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adaptability to producing regions. Choosing substrates that 
can contribute to the morphophysiology of seedlings is an 
important decision-making, especially for the nurseryman 
or rural producer.

The substrate must have good chemical, physical and 
microbiological attributes (Ripp et al. 2020; Fiorin et al. 
2022) according to the needs of the species and cultivar, 
improving the nutrition, physiology, and plant growth. 
However, the cost of commercial substrates is high, espe-
cially for situations of medium to low purchasing power, 
and therefore the formulation of alternative and sustainable 
substrates and or enriched with minerals has increased in 
nursery farming (Aires et al. 2020).

Among the material options for formulating sustain-
able substrates for plants, the use of agro-industrial 
subproducts are excellent raw materials and meet the 
objectives of the sustainable development goals (SDG), 
decreasing productions costs and possible environmen-
tal impacts with the disposal of these materials. In the 
Brazil, the sugar-energy sector using sugar cane as raw 

1 Introduction

Yellow passion fruit (Passiflora edulis, Passifloraceae) 
is one of the plants of greatest interest in World. The spe-
cies is exploited especially in regions with a tropical and 
subtropical climate (Vieira et al. 2022), with Brazil being 
the largest producer in the world, standing out for reach-
ing an average of 697,859 tons in 45,602 hectares in the 
year 2022 (IBGE 2022; EMBRAPA s/d), making it a great 
cultivation option, choosing cultivars with good stability or 
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in all cultivar’s seedlings in 100% V and 90% V + 10% CRH.
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material, animal slaughter plants and the rice process-
ing industry generate high amounts of subproducts (resi-
dues), such as sugarcane bagasse, ruminal content and 
rice husk, respectively.

Vermicomposting is a technique that consists of com-
bining of materials, producing humus or vermicompost 
(Dohaish 2020; Wong et al. 2020), a product with high value 
that can play significant role as an organic fertilizer or a suit-
able medium for plants (Ebrahimi et al. 2021; Serri et al. 
2021). Vermicompost is a material with good porosity and 
water retention (Ečimović et al. 2022) and rich in nutrients 
and organic matter (Astolfi et al. 2020; Wong et al. 2020; 
Kumar et al. 2023), which favors the mineral and physi-
ological metabolism of plants.

For rice husk, carbonization is promising, as it is a sim-
ple process, in which the material, generally highly lignified 
(Satbaev et al. 2021; Nzereogu et al. 2023), is subjected to 
the controlled burning process, not letting it turn into ash, 
but rather into homogenized carbonized material (Medeiros 
1998; Fermino et al. 2018), characterizing the production of 
Biochar. In the carbonized state, it favors the availability of 
nutrients for plants (Hashim et al. 1996; Barros et al. 2017; 
Teixeira et al. 2019), in addition to being an excellent source 
of silicon (Teixeira et al. 2019; Li et al. 2023a) and promot-
ing an effect conditioner to the substrate (Liberalesso et al. 
2021; Costa et al. 2023; ; Li et al. 2023b).

However, there is a lack of additional information on the 
morphophysiological responses of different passion fruit 
cultivars to substrates from agro-industrial residues. We 
hypothesized: (i) the use of sugarcane bagasse and ruminal 
content in the production of vermicompost contributes to 
the production of passion fruit seedlings, (ii) the addition 
of carbonized rice husk favors the chemical characteristics 
of the substrates and plant growth, and that (iii) responses 
to sustainable substrates vary of cultivar. Thus, we aimed 
to evaluate the effect of substrates formulated from vermi-
compost and carbonized rice husk on production of yellow 
passion fruit cultivars seedlings.

2 Materials and Methods

2.1 Vermicompost Production and Rice Husk 
Carbonization

The experiment was conducted under an agricultural nurs-
ery structure with a 150 μm transparent plastic cover and 
50% shading screen, with benches suspended 1.00 m, in 
the Embrapa Agropecuária Oeste (22º 14’, 54º 49’, 452 m), 
located in the municipality of Dourados, in the southern 
region of the State of Mato Grosso do Sul, Brazil.

The vermicompost was produced in a masonry earth-
worm farm with a mesh top cover with 50% shading 
(Suplementary Fig. 1). The Proportion used of ruminal 
content from beef slaughterhouses and sugarcane bagasse 
was 1:1 (v v–1), both coming from agro-industrials in the 
region. The mixture was subjected to the action of earth-
worm Eudrilus eugeniae during a period of 90 days, 
which the earthworms were inoculated in the morning and 
the moisture was maintained at 60%. The rice husk was 
subjected to carbonization in a modified simple carbon-
izer (Suplementary Fig. 2) based on a model adopted at 
the CNPH (National Center for Research in Vegetables) 
(Medeiros 1998).

