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ABSTRACT
Efficient anthocyanin extraction from emerging food matrices is essential in 
food technology and requires a precise, consistent, and clear extraction 
method. This study aimed to develop a decision-tree tool for selecting the 
optimal anthocyanin extraction technique. A comprehensive data synthesis 
covering the years 2018 to 2023 was conducted using leading academic 
databases, including Web of Science, Scopus, Medline, and SciELO. 
A combination of systematic and non-systematic approaches was employed 
to guide the decision-making process. The keywords used included “antho
cyanin extraction methods,” and studies with more than 10 citations were 
prioritized, along with recent and relevant publications. Thirty-six articles 
were analyzed according to the PRISMA 2020 guidelines for systematic 
reviews. While ultrasound and microwave-assisted methods were predomi
nantly featured, accounting for 46% of the reviewed studies, other methods 
such as enzyme-assisted extraction, deep eutectic solvents, and ionic liquid 
extraction were also evaluated for their comparative efficiency and suitability 
across various matrices. Fruits were the primary matrix, with a focus on the 
pericarp. While fruits, particularly the pericarp, was the primary matrix stu
died, the decision-tree tool is designed to be applicable across various food 
matrices, demonstrating its versatility and generalizability beyond fruits. The 
decision-tree tool was successfully applied to matrices with different struc
tures, showcasing its adaptability. Integration of this tool could streamline 
selection processes, resulting in significant time and resource savings. In 
conclusion, this study highlights the influence of plant morpho-anatomical 
structures and extraction parameters on anthocyanin yield. It demonstrates 
how the decision-tree approach enhances efficiency and productivity, vali
dated through blackberry and purple sweet potato matrices.
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Matrix selection, accompanied by a breakdown of compositional details, processing and 
selection to optimize the method for high anthocyanin extraction yield.

Introduction

Anthocyanins are a type of flavonoid produced through metabolic pathways involving phenylpropa
noids and the pentose phosphate pathway. [1] Moreover, the biosynthesis of anthocyanin pigments 
starts with dihydroflavonol reductase (DFR) and the co-factor NADPH, forming 
leucoanthocyanidins.[2] The second step is catalyzed by anthocyanin synthase (ANS), which produces 
anthocyanidins. Finally, modifications enhance stability and storability, resulting in glycosylated 
anthocyanins.[3] Anthocyanins are characterized by the absence of a carbonyl in the C ring and the 
presence of the oxonium ion (flavylium cation) (Figure 1). Among the pigments synthesized by plants, 
anthocyanins represent the largest group with polar characteristics. Anthocyanins can have various 
hues, such as blue, red, purple, and violet (Figure 1). Additionally, research across various fields, 
including food, cosmetics, pharmaceuticals, and other industrial applications, has been developed 
because of the potential of natural colorants and functional properties.[4] Therefore, anthocyanins are 
water-soluble pigments that provide color and biological functions.

Although there are more than 20 types of anthocyanidins, the glycosylated forms of pelargonidin, 
cyanidin, peonidin, delphinidin, and malvidin are among the most frequently cited (Figure 1). These

Figure 1. Review process in systematic and nonsystematic criteria for selecting the final work papers.
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compounds are known for their reversible color changes, influenced by factors such as pH, substitu
tion patterns in the B ring, and the prevalence of acids in both acylated and non-acylated groups.[2] 

The colors associated with the Flavylium Cation are predominantly red, Carbinol is colorless, the 
Anhydro base is violet, Quinoidal is blue, and Chalcone appears yellow. Therefore, anthocyanin 
colorants cannot identify chalcone because they are lost during the process.[1] The characteristics of 
anthocyanin alterations depend on several factors and their respective intensities, as shown in 
Figure 2.

Artificial dyes contain complex molecules that are difficult for the human digestive system to 
metabolize, compromising the mechanisms underlying pathogenicity in response to immune systems 
after ingestion.[5] Furthermore, synthetic dyes have been heavily criticized by Adeel et al.[6] for their 
association with allergies. For this reason, natural colorants based on anthocyanins are proposed to 
replace artificial colorants.

Anthocyanins are used commercially in the food industry to color products with pHs between 2.5 
and 3.8, such as soft drinks, sweets, confectionery, refreshments, cake toppings, and jellies due to their 
attractive coloring. Additionally, anthocyanins have therapeutic properties.[4] These activities include 
antiproliferative,[7] anti-inflammatory,[8] antibacterial,[9] neuroprotective,[9] anti-obesity,[10] and anti
diabetic properties,[11] as well as the prevention of cardiovascular diseases,[3] among others.[12]

Extraction methods for anthocyanins involve physicochemical processes that rely on mass transfer 
between two phases. Thermodynamic and kinetic factors influence the mass transfer during

Figure 2. Five common types of anthocyanins. These structures showed the presence of A,’ B,’ C,’ D,’ and E,’ which correspond to OH, 
OCH3, H, OH, and OCH3, respectively, in R1 and R2. Cyanidin is formed by the combination of A’ and C,’ while peonidin is formed by 
the combination of B’ and C.’ Delphinidin is formed by the combination of A’ and D,’ and malvidin is formed by the combination of B’ 
and E.’ Petunidin is formed by the combination of A’ and E.’ The type of sugar present in the anthocyanin molecule is defined by the 
position of R3.
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extraction, significantly affecting the extraction yield. Thermodynamics refers to the maximum 
amount of analytes that can be extracted using a particular technique, while kinetics refers to the 
rate at which this transfer occurs. Physical structure, chemical composition, and pH must be 
considered to yield high extraction.[13] Therefore, to select the best anthocyanin extraction method, 
the type and structures in the matrix surrounding the cell vacuole should be considered (Figure 3).[14]

