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Abstract: Background: Machine learning is used to analyze images by training algorithms
on data to recognize patterns and identify objects, with applications in various fields, such
as medicine, security, and automation. Meanwhile, histological cross-sections, whether
longitudinal or transverse, expose layers of tissues or tissue mimetics, which provide
crucial information for microscopic analysis. Objectives: This study aimed to employ
the Google platform “Teachable Machine” to apply artificial intelligence (Al) in the in-
terpretation of histological cross-section images of hydrogel filaments. Methods: The
production of 3D hydrogel filaments involved different combinations of sodium alginate
and gelatin polymers, as well as a cross-linking agent, and subsequent stretching until
rupture using an extensometer. Cross-sections of stretched and unstretched filaments were
created and stained with hematoxylin and eosin. Using the Teachable Machine platform,
images were grouped and trained for subsequent prediction. Results: Over six hundred
histological cross-section images were obtained and stored in a virtual database. Each hy-
drogel combination exhibited variations in coloration, and some morphological structures
remained consistent. The Al efficiently identified and differentiated images of stretched
and unstretched filaments. However, some confusion arose when distinguishing among
variations in hydrogel combinations. Conclusions: Therefore, the image prediction tool for
biopolymeric hydrogel histological cross-sections using Teachable Machine proved to be
an efficient strategy for distinguishing stretched from unstretched filaments.

Keywords: Teachable Machine; machine learning; artificial intelligence; confusion
matrix; hydrogel

1. Introduction

Artificial intelligence (Al is a field of computer science focused on the development
of systems and algorithms capable of emulating human intelligence to perform tasks such
as problem-solving, decision-making, and pattern recognition [1]. One of the significant
applications of Al is in image analysis, also known as image recognition or computer
vision. This involves the utilization of machine learning techniques, particularly deep
neural networks, to analyze and interpret visual data, enabling computers to comprehend,
classify, and make predictions based on images or videos [2,3].
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The analysis of images with Al technology employs sophisticated algorithms to extract
intricate patterns and features from images, enabling the accurate classification and differ-
entiation of objects, structures, or characteristics within the images [4]. This technology
finds applications in areas such as medical diagnosis, quality control, and autonomous
systems [5]. An example of a tool that allows users to train Al to recognize patterns
in images is the “Teachable Machine”, a tool developed by Google’s Creative Lab and
available free of charge. This tool empowers individuals to train their own Al models
without extensive coding knowledge, enabling machine learning-based Al to differentiate
objects based on user-provided examples. This process contributes to democratizing and
popularizing Al resources for a broader range of users [6,7]. Al-powered image analysis,
which extracts patterns and features to classify objects, has applications in areas such as
medical diagnosis, quality control, and autonomous systems and has been popularized by
tools such as Teachable Machine, which allows Al training without advanced programming
knowledge [8].

The use of Al in image prediction has found widespread applications across various
sectors. In the healthcare field, Al algorithms can assist medical professionals in disease
diagnosis by analyzing medical images such as X-rays [9], MRI scans [10], and CT scans [11].
Furthermore, Al image prediction has been extensively utilized in industries such as
manufacturing for quality control, agriculture for crop monitoring, and e-commerce for
product recommendation systems. These applications rely on Al to analyze extensive
datasets of images and provide valuable insights or predictions [12]. Overall, Al has
revolutionized image prediction, enabling computers to comprehend visual data, and its
applications span multiple sectors, enhancing efficiency, accuracy, and decision-making
processes [13].

Histological images provide detailed visual representations of tissues at the cellular
level, essential for understanding tissue structure and pathological conditions [14]. Sim-
ilarly, histological images from hydrogels provide valuable insights into the structural
characteristics of hydrogel materials, aiding in their analysis and applications in various
fields, including biomedicine and materials science [15]. The techniques for staining these
samples involve the application of specialized dyes to tissue samples, enabling the visual-
ization and differentiation of specific cellular structures and components for pathological
analysis, such as hematoxylin and eosin. These techniques are essential for enhancing
morphological details and facilitating pathological identification in tissue samples [16,17].

Therefore, to explore a new application of Al for image interpretation, the present study
aims to utilize the Google platform “Teachable Machine” for the learning and prediction of
histological cross-section images of hydrogel filaments, distinguishing those mechanically
stretched from those with distinct morphological characteristics. Hydrogels, like the
ones studied here, have significant potential for applications in three-dimensional (3D)
cell culture systems. Due to their biocompatibility, tunable mechanical properties, and
ability to mimic the extracellular matrix, these materials can support cellular adhesion,
proliferation, and differentiation. Such characteristics make them promising candidates for
biomedical research, including the development of engineered tissues like nerves, tendons,
and muscles.