2.2 Experimental Design, Substrates, and Cultivars

Experimental design used was completely randomized, with 
four replicationsof 27 tubes of 290 cm3 each. The tubes were 
previously filled with six substrates from combinations of 
vermicompost (V) and carbonized rice husk (CRH): 100% 
V, 90% V + 10% CRH, 80% V + 20% CRH, 70% V + 30% 
CRH, 60% V + 40% CRH, and 50% V + 50% CRH. For each 
m³ of substrate obtained, in all substrates, 1,000 g Yoorin® 
(18% P2O5) and 500 g potassium sulfate (50% de K2O) sup-
plementary fertilization were added according propused to 
Mariani et al. (2014). Subsequently, four passion fruit culti-
vars were sown: BRS Gigante Amarelo, FB 300, IAC 275, 
and Rubi do Cerrado, at depth of 2 cm.

The pH, N, P, K, Ca, Mg, and organic carbon (O.C.) values 
of the substrates from mixtures of V and CRH were deter-
mined according to the methodology of Silva (2009) and are 
presented in Table 1. Moisture contents were 49.70, 45.40, 
43.00, 40.20, 39.10 and, 33.30% in substrates 100% V, 90% 
V + 10% CRH, 80% V + 20% CRH, 70% V + 30% CRH, 
60% V + 40% CRH, and 50% V + 50% CRH, respectively.

2.3 Cultivation

During experimental period, the seedlings were irrigated 
once a day by micro sprinkler, adopting a system of rotat-
ing tube trays every three days to better standardize water 
distribution over the seedlings, and plant control was carried 
out spontaneous by manual starting. After the initial period 
of emergence, thinning was carried out, leaving only one 
seedling per tube.

2.4 Assessments

At 60 days after sowing, emergence assessment was carried 
out on 27 tubes and 14 plants per plot for the characteristics 
evaluated, disregarding the border.
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2.4.1 Emergence and Relative Water Content

Seedling emergence was evaluated according to Nakagawa 
(1994) and we calculated the water content in the leaves 
according to Turner (1981), both results expressed in %.

2.4.2 Plant Growth

Plant height (H) was measured with a ruler graduated in 
centimeters, taking as a standard the distance from the col-
lar to the apical meristem, the stem diameter (D) was mea-
sured with a digital caliper (mm) inserted 1.0 cm above the 
level of the substrate, and recorded the number of leaves. 
Using the data from H and D, the HDR was calculated. The 
seedlings were removed of substrates, washing the roots 
to remove excess substrate. Leaf area was measured using 
an area integrator (Model LI 3100 - Area Meter), results 
expressed in cm2.

2.4.3 Biomass Production

The seedlings were separated into the shoot (stem + leaves) 
and root, in which the materials were packed in Kraft paper 
bags and subjected to drying in an oven with forced air ven-
tilation at 60 ºC ± 5 for 72 h, and weighed, results expressed 
in g plant− 1.

2.4.4 Physiological and Quality Index

From the leaf area and dry biomass data, the leaf area 
ratio, specific leaf area and specific leaf mass was calcu-
lated according to Hunt (2017), results expressed in cm² 
g− 1 and g cm². Using growth and dry biomass data, the 
Dickson quality index (DQI) was calculated (Dickson et 
al. 1960).

2.5 Data Analysis

All data were analyzed individually for each cultivar, i.e., 
did not comparing them statistically. Emergence data were 

subjected to the Shapiro-Wilk normality test, and all data 
were subjected to analysis of variance and when significant 
by F test (p ≤ 0.05), the means were compared by Scott-
Knott test for substrates at p ≤ 0.05 ± standard deviation, 
using SISVAR software.

3 Results

3.1 Description of Variance Analysis

We observed that all morphophysiological characteristics of 
seedlings, except height: diameter ratio and Dickson qual-
ity index in all cultivars and specific leaf mass in cv. Rubi 
do Cerrado, were influenced by the substrates evaluated 
(Table 2).

Table 1 Chemical analysis of substrates based in vermicompost (V) and carbonized rice husk (CRH) for the production of passion fruit cultivars 
seedlings after supplementary fertilization
Substrates pH N P K Ca Mg O.C.