This study aimed to introduce a decision-tree framework to enhance the efficiency of selecting an 
anthocyanin extraction method based on plant structural characteristics. Integration of this decision- 
tree tool can streamline selection processes, resulting in significant time and resource savings. For 
example, in preliminary tests with blackberry and purple sweet potato matrices, the tool reduced 
extraction method selection time by 30% and minimized solvent consumption by 20%. These 
quantifiable benefits highlight the tool’s practical value in optimizing extraction processes. 
Specifically, the study (i) examines the principles of anthocyanin extraction methods, (ii) describes 
how different anatomy and physiology structures respond to various anthocyanin extraction methods,

Figure 3. Changes in the characteristics of anthocyanins by temperature, pH, Hydroxyl (OH) and Water (H2O), ACY-G (anthocyanin 
glucoside), CRB-G (Carbidol glucoside), QND-G (Khenidal glucoside), QNA-G (Anionic kenoidal glucoside), CCN-G (chalcone 
glucoside).
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and (iii) provides a decision-tree framework that outlines the processes to follow before starting 
extraction. Moreover, the influence of extraction methods on blackberries and purple sweet potatoes 
was evaluated.

Extraction methods overview

This review’s primary objective was to investigate the fundamental principles underlying the efficacy 
of anthocyanin extraction methods, particularly their interaction with diverse cellular anatomical 
structures found in plant matrices. A comprehensive combination of systematic and non-systematic 
literature searches was used to conduct this review. Initially, a systematic review was performed to 
investigate methods for extracting anthocyanins.[15] Simultaneously, a non-systematic review was 
conducted to explore the anatomy and physiology of plant structures containing anthocyanins. 
Subsequently, the literature was organized based on citation frequency and its relevance in construct
ing a decision-tree.

For the systematic review, comprehensive searches were conducted covering the years 2018 to 2023. 
At first, many publications were identified, totaling 994, 970, 810, and 10 records: Web of Science, 
Scopus, Medline (via PubMed), and SciELO, respectively. In addition, duplicate publications, primary 
sources not relevant to the central object of study, review articles, and books were excluded, resulting 
in a total of 1053 publications. The most cited publications on anthocyanin extraction methods (those 
with more than 10 citations) were highlighted for inclusion in this study. Additionally, recent and 
relevant literature was used as a criterion for the search method to include articles that may have yet to 
achieve a high citation rate due to their recent publication date. The selection process resulted in 36 
publications to be analyzed in this review.[15]

For a non-systematic review, we examined the literature on the botanical anatomy and physiolo
gical mechanisms involved in anthocyanin accumulation within plant structures. This literature 
provided valuable insights into how anthocyanins are stored within cellular structures and their 
metabolic pathways. Finally, synthesized information from systematic and non-systematic reviews 
was used to construct the decision-tree.

Discussion of results

Anthocyanin extraction methods

Anthocyanin extraction methods can be classified as conventional and innovative (Figure 3).[16] 

Among the 36 articles selected for the systematic review, five reviews used conventional methods, 
29 publications referred to innovative extraction, and two used a combination of both (Table 1). The 
following description details the categorization and operating principles of these methods.

Conventional extraction method (CME)

The CME used conventionally follows procedures commonly employed for anthocyanin extraction 
(Figure 3). It can be categorized based on the process, techniques, and type of solvent employed. The 
most widely recognized conventional methods are:

(1) Maceration: mixing the raw sample, whether fresh or dry, directly with a solvent after disrupt
ing the cell processes using tools such as a crusher and pestle.[17]

(2) Infusion: Like maceration, water is used as a solvent instead of other liquids.[51]

(3) Digestion: The sample undergoes maceration, and the temperature is also increased, typically 
above the environmental condition (25 °C).[17]

(4) Decoction: This method involves preparing an infusion with water heated above its boiling 
point.[3]

INTERNATIONAL JOURNAL OF FOOD PROPERTIES 1319
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(5) Percolation and Filtration: The sample is mixed continuously in a solvent-dried state. Thus, the 
renewal processes occur in a percolator and then filtration.[52]

(6) Soxhlet: This method involves cyclic and continuous mixing of a solid-state sample with 
a solvent within a Soxhlet system over a controlled period.[16]

The solvent selection for anthocyanin extraction follows the “like dissolves like” principle. 
Anthocyanins, inherently polar compounds, tend to dissolve in solvents of similar polarity. 
Water, ethanol, methanol, acetone, or other solvents can also be used. However, methanol 
and ethanol, both polar solvents[53] are commonly used for anthocyanin extraction due to 
their practical ability to dissolve anthocyanins from the extracts.[43,54] Water, a polar solvent, 
is frequently used instead of organic solvents due to environmental and health concerns. 
Although less polar than methanol and ethanol, acetone is still effective for anthocyanin 
extraction. Therefore, the solvent mixtures are often used to improve extraction efficiency by 
taking advantage of the complementary solubility properties of different solvents.[55] These 
mixtures can enhance the efficiency in anthocyanin extraction by providing a more compre
hensive range of solubility, maximizing yield and specificity in anthocyanin isolation from 
vegetal sources.[56]

Non-conventional extraction methods

These techniques involve the green process and use of safe solvents to improve the yield of antho
cyanins extraction.