2. Materials and Methods

2.1. Experimental Design, Filament Production from Hydrogels, and Electromechanical Tension
For the preparation of biopolymeric hydrogels, the concentrations of sodium alginate,

gelatin, and calcium chloride were determined using the Chemoface® software (version

1.65) with a central composite experimental design. Table 1 shows the seven selected
combinations generated by the software. As a solubilizing agent, Dulbecco’s Modified
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Eagle Medium (DMEM) cell culture medium was chosen. Therefore, each combination was
identified by adding the word DMEM followed by the generated combination number.

Table 1. Names for the combinations of independent variables, representing the relative concentra-
tions (% w/v) of sodium alginate and gelatin in the hydrogels, and calcium chloride solution as the
crosslinking agent.

Polymers Crosslinker
Combination’s SodiumoAlginate Gelatin (%) CaCl, (%)
Name (%)
DMEM-6 7 3 3
DMEM-8 7 5 3
DMEM-10 8.364 4 2
DMEM-11 5 2.318 2
DMEM-12 5 5.682 2
DMEM-14 5 4 3.682
DMEM-15 5 4 2

The hydrogels were prepared from combinations of the biopolymers sodium alginate
(CRQ, Brazil) and gelatin (Vetec, Brazil) following the protocol defined by the experimental
design. At room temperature, a glass beaker (Pyrex®, USA) was placed on a magnetic
stirring plate (Lucadema, Brazil), and sodium alginate was added for solubilization in each
solvent, followed by heating. Gelatin was added to the same beaker, and the temperature
was gradually increased to approximately 40 °C for 30 min until complete solubilization and
homogeneity were achieved. Subsequently, the hydrogels were stored at room temperature
in 5 mL disposable luer-lock syringes (Rynco, Brazil) and manually extruded into glass
containers containing a calcium chloride solution (Dindmica, Brazil) as the crosslinking
agent, following the wet spinning technique. A 14-gauge needle was used for extrusion.
These filaments were immersed for approximately 10-15 min, washed with PBS, and then
gently dried on paper towels.

Finally, using an electromechanical extensometer attached to a load cell (MTS Insight®,
USA), the produced filaments were clamped at their ends and tested in triplicate until
rupture. The samples were subjected to stress using TestWorks® 4.10 software at a speed of
10 mm/min.

2.2. Light Microscopy and Histology of Hydrogel Filaments

The filaments produced using hydrogels based on the combinations of selected biopoly-
mers were processed for evaluation under light microscopy. For this purpose, extruded
filaments were used both before and after being stretched to their rupture point by an elec-
tromechanical extensometer. Thus, the analyzed biomaterials were divided into two groups:
unstretched filaments (F) and stretched filaments (FE). Approximately 1 cm fragments of
each filament were placed separately in 15 mL Falcon-type tubes and identified.

To begin the processing, the biomaterials were placed in methanol-Carnoy fixative
solution, which consists of 60% methanol (J.T. Backer, USA), 30% chloroform (CRQ, Brazil),
and 10% acetic acid (Merck, Germany), for 2 h at room temperature. After removing the
fixative, the samples underwent successive steps of decreasing ethanol concentrations
(100%, 90%, and 80%) with a 40 min interval between each bath and were kept in 70%
ethanol overnight at 4 °C. After this period, the samples were dehydrated using increasing
ethanol concentrations (80%, 90%, and 100% twice), with a 40 min interval between each
bath. Subsequently, the clearing process took place, during which the samples were kept
in ethanol/xylene solutions in a 1:1 ratio, followed by xylene 1 and then xylene 2, with
a 40 min interval in each bath. For embedding the filaments, infiltration with Paraplast
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(Sigma Life Science, Switzerland) was performed through two 1 h baths (Paraplast 1 and
Paraplast 2). After infiltration, the material was embedded in Paraplast blocks, allowed to
solidify, and stored at room temperature.

Using the Vibratome 3000 plus equipment (The Vibratome Company, USA), the blocks
were sectioned into approximately 5 um thickness, and the sections were deposited on
glass slides, separating longitudinal and transverse cuts; then placed on a heated plate
at approximately 40 °C to initiate the drying process; and then taken to an oven at 40 °C
overnight. The slides underwent a staining process with hematoxylin and eosin (H&E).
The analysis of the micrometric sections of the filaments was conducted using a light
microscope (Nikon, Japan) coupled with a digital camera (Digilab, Brazil) and digitally
documented using ImageView software version 3.7.