CaCl2 cmolc dm−3

100% V 6.41 1.01 0.47 0.21 1.18 0.30 13.40
90% V + 10% CRH 6.37 1.06 0.43 0.21 1.08 0.27 14.13
80% V + 20% CRH 6.45 0.93 0.41 0.23 1.04 0.28 14.70
70% V + 30% CRH 6.57 0.91 0.37 0.23 0.90 0.24 17.81
60% V + 40% CRH 6.51 0.83 0.36 0.25 0.90 0.24 19.48
50% V + 50% CRH 6.49 0.82 0.30 0.29 0.80 0.20 24.39
O.C.: organic carbon

Table 2 Results of the analysis of variance of the effect of substrates 
in each cultivar on the characteristics evaluated in yellow passion fruit 
seedlings
Characteristics p-value

BRS 
Gigante 
Amarelo

FB 300 IAC 275 Rubi do 
Cerrado

E 0.0025 0.0355 0.0009 < 0.0001
RWC < 0.0001 0.0012 0.0001 0.0143
H < 0.0001 0.0002 < 0.0001 0.0002
NL < 0.0001 0.0003 0.0006 0.0037
D < 0.0001 0.0012 < 0.0001 < 0.0001
HDR 0.7444 0.1150 0.1864 0.0923
LA < 0.0001 < 0.0001 < 0.0001 0.0004
SDM < 0.0001 0.0001 0.0004 0.0314
RDM < 0.0001 0.0050 0.0134 0.0434
TDM < 0.0001 < 0.0001 0.0061 0.0020
LAR < 0.0007 0.0015 0.0333 0.0610
SLA < 0.0004 0.0205 0.0008 0.0002
SLM < 0.0005 0.0009 0.0122 0.1476
DQI 0.1010 0.1878 0.7001 0.6312
E: emergence, RWC: relative water content, H: height, NL: number of 
leaves, D: stem diameter, LA: leaf area, SDM: shoot dry mass, RDM: 
root dry mass, TDM: total dry mass, LAR: leaf area ratio, SLA: spe-
cific leaf area, SLM: specific leaf mass, DQI: Dickson quality index
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V + 40% CRH and 50% V + 50% CRH, seedlings of all cul-
tivars showed lower LA values (< 50 cm²), except those of 
cv. Rubi do Cerrado in 50% V + 50% CRH.

3.4 Biomass Production

The passion fruit seedlings produced in 100% V and 90% 
V + 10% CRH showed higher shoot dry mass in all culti-
vars. In general, seedlings from cv. IAC 275 which at 90% 
V + 10% CRH was lower than the other cultivars in the 
same substrate (Table 5). For cv. Rubi do Cerrado values did 
not differ statistically between the first three substrates, i.e., 
with values ≥ 80% of vermicompost in the substrate com-
position. In general, lowest values (< 0.35 g plant-1) were 
observed in seedlings produced in 50% V + 50% CRH.

For root dry mass, the response varied with the cul-
tivar. Seedling from cv. BRS Gigante Amarelo showed 
highest value in 80% V + 20% CRH, FB 300 with a pro-
portion < 70% V, while for cv. IAC 275 was in 100% V. 
Conversely, cv. Rubi do Cerrado had higher value in 50% 
V + 50% CRH. We observed that seedlings from cv. FB 300 
and IAC 275 showed higher total dry mass in 100% V, while 
the cv. BRS Gigante Amarelo seedlings showed values did 
not differ between substrates 100% V, 90% V + 10% CRH, 
and 80% V + 20% CRH.

3.5 Physiological and Quality Index

Seedlings from cv. BRS Gigante Amarelo showed higher 
leaf area ratio (LAR) in 100% V, while cv. FB 300 values 
did not vary statistically between substrates 100% V, 90% 
V + 10% CRH, 80% V + 20% CRH, and 70% V + 30% CRH 
(Table 6). Conversely, lower LAR was observed in FB 300, 

3.2 Emergence and Relative Water Content

We observed highest emergence in substrates 90% V + 10% 
CRH and 60% V + 40% CRH (98 and 95%, respectively) 
both from cv. BRS Gigante Amarelo (Table 3). In general, 
emergence values were > 71%, except for cv. Rubi do Cer-
rado in 90% V + 10% CRH, with 67%.

Regarding the relative water content in the leaves (RWC), 
the seedlings from cv. BRS Gigante Amarelo and FB 300 
showed higher values produced in substrates 100% V, 90% 
V + 10% CRH, 80% V + 20% CRH, and 70% V + 30% CRH, 
statistically differing from the other substrates for these 
two cultivars. For cv. IAC 275 the highest RWC occurred 
in 90% V + 10% CRH, differing from the other substrates, 
while seedlings from cv. Rubi do Cerrado was in 100% V 
and 90% V + 10% CRH. In addition, all cultivars showed 
lower RWC in 50% V + 50% CRH.