Enzyme-assisted aqueous extraction (EAE)
The enzymatic method is a structural biological manipulation approach used in plants to expose 
anthocyanins by employing individual or combined enzymes.[57] This method is widely used in 
various scientific fields, particularly for extracting bioactive compounds. Anthocyanin extraction 
involves breaking down cell walls and facilitating the release using enzymes. EAE procedures can 
also be simple to complex.[57] Depending on the desired objectives, enzymatic extraction can be 
combined with other extraction techniques.[58] This strategy allows access to anthocyanin compounds 
retained within cell organelles by using the basic principle of cellular degradation in the extracellular 
and intracellular walls. Thus, the method enables the extraction of anthocyanins trapped in cellular 
structures.[16]

According to Lotfi et al.[57] enzymes can be classified into two main groups: carbohydrases (1A) and 
polysaccharides (1B) or proteases (2A) and proteinases (2B). Therefore, group 1 breaks down complex 
carbohydrates like cellulose, hemicellulose, and pectin. This group includes cellulases, hemicellulases, 
and pectinases. Group 2 can break down proteins into amino acids. Cellulases, hemicellulases, and 
pectinases can be used individually or in combination.[57] However, group 2 should be utilized 
separately to avoid hydrolyzing enzymatic proteins.[59]

Enzymatic efficiency depends on several factors, including cell structure,[16] enzymatic 
structure,[57] enzymatic composition,[60] and pH. Generally, the pH range for enzymatic hydrolysis 
in anthocyanin extraction is between 3.0 and 5.0, as enzymes involved in anthocyanin extraction often 
exhibit optimal activity in this acidic pH range.[61] However, the temperature range for extracting 
anthocyanins varies depending on the enzyme and source material, typically between 25°C and 50°C. 
Thus, removing the anthocyanins at moderate temperatures is preferable to prevent degradation. 
Additionally, the ratio between the enzyme and treated sample can also vary. Still, it is often expressed 
as a percentage or ratio of enzyme weight to the weight of the treated sample, with a typical range of 
1–5% (w/w). The solid-liquid ratio for anthocyanin extraction typically ranges from 1:5 to 1:20 (w/ 
v).[61] Contact time, which indicates the duration of enzyme treatment, can vary widely, ranging from 
30 minutes to 24 hours for anthocyanin extraction, depending on the enzyme and other extraction 
conditions.[57]
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Microwave-assisted extraction
Microwave extraction is a process that can extract anthocyanins by introducing electromagnetic waves 
into the polar molecules. Then, the energy can be absorbed and cause ions to migrate, then start to 
move around.[62] The process can create vibrations in the molecules and polarize the water present, 
possibly increasing pressure and temperature.[63] The Microwave extraction method can break down 
plant cell structures sensitive to heat, allowing anthocyanins to move out of the cells.[64] The effec
tiveness of this method depends on various factors, such as the strength of the microwaves, the 
duration of exposure, the type of solvent used, and the characteristics of the plant material.[25,63]

Furthermore, due to the heightened thermal effects caused by microwave operation, several 
adjustments have been made to reduce temperature elevation during extraction procedures. These 
modifications include microwave extraction under atmospheric pressure,[65] oxygen flow-assisted 
microwave extraction,[66] and nitrogen-protected microwave-assisted extraction (NPMAE).[56] 

Nevertheless, various methods of extraction have been explored, including vacuum microwave- 
assisted extraction (VMAE),[67] Soxhlet extraction combined with microwave-assisted extraction 
(FMASE),[68] ultrasonic-assisted microwave extraction (UMAE),[69] microwave hydro-distillation 
(MWHD or MAHD) and microwave steam distillation (MSD),[16] solvent-free microwave extraction 
(SFME),[70] and microwave vacuum hydrodistillation (VMHD).[71] Furthermore, in 2022, methods for 
optimizing extraction efficiency while minimizing the impact of heat on sample integrity were 
proposed, including microwave-assisted extraction techniques such as microwave gravity hydro- 
diffusion (MHG)[72] solvent-free pressurized microwave extraction (PSFME),[16] and microwave- 
assisted two-phase aqueous extraction (MA-ATPE).[73] These techniques have been developed to 
ensure that the extracted samples remain intact and undamaged.

Ultrasound-assisted extraction (UAE)
UAE method uses compression and expansion generated by acoustic cavitation to induce shear forces, 
resulting in cell rupture and anthocyanin extraction.[74] The ultrasound can be divided into ultrasonic 
and ultrasound processes. The ultrasonic waves are at either low frequency (100–1000 kHz) at low 
power and amplitude or high frequency (20–100 kHz) with high power and amplitude, the latter being 
commonly used for anthocyanin extraction.[75] Extraction can be performed directly through sonica
tion. The device, connected to a transducer, is immersed in the extraction vessel and directly contacts 
the sample.[76] Ultrasounds are generally more cost-effective and accessible but may lead to uneven 
energy distribution and lower extraction efficiency than the direct method.[77] Ultrasound techniques 
can be adapted to optimize extraction outcomes across various technologies.[78] In general, the 
efficiency in ultrasonic and ultrasound extraction is influenced by power, temperature, solid-liquid 
ratio, and extraction and pre-processing time.[79]

Ohmic heating-assisted extraction (electroconductive heating)
Ohmic heating extraction (OH) is a method that involves the transfer of electricity through a system 
consisting of a power supply, isolation transformer, treatment chamber, frequency generator, and 
microprocessor board.[80] This method works based on the ionic components present in plant tissues, 
such as salts and acids, that conduct electricity.[81] The electricity passing through the components of 
a glass ohmic heating cell is converted into heat energy. An increase in temperature can damage cell 
structures, which can lead to the exposure of anthocyanins due to increased diffusion.[81] In addition, 
the extraction efficiency of anthocyanins through electric conductivity heating is influenced by various 
factors, such as the sample’s moisture content, the electric field’s intensity, the presence of electrons 
and salts in the raw material, the duration of exposure in the extraction system, and how the system is 
combined or adapted with other extraction methods.[32]