2.3. Utilization of Artificial Intelligence as a Strateqy for the Classification and Validation of
Biomaterial Images

The light microscopy images of the sections obtained in the previous assay were
subjected to a machine learning test, followed by prediction using the Teachable Machine
2.0 Al tool. Figure 1 details the components of the tool used. In this case, the machine
learning used for classification relies on the use of categorical data (classes), where the
provision of images (“inputs”) and their respective identifications are required for recogni-
tion. Subsequently, through the algorithm itself, training occurs and the parameters that
relate the images to their corresponding classes are learned. Then, the predicted model is
ready to be validated. For this step, it is important to use a new set of images that were
not implemented in the previous training but may or may not be associated with any of
the trained classes. From this, the tested images will be identified and classified with a
confidence percentage (certainty) with respect to the classifications (classes) to which the
Al was trained (Figure 1A).

For the training shown in Figure 1B, the classes were identified as “F” (unstretched
filaments) and “FE” (stretched filaments). Each class was composed of 250 distinct images
(captured with the 4x and 10 x microscope objectives). After training, forty-seven images,
which were not used in the construction of this trained image dataset, were used for predic-
tion. The hypothesis under evaluation was whether the Al could identify and classify the
images into two groups based on the morphologies of stretched and unstretched filaments.

For the training depicted in Figure 1C, the classes were identified as DMEM-6, DMEM-
8, DMEM-10, DMEM-11, DMEM-12, DMEM-14, and DMEM-15. To challenge and identify
the potential “sensitivity” of prediction, the seven classes were provided with approxi-
mately seventy images (stretched and unstretched filaments) each. After training, forty-nine
images that were not used in the construction of this trained image dataset were tested
for prediction. The hypothesis under evaluation was whether the Al could identify and
classify the images based on the seven distinct groups, determining which one they most
resemble, guided by their morphologies.

During the Al prediction, it was set that the default threshold for image identification
would be above 50% for recognition. After all predictions were made, the resulting values
were compiled into a confusion matrix, which is a performance measure that compares
the obtained classification results with the ones predicted by the machine, displaying the
distribution of records in terms of their actual and predicted classes. The matrix was created
using the ChatGPT platform, and the programming was conducted in Python language. All
acquired images used are available at this link: https://drive.google.com/drive/folders/
12R4aE0TJ4H1GTm9mAzjojqtdvGDNT1Cj?usp=sharing (accessed on 12 December 2024).
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Figure 1. Schematic representation of the teachable machine tool used as a machine learning-based
artificial intelligence for predicting image classifications of filaments. (A) Initial model structure
showing the positions of each structure and its specific function. (B) Encoding used for the training
and prediction of images of stretched (FE) and unstretched (F) filament sections. (C) Encoding
used for the training and prediction of images of sections for the seven distinct groups of hydrogel
filaments produced.

3. Results and Discussion
3.1. Analysis of the Sections Obtained from Each Filament by Light Microscopy

The biopolymeric hydrogel filaments developed in this study were designed with a
focus on achieving structural integrity and versatility for diverse applications. By com-
bining sodium alginate and gelatin, cross-linked with calcium chloride, these filaments
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exhibit tunable mechanical and morphological properties. Such characteristics are crucial
for their evaluation under different conditions, including mechanical stretching, to explore
their potential use in biomedical applications, such as scaffolds for tissue engineering and
3D cell culture systems. This approach ensures that the materials can provide a robust
platform for further investigation into their functionality and adaptability.

The composition and structural properties of these hydrogels were designed with
versatility in mind. Their ability to sustain mechanical stress while maintaining structural
integrity could be advantageous for supporting cell growth and tissue formation under
dynamic conditions, such as those required for the regeneration of muscular or connective
tissues. Regarding the captured images from histological sections, it was initially noticeable
that variations in the proportion of biopolymers composing different hydrogels influenced
the staining of each material. The dyes used have distinct charges, with hematoxylin
having a positive charge, staining alginate [18,19], and eosin having a negative charge,
primarily staining proteins like gelatin [20]. It can be inferred that this factor accounts for the
variations in the staining of the acquired images. Comparing the images in Figures 2 and 3,
it is possible to observe the presence of certain recurring structures in all the samples.
For instance, there are numerous pores of various sizes, primarily visible through the
10x objective lens. In addition to these, the biopolymeric mesh can be seen to differ
when comparing the stretched and unstretched filaments. For these types of biomaterials,
particularly those based on alginate, the presence of pores is quite common, as observed [21],
and also associated with other polymers like gelatin [22,23], polyethylene glycol [24], and
chitosan [25]. Another factor that may directly contribute to the behavior of these meshes
is the concentration of the crosslinking agent used in each combination. Therefore, higher
levels of calcium ions can produce distinct effects in the resulting hydrogel network,
as previously shown by other authors [26]. These elevated calcium ion concentrations
can accelerate crosslinking, affecting handling time and potentially altering mechanical
properties intrinsically [27]. However, this denser network can also lead to reduced swelling
capacity and altered diffusion characteristics, as observed in other studies [28].