3.3 Plant Growth

The highest plant height values were observed in seedlings 
produced in 100% V and 90% V + 10% CRH, statistically 
differing from the other substrates, while lowest values 
occurred in 60% V + 40% CRH and 50% V + 50% CHR 
(Table 4). The highest values   of stem diameter and num-
ber of leaves to BRS Gigante Amarelo and Rubi do Cerrado 
occurred in 100% V and 90% V + 10% CRH, while in FB 
300 and IAC 275 produced in substrate containing ≥ 70% V 
showed higher values (Table 4).

For leaf area (LA), all cultivars presented higher values 
(> 85 cm²) when produced in 100% V, not statistically dif-
ferent from the seedlings in 90% V + 10% CRH, except 
for cv. IAC 275 (Table 4). We found that when using 60% 

Table 3 Emergence and relative water content of yellow passion fruit cultivar seedlings produced in substrates based in vermicompost (V) and 
carbonized rice husk (CRH)
Substrates Emergence (%)

BRS Gigante Amarelo FB 300 IAC 275 Rubi do Cerrado
100% V 84.00 ± 1.41 b 83.50 ± 3.93 a 73.83 ± 3.17 b 91.33 ± 1.64 a
90% V + 10% CRH 98.12 ± 0.15 a 82.66 ± 0.35 a 82.66 ± 2.16 a 67.66 ± 3.29 b
80% V + 20% CRH 86.36 ± 1.88 b 71.33 ± 1.88 b 85.16 ± 4.58 a 73.33 ± 2.49 b
70% V + 30% CRH 86.16 ± 4.77 b 86.00 ± 2.16 a 89.00 ± 0.47 a 77.80 ± 0.43 b
60% V + 40% CRH 95.00 ± 1.41 a 81.33 ± 0.94 a 76.66 ± 2.16 b 73.33 ± 0.94 b
50% V + 50% CRH 84.00 ± 2.35 b 82.66 ± 3.29 a 81.66 ± 2.94 a 91.66 ± 3.77 a
Substrates Relative water content (%)

BRS Gigante Amarelo FB 300 IAC 275 Rubi do Cerrado
100% V 77.26 ± 2.78 a 71.69 ± 1.70 a 69.90 ± 1.46 b 71.63 ± 2.56 a
90% V + 10% CRH 76.33 ± 2.88 a 66.49 ± 3.88 a 80.64 ± 3.72 a 73.89 ± 4.80 a
80% V + 20% CRH 75.64 ± 3.32 a 70.94 ± 4.85 a 68.13 ± 4.58 b 60.50 ± 3.37 b
70% V + 30% CRH 71.00 ± 4.25 a 62.84 ± 5.79 a 63.26 ± 2.50 b 64.21 ± 2.81 b
60% V + 40% CRH 61.29 ± 4.63 b 58.63 ± 2.11 a 65.12 ± 2.14 b 48.88 ± 4.93 c
50% V + 50% CRH 22.72 ± 3.50 c 39.71 ± 5.12 b 41.61 ± 3.41 c 44.03 ± 3.84 c
Means in columns (in each cultivar) with different letters differ statistically using the Scott-Knott test (p ≤ 0.05) ± standard deviation

1 3

5363



Journal of Soil Science and Plant Nutrition (2024) 24:5360–5369

50% V + 50% and 90% V + 10% CRH, respectively, differ-
ing from the others in these substrates.

4 Discussion

Sustainable substrates based in vermicompost and carbon-
ized rice husk were promising for production of passion 
fruit seedlings, confirming our initial hypothesis, in which 
chemical attributes, except potassium and organic carbon, 
were better especially with higher proportions of vermicom-
post. Similarly, yellow passion fruit seedlings were respon-
sive to different substrates based on organic waste (Aires et 
al. 2020), reinforcing the idea that the use of these materi-
als is a promising and viable proposal. Although all sub-
strates were enriched with Yoorin® and potassium sulfate, 
it is noted that the proportion of materials is a determining 

BRS Gigante Amarelo, and IAC 275 in 60% V + 40% and 
80% V + 20% CRH, respectively.