High voltage electric field assisted extraction
The method of the high-voltage electric field involves applying loads, sometimes with pulses pre
dominating, using variable time and intensity, either in continuous or static mode.[82,83] However, the
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extraction technique described in this study relies on external electrical forces to permeate cell 
membranes in plant tissues.[84] These forces cause the formation of hydrophilic pores in the cell 
membranes, which opens them and causes them to lose their protective function. This exposes 
anthocyanins to the surrounding environment.[55] The protective membrane is typically lost when 
the transmembrane potential exceeds a critical value of about 1 V.[82] This reduces the thickness of 
charge-carrying molecules and the permeabilization of smaller molecules.[85] High-voltage electric 
field extraction can be classified into two primary categories. Jafari and Saien[83] discuss High 
Electrostatic Field (HEF) and High Voltage Electrical Discharges (HVED).

The High Electrostatic Field (HEF) system maintains a constant current or voltage throughout the 
experiment. This technique utilizes parallel plate electrodes to ensure uniform electric field distribu
tion during operation. In contrast, High Voltage Electrical Discharges (HVED) involve chemical 
reactions and physical processes. This method injects energy directly into an aqueous solution through 
a plasma channel created by a high-current electrical discharge (>40 kV; >10 kA) between two 
submerged electrodes.[86] The process of HVED operates in two phases: the pre-break phase and 
the break phase. In the pre-break phase, relatively weak shock waves are generated, forming tiny 
bubbles that disrupt cell structures and accelerate the extraction of intracellular compounds.[83]

During the intensified electrohydraulic phase, which occurs during the transition from pre-break
ing to the breaking phase, various effects take place. These include strong shock waves, intense UV 
radiation (200–400 nm), production of highly concentrated free radicals, bubbles containing plasma, 
and vigorous liquid turbulence. These phenomena lead to the mechanical destruction of cellular 
tissues and oxidation, which may impact the antioxidant activity of bioactive compounds.[55] Overall, 
this extraction method provides a more effective mechanical disintegration of cell walls, leading to 
a more efficient extraction. Therefore, this technique has been utilized for extracting bioactive 
compounds from various raw materials.[55]

The efficiency of anthocyanin extraction via pulsed electric fields (PEF) depends on several factors, 
including the strength of the applied electric field (ranging from 0.1 to 20 kV/cm), type of raw 
material, exposure time, electric field intensity, specific energy input pulse, chamber size, initial 
temperature, and combination with other extraction methods.[55,83] Pulsed electric fields (PEF) are 
an innovative technique for enhancing anthocyanin extraction efficiency by disrupting plant cell 
structures. This involves applying short pulses of high electric field strength to a sample. The principle 
behind anthocyanin extraction using PEF is to induce permeabilization of cell membranes, thereby 
facilitating the release of intracellular compounds, including anthocyanins.[55] However, PEF has not 
been used to extract anthocyanins from plant cells. The process starts with membrane permeabiliza
tion, which leads to electroporation or electropermeabilization. This procedure results in rearranging 
the lipid bilayer in the cell membrane and forming nanopores. These nanopores facilitate the passage 
of ions, water, and other small molecules across the membrane, ultimately increasing diffusion and 
leaching, thus improving the extraction efficiency of anthocyanins.[83]

Irradiation extraction
Anthocyanins can be extracted through irradiation, a physical and non-thermal process. This process 
exposes cell structure to high-energy ions that chemically break down protective substances surround
ing the anthocyanins into vacuoles.[87] Nonetheless, the degree of modification depends on factors 
such as the type of raw materials, amount of radiation, and radiation source.[88] Food irradiation 
treatment involves exposing food to either ionizing or non-ionizing radiation. Ionizing radiation 
sources include gamma rays, X-rays, and high-energy electrons, while non-ionizing radiation sources 
include electromagnetic radiation, such as UV rays, visible light, and infrared radiation.[89]

Gamma radiation extraction is a continuous process involving the flow of high-energy photons 
capable of energizing electrons within atoms in the food matrix. This energization process causes the 
transition of atoms to higher energy levels.[90] Atoms with unpaired electrons in their outer shell can 
react with the outer shell electrons of atoms that comprise cell components, producing free radicals in 
hydrogen and hydroxyl bonds from water molecules.[91] This process triggers the hydrolysis of pectins
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after depolymerizing carbohydrate polymers, which softens the cell components and exposes 
anthocyanins.[92]

Pulsed light extraction
The extraction of anthocyanins using pulsed light is an emerging method that can be described 
according to different procedures.[93] This method includes intense pulsed light, high-intensity pulsed 
UV light, pulsed white light, or pulsed UV light. The technique involves applying very short pulses of 
light (ranging from 1 μs to 0.1 s) using a xenon lamp to supply the high-intensity pulse generation 
device on the extraction matrix. The process can be conducted with contact or non-contact, using 
a range of wavelengths from 100 nm to 1100 nm.[93] Additionally, the extraction of anthocyanins 
through pulsed light involves two fundamental mechanisms: the photochemical effect and the photo
thermal effect.[94] The photochemical effect is associated with the UV portion of the pulsed light 
spectrum, depending on the direct interaction between photon energy and matrix molecules. During 
the pulsed light process, chemical compounds absorb optical energy, causing photoionization, decom
position of chemical bonds, and changes in the structural conformation of the applied matrix.[95] 

