ± 3.34 %).

3.2. Remote sensing variables

The Spearman correlation analysis between soil attributes and 
orbital variables showed that the mean statistic was not the best pre
dictor for most soil attributes (see all Spearman correlation results from 
Tables S3 to S37). The SUM and SD metrics showed the strongest cor
relations with soil properties overall, whereas the MEDIAN and MAX 
metrics were more effective in the 0.2–0.4 m soil layer (Table 5).

The application of the Boruta algorithm significantly improved var
iable selection. For instance, as shown in Fig. 5, the number of variables 

was reduced from 128 to n = 6 confirmed variables in T2 and n = 10 in 
T4 for clay across both soil depths. While most variables were rejected 
(red), a select few were confirmed (green), highlighting the effectiveness 
of Boruta in narrowing down key predictors.

Most variables selected in each test presented importance below 
RMSE%< 10 (see full results in Tables S39 and S40). In Fig. 6, we show 
only the most relevant ones with RMSE%> 10, highlighting the signif
icant influence of the Elevation variable on the granulometric compo
nents (clay-silt-sand), in addition to K, SOM, and CEC. In the 
background, the B12_CON in Ca, Mg, and other textural techniques such 
as variance, mean, and correlation of bands 8, 8 A, and 11 for the at
tributes Ca, CEC, and ECEC.

Diebold-Mariano tests indicated that there was a significant differ
ence in RMSE (p < 0.05) between the training and testing data only for 
the micronutrients Cu, Mn, and Zn in the 0–0.2 m layer in tests T3 and 
T4 (full results in Table S41). This result suggests possible overfitting for 
these elements.

The RF models enhanced by Boruta (T2 and T4) outperformed the 
standalone RF models (T1 and T3), showing higher R2 values and lower 
RMSE% (see Table 6). The only exception was for Fe in T3 at the 0–0.2 m 
layer, where Boruta did not improve model performance. Similarly, in 
the 0.2–0.4 m layer, 15 out of 18 soil attributes showed performance 
gains with the method.

The best performances per layer were clay in T2 at 0–0.2 m, reaching 
R² = 0.81 and RMSE% = 25.19 %, and the same attribute in 0.2–0.4 m 
in the T4 test with R² = 0.86 and RMSE% = 19.15 %. Other promising 
results in the surface layer were Silt (T4; R² = 0.71, RMSE% = 44.73), 
CEC (T2; R² = 0.73, RMSE% = 23.63) and K (T4; R² = 0.62, RMSE% =
44.3). In the subsurface layer again Silt (T2; R² = 0.76, RMSE% = 39.32) 
and CEC (T4; R² = 0.64, RMSE% = 32.11), in addition to Sand (T4; R² =
0.78, RMSE% = 10.59) and SOM (T4; R² = 0.68, RMSE% = 21.01).

Box plots of R² and RMSE% distributions (Fig. 7) showed signifi
cantly higher predictive accuracy for R² in T4 compared to T1 in the 
0–0.2 m layer (p < 0.001), based on the Kruskal-Wallis test and Mann- 
Whitney pairwise comparisons at both depths. However, RMSE% 
values were not statistically different (p > 0.05) between tests and 
layers. The figure also shows that the attributes clay, sand, silt, K, and 
CEC, which demonstrated promising performance for R², had moderate 
RMSE% values between the first and third quartiles for tests T2 and T4 at 
both depths.

Comparative maps of actual field data and the best model predictions 
for clay are shown in Fig. 8. The spatial contrasts in clay percentage are 

Table 5 
Spearman correlation analyses of RS variables with soil attributes at each depth.

Soil 
parameter

0–0.2 m 0.2–0.4 m

Correlation 
with the mean

Highest 
correlation 
obtained

Statistics with the 
highest correlation 
obtained

Frequency 
(%)

Correlation 
with the mean

Highest 
correlation 
obtained

Statistics with the 
highest correlation 
obtained

Frequency 
(%)

Clay − 0.07 0.24 SD 22 − 0.08 0.25 MAX 20
Sand 0.07 0.24 SD 22 0.08 0.26 SD 20
Silt − 0.05 0.21 SD 24 − 0.08 0.26 MEDIAN 21
pH 0.06 0.25 SUM 47 0.03 0.18 PCT90 26
SOM − 0.09 0.25 MAX 29 − 0.11 0.29 MAX 30
CEC − 0.09 0.27 MAX, MIN and 