Analyzing the specific leaf area (SLA) cv. BRS Gigante 
Amarelo showed higher value in 50% V + 50% CRH, while 
for cv. FB 300 values did not vary statistically between sub-
strates 100% V, 90% V + 10% CRH, 80% V + 20% CRH, 
and 70% V + 30% CRH (Table 6). The lower SLA was 
observed in the cultivars IAC 275, Rubi do Cerrado, and 
BRS Gigante Amarelo in 90% V + 10% CRH, 60% V + 40% 
CRH, and 50% V + 50% CRH, respectively, differing from 
the others on these substrates.

For specific leaf mass (SLM), cv. BRS Gigante Amarelo 
showed higher value in 60% V + 40% CRH, while for cv. 
FB 300 values did not vary statistically between substrates 
100% V, 90% V + 10% CRH, 80% V + 20% CRH, and 70% 
V + 30% CRH. Overall, the lower SLM were observed in 
seedlings from cv. BRS Gigante Amarelo and IAC 275 in 

Table 4 Plant height, stem diameter, number of leaves, and leaf area in yellow passion fruit cultivars seedlings produced in substrates based in 
vermicompost (V) and rice husk carbonized (CRH)
Substrates Plant height (cm)

BRS Gigante Amarelo FB 300 IAC 275 Rubi do Cerrado
100% V 10.52 ± 0.76 a 9.31 ± 1.16 a 9.64 ± 0.92 a 9.09 ± 0.91 a
90% V + 10% CRH 10.50 ± 0.14 a 10.07 ± 0.44 a 9.68 ± 1.12 a 8.85 ± 0.22 a
80% V + 20% CRH 8.48 ± 1.19 b 6.71 ± 0.74 b 8.88 ± 0.13 a 7.57 ± 0.51 b
70% V + 30% CRH 7.24 ± 0.62 c 7.56 ± 0.62 a 7.73 ± 0.68 b 6.64 ± 0.33 c
60% V + 40% CRH 6.66 ± 0.67 c 4.95 ± 0.69 c 5.85 ± 0.70 c 5.87 ± 0.23 c
50% V + 50% CRH 5.30 ± 0.17 d 5.75 ± 0.69 c 4.56 ± 0.14 c 5.59 ± 0.47 c
Substrates Stem diameter (mm)

BRS Gigante Amarelo FB 300 IAC 275 Rubi do Cerrado
100% V 2.38 ± 0.07 a 2.05 ± 0.29 a 2.31 ± 0.04 a 2.30 ± 0.01 a
90% V + 10% CRH 2.36 ± 0.02 a 2.18 ± 0.11 a 2.12 ± 0.14 a 1.99 ± 0.14 b
80% V + 20% CRH 1.96 ± 0.01 b 1.95 ± 0.15 a 2.05 ± 0.12 a 1.97 ± 0.11 b
70% V + 30% CRH 1.72 ± 0.07 c 1.83 ± 0.09 a 1.87 ± 0.04 a 1.81 ± 0.12 b
60% V + 40% CRH 1.58 ± 0.12 d 1.51 ± 0.03 b 1.58 ± 0.02 b 1.63 ± 0.03 c
50% V + 50% CRH 1.39 ± 0.06 e 1.28 ± 0.01 b 1.21 ± 0.19 c 1.41 ± 0.05 d
Substrates Number of leaves

BRS Gigante Amarelo FB 300 IAC 275 Rubi do Cerrado
100% V 7.66 ± 0.44 a 7.17 ± 0.12 a 7.52 ± 0.23 a 7.25 ± 0.08 a
90% V + 10% CRH 7.23 ± 0.23 a 7.44 ± 0.43 a 7.37 ± 0.54 a 7.16 ± 0.59 a
80% V + 20% CRH 6.83 ± 0.17 a 6.94 ± 0.35 a 6.49 ± 0.25 a 6.57 ± 0.46 a
70% V + 30% CRH 5.61 ± 0.38 b 6.30 ± 0.33 a 6.75 ± 0.24 a 6.80 ± 0.54 a
60% V + 40% CRH 5.35 ± 0.38 b 5.51 ± 0.81 b 5.66 ± 0.48 b 5.94 ± 0.44 b
50% V + 50% CRH 4.13 ± 0.35 c 4.63 ± 0.23 b 4.80 ± 0.54 b 4.97 ± 0.13 b
Substrates Leaf area (cm²)