Additionally, some photons can transfer their energy to the material thermally, increasing the 
temperature of the applied matrix. This mechanism primarily affects the infrared and visible portions 
of the pulsed light spectrum, resulting in physical changes to cells and cellular structures. These 
changes include loss of cell membrane permeability, expanded vacuoles, shape alteration, and lack of 
cell walls.[96] The effectiveness of pulsed light technology depends on the pulses emitted, lamp types 
used and their combinations, emission time, optical properties, and matrix species used.[97]

Supercritical fluids extraction
The transfer of mass from plant cells can be achieved using pressurized fluid techniques through three 
main methods: supercritical fluid extraction (SFE), pressurized liquid extraction, and high-pressure 
liquid extraction.[53,55] SFE involves carbon dioxide and co-solvents.[54] This process occurs at 
temperatures and pressures well above the critical points (7.4 MPa and 31.1 °C) and carbon dioxide, 
which modifies its properties to improve mass transfer during anthocyanin extraction.[98] The 
selectivity in SFE is a current research focus, and parameters can be optimized to suit specific 
compounds and matrix characteristics. SFE is a valuable technique in various fields, including food, 
pharmaceuticals, and natural products.[53] The extraction process typically involves a static period 
during which the solvent remains in contact with the sample and a dynamic period during which the 
solvent continuously passes through the sample.[99] The extraction efficiency relies on various factors, 
including temperature, pressure, particle size, type and quantity of co-solvent, sample moisture 
content, extraction duration, CO2 flow rate, and liquid-to-solid ratio.[100]

Pressurized and high-pressure liquids extraction
Pressurized Liquid Extraction (PLE) and High-Pressure Liquid Extraction (HPLP) are analytical 
chemistry techniques that isolate anthocyanin compounds from specific matrices. Although they 
share similar operating principles, they differ only in the methods employed.[17,39] PLE, also known 
as accelerated solvent extraction (ASE), involves using liquid solvents at temperatures above their 
boiling points (around 200°C) from medium to high extraction pressures (3.5 to 20 MPa). The PLE 
anthocyanins extraction kept the solvent liquid at temperatures above its boiling point to enhance the 
solubility of the analytes.[39] The extraction yield depends on various factors (i.e., temperature, 
pressure, static time, and the number of cycles to which the matrices are subjected). Efficient 
extraction of analytes from a sample into a solvent can be achieved by increasing pressure and 
temperature.

High-pressure liquid extraction is a technique for extracting anthocyanins. The term “high pres
sure” can refer to different methods, but extraction typically involves using elevated pressure in liquid 
systems to enhance extraction efficiency. One subgroup comprises discontinuous high hydrostatic 
pressure (HHP). In contrast, the other subset comprises continuous techniques such as high-pressure

1328 G. L. DE BARROS ET AL.



homogenization (HPH), microfluidization (MF), and ultra-high-pressure homogenization 
(UHPH).[101]

The critical difference from other pressurized liquid extraction techniques is that high pressure 
keeps the solvent above its boiling point.[102] This method simplifies extraction, reducing the amount 
of solvent used and the time required. High-pressure methods, such as those using pressures exceeding 
100 MPa (HP), 300 MPa (UHP), or 400 MPa (UHPH), provide better solvent penetration into cell 
membranes and improve bioaccessibility.[103]

The efficiency of compound extraction depends on factors including solvent composition, pressure, 
temperature, particle size, moisture content of the material, extraction time, and solvent-to-solid 
ratio.[43] In brief, pressurized liquid extraction (PLE) is a technique that utilizes pressure. In contrast, 
high-pressure liquid extraction (HPLP) can encompass a broader range of strategies for compound 
extraction.

Radiofrequency heating-assisted extraction
Radio frequency-assisted anthocyanin extraction is a technology that uses radio electromag
netic waves (3 kHz-300 MHz) to interact with target matrix molecules. This interaction 
induces heating within the plant tissue, causing protective structures to break down.[46] As 
a result, anthocyanins become more accessible, facilitating their extraction during the 
process.[46]

The principle of the system consists of a densified bed of conductive particles positioned 
between two electrodes that are cyclically charged by a radio frequency transducer. This setup 
causes the ions of the matrix components or the solvents used to migrate toward the oppositely 
charged electrodes. In addition, polar molecules align with the established electric field’s polarity, 
resulting in molecular and ionic friction. Friction during the extraction process generates heat 
within the matrix, as described by Izadifar and Baik.[104] This process can be conducted at room 
temperature, with less amount of solvent. The process works well with plant structures that 
contain high pectin content.[105]

Stirred-tank extraction
By improving the kinetic conditions within the target matrix, extraction of anthocyanins using stirred 
tanks enhances mass transfer.[106] This method relies on a mechanical apparatus that includes 
a containment tank for matrices, inert stirring, mechanical agitators, a thermometer, a heating system, 
a rotor, and other essential components.[106] In addition, the element in this system has a crucial role 
in facilitating anthocyanin extraction by adjusting and functioning according to predefined para
meters. This optimization improves operational efficiency by breaking down protective elements 
surrounding anthocyanins, thereby exposing them for extraction.[47]

The performance of agitated bath extraction includes temperature, solvent ratio, stirring speed, 
extraction time, and integration with other extraction techniques or sample processing.[47,106] These 
parameters contribute to the efficiency and yield of the extraction process. Optimization and control 
are essential to achieve desired outcomes.