RANGE
19 − 0.07 0.22 MAX 27

ECEC − 0.08 0.24 RANGE 18 − 0.1 0.28 MAX 26
V − 0.08 0.24 RANGE 18 0.04 0.17 RANGE 23
Ca 0.02 0.2 SUM 55 0.01 0.16 MIN 30
Mg − 0.04 0.19 SUM 23 − 0.05 0.21 MIN 27
K − 0.08 0.26 PCT90 and MEDIAN 21 − 0.08 0.26 MEDIAN 24
P 0.08 0.24 MAX 23 0.07 0.21 MIN 22
S − 0.02 0.1 MEDIAN 20 0.03 0.12 MEDIAN 27
B − 0.04 0.14 RANGE 24 − 0.04 0.13 MEDIAN 22
Cu − 0.04 0.19 PCT90 22 − 0.03 0.19 MEDIAN and SD 19
Fe − 0.07 0.24 SD 30 − 0.03 0.16 SUM 36
Mn 0 0.16 SUM 52 0 0.17 SUM 47
Zn − 0.02 0.16 SUM 20 0 0.18 MEDIAN 31
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subtle; however, the predicted maps for test T2 in the 0–0.2 m layer 
(Fig. 8b) and test T4 in the 0.2–0.4 m layer (Fig. 8d) indicate that the 
models were more conservative, showing slightly lower variation in clay 
across the MZs. This effect was particularly noticeable along the edges of 
the study area, where the original soil has already demonstrated a higher 
proportion of this granulometric fraction.

4. Discussion

4.1. Key findings from remote sensing

Direct soil responses from orbital remote sensing present a method
ological challenge due to the influence of surface cover (Balsamo et al., 
2018). In this study, conducted in a passive restoration environment of 
Cerrado vegetation, we achieved high predictive performance, with R² 
values exceeding 0.8 and moderate RMSE% (≤25 %) for clay content in 

both layers. Additionally, we obtained promising results for Silt, Sand, 
CEC, K, and SOM. We also observed that the Boruta algorithm enhanced 
the predictive performance of RF models, aligning with findings from 
similar studies (Keskin et al., 2019; Peng et al., 2023). However, our 
correlation analysis of descriptive statistical measures proved essential 
for achieving the best results. Tests T3 and T4 outperformed T1 and T2 
in 72 % of the models, indicating that summarization using the mean 
may not fully capture the predictive potential of remote sensing data.

Our findings suggest that alternative statistical measures to the 
mean, such as the maximum, standard deviation, and median (applied in 
the T3 and T4 tests), often exhibit stronger correlations with soil prop
erties analyzed in the laboratory. However, studies assessing the impact 
of statistical summarization methods for homogeneous soil regions on 
model performance remain scarce. For instance, Zhu et al. (2024) found 
that the geometric median provided greater robustness against outliers 
in soil organic carbon (SOC) models compared to the univariate mean 

Fig. 5. Examples of variable importance graph generated by the Boruta algorithm for the parameter clay in test T2 (0–0.2 m) and T4 (0.2–0.4 m). The blue color of 
the graph refers to the limits (shadows) for the algorithm’s rejection/acceptance of variables. F_SILICATES is the abbreviation for FERROUS_SILICATES, and for all 
orbital variables, see the list in Section 2.6.
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and median. These approaches are particularly valuable in agricultural 
systems, where soil attributes’ spatial and temporal variability directly 
affects crop yields and resource use efficiency (Sishodia et al., 2020).

Aggregating soil samples in homogeneous regions is a common 
agricultural practice for the rational use of agrochemicals. Research in 
this field has explored clustering methods to delineate zones using RS 
data, including the k-means algorithm (Zeraatpisheh et al., 2022; 
Muniammal Vediappan et al., 2025), density-based spatial clustering of 
applications with noise (DBSCAN) (Javadi et al., 2022), and the parti
tioning around medoids (PAM) method (Cammarano et al., 2020). Here, 
we introduce another option to this set of techniques: the Build Balanced 
Zones tool in ArcGIS®PRO. This GIS/RS tool remains unexplored mainly 
(see examples in other fields of knowledge in Nakai et al., 2021; DeBruin 
and Khani, 2024) and is novel in soil science. Our study processed 
polygons based on variable weights or importance, integrating spatial 
and temporal factors, including historical TC_VEG indices and terrain 
slope.