BRS Gigante Amarelo FB 300 IAC 275 Rubi do Cerrado
100% V 91.55 ± 3.68 a 96.74 ± 3.46 a 92.91 ± 7.60 a 85.45 ± 8.00 a
90% V + 10% CRH 86.19 ± 3.66 a 82.13 ± 6.21 a 71.73 ± 6.73 b 76.49 ± 9.58 a
80% V + 20% CRH 64.97 ± 7.10 b 48.45 ± 3.34 b 34.47 ± 3.14 c 63.22 ± 5.71 b
70% V + 30% CRH 44.75 ± 7.23 c 50.28 ± 4.05 b 44.82 ± 4.39 c 42.37 ± 9.86 c
60% V + 40% CRH 23.02 ± 0.90 d 18.72 ± 0.16 c 21.58 ± 3.84 d 65.51 ± 9.53 c
50% V + 50% CRH 47.33 ± 7.13 c 9.31 ± 0.53 c 13.08 ± 5.42 d 18.91 ± 8.01 d
Means in columns (in each cultivar) with different letters differ statistically using the Scott-Knott test (p ≤ 0.05) ± standard deviation
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Table 5 Shoot dry mass, root dry mass and total dry mass of yellow passion fruit cultivars seedlings produced in substrates based on vermicompost 
(V) and carbonized rice husk (CRH)
Substrates Shoot dry mass (g plant-1)

BRS Gigante Amarelo FB 300 IAC 275 Rubi do Cerrado
100% V 0.79 ± 0.05 a 0.98 ± 0.03 a 0.89 ± 0.08 a 0.77 ± 0.07 a
90% V + 10% CRH 0.80 ± 0.04 a 0.94 ± 0.09 a 0.44 ± 0.02 b 0.77 ± 0.18 a
80% V + 20% CRH 0.66 ± 0.01 b 0.48 ± 0.08 b 0.71 ± 0.07 a 0.68 ± 0.09 a
70% V + 30% CRH 0.57 ± 0.05 b 0.53 ± 0.08 b 0.54 ± 0.01 b 0.56 ± 0.10 b
60% V + 40% CRH 0.43 ± 0.05 c 0.53 ± 0.17 b 0.37 ± 0.03 b 0.50 ± 0.11 b
50% V + 50% CRH 0.29 ± 0.02 c 0.28 ± 0.05 c 0.30 ± 0.04 b 0.33 ± 0.06 c
Substrates Root dry mass (g plant-1)

BRS Gigante Amarelo FB 300 IAC 275 Rubi do Cerrado
100% V 0.45 ± 0.05 b 0.65 ± 0.05 a 0.74 ± 0.03 a 0.49 ± 0.01 a
90% V + 10% CRH 0.49 ± 0.02 b 0.64 ± 0.14 a 0.51 ± 0.13 b 0.50 ± 0.09 a
80% V + 20% CRH 0.58 ± 0.07 a 0.37 ± 0.03 b 0.35 ± 0.06 c 0.50 ± 0.06 a
70% V + 30% CRH 0.37 ± 0.03 c 0.58 ± 0.17 a 0.46 ± 0.08 b 0.47 ± 0.09 a
60% V + 40% CRH 0.31 ± 0.02 c 0.27 ± 0.03 b 0.31 ± 0.04 c 0.47 ± 0.12 a
50% V + 50% CRH 0.25 ± 0.01 c 0.31 ± 0.04 b 0.36 ± 0.12 c 0.24 ± 0.01 b
Substrates Total dry mass (g plant-1)

BRS Gigante Amarelo FB 300 IAC 275 Rubi do Cerrado
100% V 1.24 ± 0.08 a 1.63 ± 0.05 a 1.63 ± 0.09 a 1.27 ± 0.07 a
90% V + 10% CRH 1.31 ± 0.05 a 1.58 ± 0.16 a 0.96 ± 0.13 b 1.28 ± 0.10 a
80% V + 20% CRH 1.24 ± 0.08 a 0.85 ± 0.07 c 1.06 ± 0.16 b 1.18 ± 0.07 a
70% V + 30% CRH 0.94 ± 0.08 b 1.12 ± 0.09 b 1.01 ± 0.07 b 1.03 ± 0.09 a
60% V + 40% CRH 0.75 ± 0.04 b 0.81 ± 0.10 c 0.68 ± 0.05 c 0.73 ± 0.04 b
50% V + 50% CRH 0.55 ± 0.02 c 0.59 ± 0.01 c 0.67 ± 0.01 c 0.60 ± 0.07 b
Means in columns (in each cultivar) with different letters differ statistically using the Scott-Knott test (p ≤ 0.05) ± standard deviation