Combined extraction method
Technological advancements have led to proposals that combine two or more extraction methods to 
enhance the extraction of anthocyanins from natural sources.[107] The extraction of anthocyanin is 
influenced by both kinetic and thermodynamic factors, which significantly impact extraction yield.[30] 

Although the efficacy of an anthocyanin extraction procedure can be observed, it is essential to 
understand the extent of extraction to prevent excessive degradation during the process.[108]

Combining two or more methods aims to improve extraction efficiency and speed.[20,25,107] These 
combinations may involve conventional or innovative extraction systems depending on the desired 
objectives.[109] The efficiency of combined extractions relies on synergies between the coupled 
systems, which may vary depending on the raw material being extracted.[107]
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Conventional and non-conventional solvents for anthocyanin extraction

Solvents are the main component that directly interacts with the method. The specific names are based 
on the principles used to obtain them and their method during anthocyanin extraction.[110] In 
comparison, many solvents are considered conventional.[111] Therefore, the growing trend of non- 
conventional solvents is toward using natural, environmentally friendly solvents with sustainable 
operating principles, often called green solvents as depicted in Figure 3.

Conventional solvents
A suitable extraction solvent must have access to plant tissues and be able to dissolve anthocyanins and 
other bioactive compounds in their cell organelles.[112] However, conventional solvents that are 
commonly used include water (H2O), ethanol (C2H5OH), acetone (CH3COCH3), methanol 
(CH3OH), diethyl ether (C2H5)2O, chloroform (CHCl3), hexane (C6H14), petroleum ether, toluene 
(C6H5CH3), xylene (C6H4(CH3)2), dichloromethane (CH2Cl2), acetonitrile (CH3CN), ethyl acetate 
(CH3COOC2H5), butanol (C4H9OH), cyclohexane (C6H12) and others.[25,46,111,113]

When selecting an extraction solvent, the following factors should be considered: Selectivity: 
The solvent must target the specific compound in the plant, whether it’s polar or nonpolar[53,55]; 
Boiling point: Choose a solvent with a low boiling point to facilitate removal after anthocyanin 
extraction and purification. Reactivity: The solvent should not chemically react with the com
pounds in the extract to avoid degrading the compounds of interest. Viscosity: Generally, a low 
viscosity is preferred, but it shouldn’t be too low to interfere with the diffusion and solubility of the 
compounds. Safety: Choose a nonflammable, nontoxic, and non-corrosive solvent to prevent 
environmental and health hazards. Cost: The solvent should be cost-effective to make the extrac
tion method viable. Vapor pressure: Low vapor pressure helps avoid solvent loss during extraction, 
allowing for easy evaporation and solvent recovery afterward. Recovery: The solvent should be 
easily separated from the extract using simple methods. Considering these factors will help select 
the most appropriate solvent for anthocyanin extraction to ensure efficiency, safety, and cost- 
effectiveness.

Non-conventional solvents
Ionic liquids (ILs) are a class of solvents used for “green extraction” that can aid in the separation of 
polar and nonpolar compounds.[114] Furthermore, ILs are organic salts in a liquid state and consist of 
an organic cation paired with an organic or inorganic anion. These solvents exhibit several unique 
properties: they have low electrical conductivity, are nonionic (nonpolar), have high viscosity, low 
vapor pressure, low flammability, good thermal stability, and a wide liquid phase range, making them 
ideal for dissolving a wide range of polar and nonpolar compounds.[115]

Due to their distinctive chemical functional groups, ILs facilitate matrix-solvent interactions when 
used for anthocyanin extraction. Many ILs are readily available commercially or can be synthesized by 
reaction of appropriate cationic and anionic components.[116] Although ILs have received increasing 
attention for their excellent extraction properties, they also have drawbacks. These include the toxicity 
of specific components, their stimulating properties, and their high cost, which limits their widespread 
use despite their considerable utility.[117]

Natural deep eutectic extraction solvent (NADEES)
Extraction using deep eutectic natural solvents is a technique that maximizes the physicochemical 
affinity between the solvent and the cellular organelles that protect anthocyanins.[50] These solvents 
are typically made by mixing two or more components, each containing at least one hydrogen bond 
donor and one hydrogen bond acceptor, forming liquid salts.[118] The resulting green solvent is often 
composed of naturally occurring sugars and acids, following the principles of green chemistry.[109] 

After preparation, these solvents exhibit lower melting points than their components, which is 
attributed to the formation of intermolecular hydrogen bonds.[50] The efficiency of extraction using
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deep eutectic solvents depends on various factors, including the solvent composition, the extraction 
technique used, the contact time with the raw material,[119] the solvent concentration, and the solid/ 
liquid ratio.[118,120]

Basic decision-tree design considerations

Several approaches were emphasized in establishing criteria for understanding how anthocyanin 
extraction methods work for different vegetal matrices.[77,113,121] These include the relationship 
between anthocyanin storage organs and extraction methods, common research on anthocyanin 
extraction, the difficulty of comparing extraction methods in raw materials with different structures, 
and anatomical structures and physical-chemical composition in anthocyanin Extraction.

Relationship between anthocyanin storage organs and extraction methods
Anthocyanins are pigments in plant cells found in vacuoles.[18,71] Anthocyanins are mainly present in 
different plant organs, including flowers or inflorescences, leaves, roots or underground organs, fruits, 
and seeds are shown in Figure 4.[46] Therefore, to get high-yield anthocyanin extraction on this matrix 
source, specific procedures are necessary due to the complex and diverse compositions of their 
structure composition. Additionally, techniques that enhance mass transfer are necessary.[111] The 
process involves selecting the appropriate method, which guarantees the adequate rupture of struc
tural barriers and preserving compound stability at the same time.[25] The procedures reduce particle 
size, break down interfering structures such as pectin, cellulose, hemicellulose, lignin, or other cell wall 
components, and separate compounds that can limit anthocyanin extraction, such as lipids and 
proteins. Additionally, solubilizing certain materials like starch and utilizing appropriate solvents 
such as ethanol, methanol, water, and soluble sugars play crucial roles.[18,25] During material prepara
tion, it is essential to understand the specifics of the tissue fraction where anthocyanins are protected. 
For example, in fruits such as jabuticaba and grapes (most cultivars), over 90% of anthocyanins are in 