Comparing model performance by depth, we found that in the 
0–0.2 m layer, the average R² and RMSE% were 0.42 and 37.37 %, 
respectively, slightly higher than the 0.2–0.4 m layer, which had values 
of 0.40 and 51.44 %. This suggests that the predictive power of orbital 
variables is likely linked to the direct response of soil reflectance in the 
surface layer (<20 cm), whereas deeper layers exhibit indirect responses 
influenced by surface cover (Sharma et al., 2022; Abdulraheem et al., 
2023). Consequently, most multispectral sensor studies have focused 
primarily on topsoil assessments (e.g., Ma et al., 2021; Tunçay et al., 
2021; Charishma et al., 2024). Research on parameters such as salinity 
content (Li et al., 2022), root zone soil moisture (Bartels et al., 2021), 
and SOM/SOC estimation (Reis et al., 2021; Bócoli et al., 2025) across 
different soil depths indicates that surface layers generally yield more 
accurate modeling results. However, some studies have reported good 

predictive performance for SOC even at depths greater than 20 cm 
(Poppiel et al., 2019; Ren et al., 2020). In this context, our study further 
explored this potential by evaluating direct and indirect assessments 
using multispectral RS, SAR, and terrain variables across a broad range 
of soil attributes in the two main layers.

Regarding the variables, we highlight that the Sentinel-1 group did 
not provide a predictive advantage, contradicting expectations that C- 
band penetration would enhance soil property predictions (El Hajj et al., 
2019). On the other hand, Elevation played a significant role in the 
models, with %IncMSE values exceeding 20 % for clay, sand, silt, SOM, 
CEC, and ECEC. The strong influence of altitude on soil attribute 
modeling aligns with previous studies (Mosleh et al., 2016; Hengl et al., 
2021; Zang et al., 2024), as it is a fundamental factor in pedogenesis. 
However, in this case, elevation may also be linked to clay-rich and more 
fertile soils found at the foothills of escarpments, which mark the 
beginning of the study area (see Fig. 1e for details). Another key group in 
the models consisted of GLCM metrics, including mean, variance, and 
contrast. These texture-based indicators are frequently applied in soil 
assessments (Duan and Zhang, 2021; Haoyuan et al., 2023) due to their 
ability to capture subtle patterns related to soil structure and texture. In 
our study, these techniques were particularly valuable for modeling 
texture fractions and attributes such as Ca, Mg, K, and CEC.

4.2. Implications for environmental evaluations and economic activities

The soils in the study area, typical of the Cerrado biome, are char
acterized by high leaching and weathering, with sand dominating the 
profile (Oliveira et al., 2023). Remote mapping of textural composition 
allows for precise soil management. These supporting practices improve 
water infiltration and reduce surface runoff, allowing for an even more 
accurate assessment of pasture degradation (Bolfe et al., 2024). 

Fig. 6. Selection of variables with Mean Square Error Increment (%IncMSE) greater than 10 % in importance in RF and Boruta in the best-performing tests, divided 
by soil attribute and depth. For abbreviations of orbital variables, see the list in Section 2.6.
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Furthermore, layer variations of 0.2–0.4 m, clay, or silt detected via RS 
may indicate abrupt textural transitions, potentially increasing the risk 
of subsurface erosion (Hosseinalizadeh et al., 2019).

The developed framework has broad applications in precision agri
culture and native vegetation restoration, enabling targeted fertilizer 
applications and reducing nutrient losses through leaching (Shojaei 
et al., 2022). By leveraging models and maps, it is possible to identify 
areas with higher clay content, allowing for selecting sites with more 
significant potential for fertilizer response (Donagemma et al., 2016). 
Mapping CEC is equally essential, as this parameter influences the fre
quency and dosage of nitrogen- and potassium-based fertilizers (Yahaya 
et al., 2023) and provides insights into pH correction needs 
(Albuquerque et al., 2024).

4.3. Limitations, implications for the study area, and Future Studies

One limitation of this study was the inability to isolate exposed soil 
pixels, as outlined in Gasmi et al. (2021) and Silvero et al. (2023). 
Consequently, RS data captured spatial variations within composite 
samples, including vegetation cover. Future research should incorporate 
pure pixel masks to separate soil from vegetation effects (Zepp et al., 
2021). This approach could optimize sample collection efforts, espe
cially when combined with hyperspectral imagery for more precise 
modeling (Guo et al., 2021). Additionally, integrating data from un
manned aerial vehicles (UAVs) and ground-based sensors could further 
enhance soil property assessments (Zhang et al., 2023). LIDAR data also 
offers critical value in assessing topographic variations, which influence 
soil texture and erosion patterns (Frizzle et al., 2021).

Exploring other variables selection techniques, such as Recursive 
Feature Elimination (RFE), Forward Recursive Feature Selection (FRFS), 
or Modified Greedy Feature Selection (MGFS), in conjunction with these 
sensor technologies, could further enhance model accuracy (Liu et al., 
2021; Zhang et al., 2023).