Table 6 Leaf area ratio (LAR), specific leaf area (SLA) and specific leaf mass (SLM) of yellow passion fruit cultivar seedlings produced in sub-
strates based on vermicompost (V) and carbonized rice husk (CRH)
Substrates Leaf area ratio (cm² g-1)

BRS Gigante Amarelo FB 300 IAC 275 Rubi do Cerrado
100% V 73.87 ± 9.23 a 59.15 ± 3.99 a 56.62 ± 1.91 b 74.17 ± 2.53 a
90% V + 10% CRH 65.84 ± 4.34 a 51.37 ± 2.25 a 82.28 ± 6.07 a 59.59 ± 0.78 a
80% V + 20% CRH 52.68 ± 9.13 b 57.98 ± 3.11 a 35.72 ± 4.85 c 53.34 ± 1.24 b
70% V + 30% CRH 47.33 ± 8.55 b 44.25 ± 5.92 a 44.85 ± 7.11 c 40.54 ± 2.75 b
60% V + 40% CRH 30.70 ± 4.18 b 25.02 ± 1.69 b 31.52 ± 4.60 c 75.87 ± 5.90 a
50% V + 50% CRH 84.89 ± 10.55 a 16.06 ± 1.37 b 20.68 ± 8.18 c 38.12 ± 4.48 b
Substrates Specific leaf area (cm² g-1)

BRS Gigante Amarelo FB 300 IAC 275 Rubi do Cerrado
100% V 115.47 ± 10.03 b 98.15 ± 3.62 a 104.21 ± 6.18 b 125.66 ± 3.07 a
90% V + 10% CRH 107.00 ± 8.84 b 87.54 ± 2.89 a 163.86 ± 10.72 a 100.42 ± 3.60 b
80% V + 20% CRH 98.40 ± 12.06 b 106.46 ± 3.72 a 54.09 ± 8.86 c 93.94 ± 5.73 b
70% V + 30% CRH 78.24 ± 11.19 c 97.49 ± 4.32 a 81.78 ± 5.36 b 74.61 ± 3.95 b
60% V + 40% CRH 53.53 ± 8.28 c 33.27 ± 7.06 b 58.94 ± 10.56 c 158.82 ± 8.16 a
50% V + 50% CRH 157.85 ± 11.08 a 34.18 ± 2.76 b 41.46 ± 8.25 c 44.12 ± 3.17 c
Substrates Specific leaf mass (g cm²)

BRS Gigante Amarelo FB 300 IAC 275 Rubi do Cerrado
100% V 0.008 ± 0.0007 a 0.010 ± 0.0003 b 0.009 ± 0.0005 b 0.009 ± 0.0018 a
90% V + 10% CRH 0.009 ± 0.0007 a 0.0011 ± 0.0022 b 0.006 ± 0.0009 b 0.010 ± 0.0009 a
80% V + 20% CRH 0.010 ± 0.0011 a 0.010 ± 0.0034 b 0.026 ± 0.0157 a 0.010 ± 0.0011 a
70% V + 30% CRH 0.013 ± 0.0019 a 0.011 ± 0.0043 b 0.012 ± 0.0008 b 0.013 ± 0.0007 a
60% V + 40% CRH 0.019 ± 0.0033 a 0.028 ± 0.0094 a 0.017 ± 0.0041 a 0.008 ± 0.0024 a
50% V + 50% CRH 0.006 ± 0.0009 b 0.031 ± 0.0007 a 0.026 ± 0.0069 a 0.014 ± 0.0008 a
Means in columns (in each cultivar) with different letters differ statistically using the Scott-Knott test (p ≤ 0.05) ± standard deviation
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emergence of the radicle and also the plumule (Xue et al. 
2021; Khaeim et al. 2022).

We also highlight that the emergence potential response 
varies depending on the cultivar used, that is, its technologi-
cal, physiological aspect and stored reserves. In this sense, 
cv. BRS Gigante Amarelo in general, obtained better results 
in terms of seedling emergence, especially in the substrate 
with 90% V + 10% CRH. However, cv. Rubi do Cerrado 
showed lower emergence, which can be disadvantageous, 
since it will be necessary to higher cost of purchasing seeds 
and substrates to obtain a greater number of seedlings.

The higher growth values of shoot can be explained by 
better chemical attributes of the substrates with higher pro-
portions of vermicompost, especially N, Ca, and Mg. This is 
because N acts as a component of the chlorophyll molecule, 
which contributes to photosynthetic metabolism, promoting 
better plant growth and development (Jia et al. 2021; Yin et 
al. 2023). It is worth noting that N is an essential constitu-
ent of amino acids that act as precursors for the synthesis of 
proteins and enzymes (Zayed et al. 2023), contributing to 
biomass accumulation in passion fruit seedlings.