The observed differences in the structural and morphological characteristics of the
hydrogel filaments, influenced by variations in biopolymer proportions and cross-linking
density, suggest their potential for customizing scaffolds for specific 3D cell culture applica-
tions. For instance, hydrogels with higher porosity and tunable stiffness could be tailored
for the cultivation of nerve or tendon cells, while more compact and elastic structures might
be suitable for muscle tissue engineering.

3.2. Al-Based Class Prediction After Learning from Light Microscopy Filament Section Images

During the process of image classification and prediction using the Teachable Machine
tool, the results from the test of identifying stretched and unstretched filaments were
collected and added to the confusion matrix. In the section where “True Classes” is written,
it signifies the actual value of each image presented to the Al after its training. Conversely,
where “Predicted Classes” is written, it represents the value assigned to each image by
the Al after prediction. When comparing the obtained results with the actual values of
each section, the confusion matrix presented in Figure 4 was constructed. It indicates that
twenty-six images belonging to class F (55.32%) were correctly identified as such, and
fifteen images from class FE (31.91%) were correctly identified as belonging to that class.
Five images from class FE (10.64%) were misclassified as F, and only one image from class F
(2.13%) was misclassified as FE. This demonstrates that, even though these images exhibit
some colorimetric similarities and morphological differences discussed and highlighted in
the previous section, the Al displayed sensitivity in distinguishing the classes as learned.
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LONGITUDINAL TRANSVERSE

COMBINATIONS
A
DMEM-14 DMEM-12 DMEM-11 DMEM-10 DMEM-8 DMEM-6

DMEM-15

N

Figure 2. Histological sections of unstretched hydrogel filaments: (A,C,E,G,I K,M) representative

images of longitudinal sections; (B,D,F,H,J,L,N) representative images of transverse sections. The
black mark in the bottom right corner of each image represents 100 um.
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LONGITUDINAL TRANSVERSE

COMBINATIONS
A
DMEM-14 DMEM-12 DMEM-11 DMEM-10 DMEM-8 DMEM-6

DMEM-15

Figure 3. Histological sections of stretched hydrogel filaments: (A,CE,G,IK,M) representative
images of longitudinal sections; (B,D,F,H,J,L,N) representative images of transverse sections. The
black mark in the bottom right corner of each image represents 100 um.
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Figure 4. Confusion matrix of the prediction for stretched and unstretched filaments. This matrix
presents the proportions corresponding to the identifications of the 47 images, based on the class
assignments of F and FE. In total, 26 images belonging to class F (55.32%) were correctly identified
as such, and 15 images from class FE (31.91%) were correctly identified as belonging to that class.

Five images from class FE (10.64%) were misclassified as F, and only one image from class F (2.13%)
was misclassified as FE.

The ability of Al tools to classify and predict hydrogel characteristics could facilitate
the selection of optimal formulations for specific biomedical purposes. In the context of 3D
cell culture, this capability could streamline the development of scaffolds for applications
ranging from regenerative medicine to the formation of complex tissues such as muscles
and tendons.

Teachable Machine appears to be a reliable Al, particularly as it was developed by
Google, a well-known and respected company in the field of technology and machine
learning [29]. Moreover, it has been utilized by many developers and academics to success-
fully train and deploy image classification models, as evidenced by numerous tutorials
and guides available online [30]. However, like any tool, the accuracy and reliability of
predictions made by a model trained using Teachable Machine depend on the quality of
the training data and the model’s suitability for the specific task [31].

As for the results of the test to identify the different classes and determine to which
specific hydrogel the images of stretched and unstretched filaments belonged, they were
collected and added to the confusion matrix. When we compared the obtained results with
the actual values of the images in each section, the confusion matrix shown in Figure 5
was constructed. It reveals a significant disparity in the Al's prediction classifications.
Among all the groups presented and trained, substantial accuracy was achieved only for
the stretched and unstretched filaments of DMEM-8 (14.89%) and DMEM-11 (14.89%). For
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the remaining classes, there was confusion during the predictions, where different types of
filaments were misclassified in terms of the hydrogel to which they belonged.