In future studies using orbital remote sensing, we increasingly expect 
pixels to reflect vegetation cover rather than bare soil. In this process of 
active (planting) and passive (natural regeneration) restoration of the 
Cerrado, orbital variables may track the transition from predominantly 
grassland vegetation to a shrub-dominated stratum in the medium term 
and potentially to a forested layer in sites with higher natural fertility 
and clay content (Souza et al., 2021). To increase the correlation of soil 
properties with vegetation growth, it will be necessary to select MZs that 
have a minimum number of simple soil samples (n > 10). Experiments 
on fertilization at planting and its effects on soil and vegetation may also 
be detected through RS data. New sensors, vegetation indices, and 
machine-learning techniques can also be incorporated to monitor the 
restoration process.

5. Conclusions

This study analyzed a regenerating Cerrado vegetation area in Brazil 
to assess the relationships between 18 physicochemical soil attributes at 
two depths, using machine learning predictive models based on 128 
orbital remote sensing variables. The key findings can be summarized as 
follows: 1) the ArcGIS®PRO Build Balanced Zones tool is an effective 
method to create soil MZs; 2) previous correlation analyses between 
summary measurements in polygons, fields, or MZs have positive effects 
on the performance of predictive models; 3) RF and Boruta ensure better 
performance in soil modeling via RS data; 4) clay, silt, sand, CEC and K 
obtained the best results in both layers; 5) SAR variables added little, but 
Elevation and GLCM metrics were fundamental. This study demon
strates the value of remote soil assessments, offering practical insights 
for land restoration, precision agriculture, and ecosystem service 
evaluations.
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Fig. 7. Box Plot of all R2 and RMSE% by tests and depth.
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Fig. 8. Comparative maps of actual field data for clay in the 0–0.2 m layer (a) and the 0.2–0.4 m layer (c) are shown alongside the predicted results using RF+Boruta. 
Predictions were based on the mean of orbital indices in the T2 test (b) and the highest correlation statistics in the T4 test (d).
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Hengl, T., Miller, M.A.E., Križan, J., Shepherd, K.D., Sila, A., Kilibarda, M., Crouch, J., 
2021. African soil properties and nutrients mapped at 30 m spatial resolution using 
two-scale ensemble machine learning. Sci. Rep. 11 (1), 6130. https://doi.org/ 
10.1038/s41598-021-85639-y.

Henrich, V., Krauss, G., Götze, C., & Sandow, C. (2011). The IndexDatabase.
Hosseinalizadeh, M., Kariminejad, N., Rahmati, O., Keesstra, S., Alinejad, M., 

Mohammadian Behbahani, A., 2019. How can statistical and artificial intelligence 
approaches predict piping erosion susceptibility? Sci. Total Environ. 646, 
1554–1566. https://doi.org/10.1016/j.scitotenv.2018.07.396.

Huete, A.R., 1988. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25 (3), 
295–309. https://doi.org/10.1016/0034-4257(88)90106-X.

Javadi, S.H., Guerrero, A., Mouazen, A.M., 2022. Clustering and smoothing pipeline for 
management zone delineation using proximal and remote sensing. Sensors 22 (2). 
https://doi.org/10.3390/s22020645.
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Silvero, N.E. Q., Demattê, J.A. M., Minasny, B., Rosin, N.A., Nascimento, J.G., Rodríguez 
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Sosa, L., Justel, A., Molina, Í ., 2021. Detection of crop hail damage with a machine 
learning algorithm using time series of remote sensing data. Agronomy 11 (10). 
https://doi.org/10.3390/agronomy11102078.

Souza, G.F. d, Almeida, R.F., Bijos, N.R., Fagg, C.W., Munhoz, C.B.R., 2021. Herbaceous- 
shrub species composition, diversity and soil attributes in moist grassland, shrub 
grassland and savanna in Central Brazil. Braz. J. Bot. 44 (1), 227–238. https://doi. 
org/10.1007/s40415-020-00672-x.

Taghizadeh-Mehrjardi, R., Fathizad, H., Ali Hakimzadeh Ardakani, M., Sodaiezadeh, H., 
Kerry, R., Heung, B., Scholten, T., 2021. Spatio-temporal analysis of heavy metals in 
arid soils at the catchment scale using digital soil assessment and a random forest 
model. Remote Sens. 13 (9). https://doi.org/10.3390/rs13091698.

Techen, A.-K., Helming, K., Brüggemann, N., Veldkamp, E., Reinhold-Hurek, B., 
Lorenz, M., Vogel, H.-J., 2020. Chapter Four - Soil research challenges in response to 
emerging agricultural soil management practices. In: Sparks, D.L. (Ed.), Advances in 
Agronomy, 161. Academic Press, pp. 179–240.

Teixeira, P.C., Donagemma, G.K., Fontana, A., Teixeira, W.G., 2017. Manual de métodos 
de análise de solo. Embrapa Bras. ília, DF.
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