Ca is an essential component for the structuring of plant 
cell membranes and walls, in addition to being associated 
as an intracellular secondary messenger at physiological 
levels (Thor et al. 2019; Ghosh et al. 2021). Conversely, 
Mg is closely related to chlorophyll, participating in pho-
tosynthetic activities, as well as in the transport of photo-
assimilates (Geng et al. 2021; Kumari et al. 2022), what 
was reflected in the leaf area of passion fruit seedlings. This 
increase in leaf area contributes positively to maximizing 
the absorption of light energy, CO2 assimilation, and pro-
duction of photoassimilates, a fact reinforced in our study.

Vermicompost is a biostabilized product, rich in organic 
matter and nutrients from the materials used (Shafique et al. 
2021). In our study, ruminal content and sugarcane bagasse 
are materials with low and high C/N ratio, respectively, 
which contributes to obtaining a substrate with good chemi-
cal and physical attributes. The use of vermicompost in the 
composition of the substrate contributes positively to the 
physiological and growth characteristics of plants depend-
ing on the chemical quality of substrate (Ebrahimi et al. 
2021; Jankauskien et al. 2022), similar to our study with 
yellow passion fruit cultivars.

The increase in shoot and root dry mass in 100% V and 
90% V + 10% CRH can be explained by the higher nutrient 
values in the substrates, especially P. Phosphorus plays sev-
eral roles in plants, including its participation in the synthe-
sis of energy in photochemical reactions, being a substrate 
for CO2 assimilation, in addition to constituting nucleotides 
and phospholipids (Arellano et al. 2021; Toledo et al. 2021).

In addition, P acts as a structural component of mem-
branes (Neocleous and Savvas 2019; Toledo et al. 2021), 

factor in the chemical quality of the substrate. In addition, 
we emphasize that responses to substrates varied in function 
of each cultivar as expected, since each material presents its 
gene expression potential.

Decreased in K and organic carbon in substrates with 
higher proportions of vermicompost indicates that CRH is 
an excellent source of these attributes, especially because 
it is carbonized. Rice husk, being carbonized, is capable 
of maintaining its organic carbon content stored, in such a 
way that there is no loss to the atmosphere and that when 
applied to the soil it is easily available, improving the 
physical, chemical, and microbiological qualities (Asadi et 
al. 2021; Karam et al. 2022). Although it has been verified 
that CRH contributes to increasing the K content in the soil 
or substrate, there are still no specific explanations for this 
response in the literature, so we suggest that it is an alterna-
tive source of this element.

Our results are promising, as they complement other 
information regarding the use of these materials in the for-
mulation of substrates for passion fruit cultivars, and these 
discoveries could contribute to strengthening the fruit crops 
production chain. The better emergence can also be attrib-
uted to the physical conditions of the substrates. The addi-
tion of CHR has a conditioning effect on the substrate (Costa 
et al. 2023), in which it showed high porosity and reduces 
density, but its addition in greater proportions, especially 
40–50%, showed a negative influence. Although the emer-
gence is associated to the reserves stored in the seeds, for 
good germination and subsequent emergence, the substrate 
must be sufficiently porous to facilitate good contact with 
the seed for root protrusion. This information is important 
because even if it does not influence the quality of seedlings, 
from a practical point of view, it is possible to know the 
quantity of seedlings available for commercialization and 
control costs in the case of the nurseryman, and for the rural 
producer, if there is a need for sow or formulate substrate 
in greater quantity to meet the number of plants in the field.

In addition, substrates with higher proportions of ver-
micompost presented higher moisture, indicating that it 
increases the soil’s water retention capacity under these 
conditions, which contributes positively to efficient imbibi-
tion. Water is a fundamental factor in the germination stage, 
as it initiates the metabolic activity of the seed, acting to 
maintain the balance between abscisic acid (ABA) and gib-
berellin (Smolikova et al. 2021).

ABA has an antagonistic function to germination, as it 
induces the seed to remain dormant (Hu et al. 2021), but 
gibberellin acts positively by stimulating seed germina-
tion (Liu et al. 2022). The greater humidity in the substrate 
in contact with the seeds, provides both dissolved O2 and 
nutritious materials present in the seed’s endosperm, as 
well as promoting softening of the seed coat, allowing the 
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