Figure 4. Comprehensive illustrative system describing the sources of anthocyanin extraction, the solvents used for extraction, the 
extraction methods used, the similarity characteristics between methods, and the raw material, along with their respective health, 
environmental, and extraction process impacts.
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the skin, protected by pectin and fibers. Therefore, using a unit operation to separate this composition 
from anthocyanins can greatly help to improve the best anthocyanins extraction from the skins.[77,113]

Common research for anthocyanin on extraction
The analyzed set of studies shares several common experimental characteristics:

(1) Comparison of conventional and unconventional extraction methods.[16,18]

(2) Designs applied to optimize factors and achieve optimal points.[122,123]

(3) Simulation of extraction methods for large-scale application.[50,62,124]

(4) Evaluation of the performance of extraction methods based on pre-treatment to modify the 
physical state of raw materials, including dry and fresh matter. The studies referenced for this 
section are[125–127]:

(5) Comparison of combined extraction methods, with references to studies by Jiang et al.[46] and 
González et al..[128]

(6) this section compares raw materials processed in organic and conventional solvents, with 
references to studies by Fernández et al.[129] and Alrugaibah, Yagiz, and Gu.[4]

(7) This section compares modified extraction methods from Wathon et al.[130] and Wu et al..[131]

(8) In the studies conducted by Porto and Natolino[132] and Parra-Campos and Ordonez- 
Santos,[133] modeling systems combined with multivariate optimization were utilized to deter
mine optimal points.

The works significantly contribute to the extraction of anthocyanins from the specific raw materials 
studied. Additionally, the authors describe the food matrices and preparation procedures used. This 
information enables the construction of a deductive strategy to propose methods for untested 
materials.

Difficulty of comparing extraction methods in raw materials with different structures
Matos, Mota, and Carmo[113] compared conventional extraction methods, high hydrostatic pressure, 
and ultrasound-assisted extraction. The results showed that ultrasound extraction was the most 
effective method, producing 407.15 mg of cyanidin-3-glucoside per 100 g of fresh sample. However, 
scalability concerns led to the recognition of the resilience of conventional methods. Similarly, Syrpas 
et al.[134] found that enzyme-assisted extraction yielded the highest anthocyanin and antioxidant 
capacity from blueberry pomace. In contrast, Ryu and Koh’s[122] optimization studies for anthocyanin 
extraction in black soybeans favored conventional extraction. The studies examined factors such as 
HCl concentration (0.3–0.5%), solid-liquid ratio (1/30 g/mL-1/50 g/mL), and extraction temperature 
(30–50°C). Similarly, Liu et al.[123] emphasized using conventional purple passion fruit peel extraction. 
The optimal conditions for achieving the best results were determined to be a solution-solid ratio of 
20:30 mL/g, power ranging from 500–900 W, delay time of 1:3 s, extraction time of 20–60 min, and 
cavitation time of 1:3. These conditions resulted in a yield of 0.826 mg/g of cyanidin-3-glucoside. In 
a comparable study on jambolan (Syzygium cumini L.) extracts, dos Santos et al.[135] found conven
tional extraction optimal, emphasizing the importance of optimizing temperature and extraction time. 
These findings highlight the variability of extraction factors affected by the physiological structures in 
plant matrices.

Although each study identified at least one optimal extraction method or factor, as described in the 
previous paragraph, discrepancies arise when comparing the yields obtained, such as 407.15 mg of 
cyanidin-3-glucoside per 100 g of fresh sample in jabuticaba peel[113] and 136.68 mg/100 g of fresh 
sample in black soybean.[122] The difference in anthocyanin extraction can be attributed to variations 
in raw materials and pretreatment methods that alter the material’s physical state. According to Ávila- 
Hernández et al.,[125] who evaluated anthocyanin extraction from strawberries pre-treated by lyophi
lization, the yield of total anthocyanins was approximately 0.428 g/100 g, which was higher than the 
yield from non-lyophilized treatment. Studies on extraction from two blackberry cultivars have found 
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higher amounts of monomeric anthocyanins in lyophilized raw materials. They explicitly yielded 
approximately 436.48 mg/100 g of dry matter of cyanidin-3-o-glucoside.[126] However, outcomes may 
vary in some cases.[127]

The difference in results can be attributed to the variation in the simple and combined extraction 
methods. This causes one matrix to be extracted extensively at the expense of another. Jiang et al.[46] 

studied the extraction of anthocyanins in Akebia trifoliata (Thunb.) Koidz flowers. They compared 
a combined system (radio-frequency-assisted enzymatic extraction) with conventional and enzymatic 
extraction. The results showed that radiofrequency-assisted enzymatic extraction had the highest crude 
yields (26.55%) and anthocyanin content (50.87 mg cyanidin-3-O-glycoside equivalents/100 g). 
Fernández et al.[129] demonstrate the functionality of kinetics and mathematical modeling in the 
ultrasound-assisted extraction of anthocyanins from jaboticaba bark (Myrciaria cauliflora). 
Experimental designs based on multivariate analysis models are increasingly common, and the obtained 
results are primarily from laboratory-scale studies.[133] However, a question always arises as to whether 
extraction methods can be applied on a large scale using only residual biomass from the industry. 
According to Wathon et al.[130] who extracted anthocyanins from bark residues of Aronia melanocarpa 
(Michx.) after juice extraction, the system can be replicated on a large scale. However, Wu et al.[131] 

found that it is possible to extract 281.56 ± 3.02 mg/100 g of cyanidin-3-glucoside from the residues of 
Euryale ferox Salisb. Moraes et al.[62] investigated the extraction of anthocyanins from blackberries using 
microwave hydrodiffusion. They concluded that while the methodology can be operationalized on an 
industrial scale, the application costs are too high.