7
1 0 1 2 1 1
10 4 (213%)  (0.00%)  (2.13%)  (4.26%)  (2.13%)  (2.13%)
6
0 7 0 0 0 1 0
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Q L3
E 0 0 1 0 4 0 0
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Figure 5. Confusion matrix of the prediction for the seven distinct types of hydrogels. This matrix
presents the proportions corresponding to the identifications of the forty-seven images, based on
the inputs from the classes DMEM-6, DMEM-8, DMEM-10, DMEM-11, DMEM-12, DMEM-14, and
DMEM-15. It reveals a significant disparity in the Al’s prediction classifications.

Within the field of machine learning statistics, there is a term known as overfitting,
which occurs when a statistical model fits precisely to its training data, including noise and
random fluctuations in the data. This results in a model that performs well on the training
data but poorly on new and unseen data, undermining its purpose [32,33]. This may be
one of the reasons explaining the lack of consistency between the images predicted by the
Al and their actual values.

The Teachable Machine artificial intelligence has been used in various types of studies
and research involving imaging for different applications, such as tympanic membrane
differentiation [30], melanoma tomographies [34], and plant pest-related diseases [35], as
well as studies focused on children’s education and development [7,36]. Using Al as a tool
for this work, the results obtained have been positively surprising due to its effectiveness.
Furthermore, it has impressed by demonstrating precise accuracy, proving to be highly
capable of distinguishing proportionally between the categories of images F and FE after its
training, resulting in consistently high accuracy rates. On the other hand, it was found that
the AI’s performance was unsatisfactory in predicting the various classes of filaments based
on the type of hydrogel, encompassing both stretched and unstretched ones. This was partly
due to the similarities in composition and consequently similarities in the generated images,
even though other attributes, such as micro- and nanomechanical properties, were distinct.

The chemical and physical composition of the filaments plays a crucial role in the accu-
racy of the classifications made by the artificial intelligence, since differences in structural
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properties, such as color and morphology, can directly influence the distinction between
classes, as observed in the classification results of stretched and unstretched filaments. The
similarity between some of the attributes of the hydrogels, such as their composition and
mechanical properties, may have contributed to the classification difficulties faced by the
Al especially when dealing with images of different types of filaments, such as those of
DMEM-8 and DMEM-11. The variation in the results can be explained by the influence
of the chemical compounds used and the presence of microscopic and nanomechanical
differences in the materials, which directly affect their properties and behavior during the
analysis. These characteristics, together with the mechanical properties and degradation
over time, have been widely discussed by Araujo Neto, L.A. (2024) [37,38].

To enhance Teachable Machine’s ability to improve image prediction accuracy, the
following enhancements can be considered: (i) an increase in the diversity and quantity
of training data, representing an even wider range of hydrogel variations, could enhance
the model’s capability to identify specific fiber classes [39]; (ii) the incorporation of more
advanced image preprocessing and segmentation techniques can assist in highlighting dis-
tinctive features in the images, making them more easily recognizable by the algorithm [40];
and (iii) optimizing the parameters of the machine learning model, such as the choice
of classification algorithm and neural network architecture, is essential to ensure more
accurate and consistent performance [41]. Finally, a more detailed analysis of the model’s
limitations and the types of errors it makes can guide specific adjustments to enhance the
accuracy of image prediction.

4. Conclusions

The images obtained from histological cross-sections revealed that variations in the
polymer proportions used in filament manufacturing were responsible for the differences
in coloration observed in each. Furthermore, stretched filaments underwent changes in
their conformation due to increased material compaction during the stretching process,
which distinguished them from unstretched samples. The utilization of machine learn-
ing for analyzing images obtained through light microscopy of filament sections showed
promising results, albeit with limitations in predicting specific classes. Teachable Machine’s
Al demonstrated high accuracy in distinguishing between categories F and FE but en-
countered difficulties in accurately predicting different fiber classes based on the type of
hydrogel. Therefore, to enhance the Teachable Machine’s image analysis capacity, it is
crucial to consider diversifying and expanding the training data, implementing advanced
image preprocessing and segmentation techniques to highlight distinctive features, and
optimizing machine learning model parameters, including the choice of classification algo-
rithm and neural network architecture, to ensure more precise and consistent predictions.
Beyond their immediate use in histological studies, the hydrogels analyzed here represent
a promising platform for 3D cell culture systems. By leveraging their customizable me-
chanical and morphological properties, they could support the formation of functional
tissues for biomedical applications, including neural networks, tendons, and muscular
systems. These findings underscore the broader potential of such materials in advancing
tissue engineering and regenerative medicine.
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