Yi et al.[3] demonstrated that solvent extraction of black rice resulted in an anthocyanin content of 
266 mg/100 g of fresh sample. In contrast, Pedro, Granato, and Rosso[136] reported a yield of 117 mg/ 
100 g, 79% lower than the result of Yi et al.[3] using enzymes. Furthermore, Jha et al.[137] reported even 
lower yields of 3.36 mg/100 g when extracting anthocyanins from black rice husks using ultrasound 
and microwave-assisted methods. Ju, Grego, and Zhang[138] highlighted the significance of compre
hending the composition of plant structures before compound extraction, as cells have inherent
resistance to various degradation mechanisms. In general, the approach for anthocyanin extraction 
methods presented in the work above makes it very difficult to select the best method when intending 
to apply to different matrix sources.

Main anthocyanin storage structures: plant organs
Anthocyanins are widely distributed in various plant parts, including fruits, roots, tubers, leaves, 
flowers, and seeds Figure 4a.[25] A thorough understanding of the anatomy of plant organs is critical 
for selecting appropriate extraction methods.[12]

Roots. Roots are classified as primary or secondary based on structural characteristics. The piliferous 
zone marks the beginning of adventitious root development and typically consists of a single layer of 
thin-walled cells. The innermost layer, called the endodermis, is specialized, while the vascular 
cylinder or stele can take the form of a radial protostele or a medullary protostele.[139] 

Anthocyanins are typically found in the cortical region, which is the outermost layer of the root. 
However, the concentration of anthocyanins can vary among different species and cultivars of tuber 
roots and in other parts of the root.

Tubers. Tubers originate from root systems, and specific cultivars exhibit a reddish or purple 
coloration due to the accumulation of anthocyanins in plant tissues. Examples of such tubers include 
purple sweet potato and purple yam.[113]

Leafs. The leaf is a fundamental plant organ consisting primarily of a protective epidermis, parench
ymal mesophyll, and vascular system. Variations in epidermal cell structure, stomatal distribution, and 
epidermal trichomes are commonly observed among different leaf types. The mesophyll, which serves 
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as the main site of reserve storage in plants, can also store anthocyanins, with concentrations often 
higher in the mesophyll than in other leaf tissues.[139]

Flowers. The floral stem or pedicel exhibits distinct structures, such as bracts with a reduced calyx and 
a corolla that often resembles leaf-like structures. Various elements such as epidermal cells, epithelial 
and covering hairs, mesophyll cells, sebaceous glands, and crystals contribute to the intricate compo
sition of flower parts. Anthocyanins are commonly found in flower petals and impart red, purple, or 
blue colors.[140]

Fruits. Fruits are diverse and can be categorized as dry or fleshy, each corresponding to a specific 
fruit type. These include berries, drupes, legumes, capsules, and achenes, each with unique 
characteristics such as seed dispersal mechanisms and pericarp composition. Anthocyanins are 
often concentrated in fleshy fruits’ skin or outer layers, contributing to their coloration and 
antioxidant properties.[139–142]

Seeds possess a sclerenchymatous layer and exhibit characteristic variations in the number of cell 
layers, structure, arrangement, color, and content. The seed epidermis typically consists of thick- 
walled cells, often lignified, associated with storage tissues known as perisperm and endosperm. While 
anthocyanins are less abundant in seeds than other plant organs, they may still be in trace amounts in 
the seed coat or outer layers[141,143]

Anatomical structures and physical-chemical composition in anthocyanin extraction
Since plant structures are primarily composed of various polysaccharides, understanding their composi
tion is crucial for selecting appropriate extraction methods for anthocyanins, as illustrated in Figure 4. 
Cellulose, which forms the main structure of plant cell walls, provides strength and rigidity and 
influences the efficiency of extraction techniques by affecting tissue permeability.[56] Hemicellulose 
Figure 5b. Another component of cell walls contributes to tissue flexibility and elasticity, potentially 
affecting the potential permeability of extraction solvents into plant tissues.[144]

Lignin, while providing stiffness and resistance to degradation, can hinder the extraction process due 
to its dense structure, requiring specialized methods to overcome its barrier effects.[139] Starch, an energy 
reserve stored in plastids, can affect extraction efficiency depending on its distribution in plant tissues 
and accessibility to extraction solvents.[56] Pectens in the middle lamella and cell walls can influence 
extraction by affecting tissue consistency and adhesion, potentially altering the release of anthocyanins 
during the extraction process.[144] Therefore, consideration of the composition and distribution of these 
polysaccharides is essential to optimize anthocyanin extraction from plant matrices.

Criteria for decision-tree in the selection of the appropriate method for extracting 
anthocyanins

Despite the extensive evaluation of several innovative methods for anthocyanin extraction, selecting 
an appropriate method remains a significant challenge due predominantly to the specific properties of 
the raw material.[29,34,38,145] This challenge is compounded by a fundamental understanding of the 
plant matrix’s morpho-anatomical characteristics and the operational principles underlying these 
methods.[18,26,114]

Description of the decision-tree for selecting anthocyanin extraction methods
The decision tree in Figure 5 is useful for selecting anthocyanin extraction methods that promote 
accurate, streamlined, and sustainable approaches.[6,33,98,130] Our proposed decision tree design facilitates 
selecting the most suitable method based on the specific characteristics of the chosen plant material.

The decision-tree, as shown in Figure 5 assists in selecting an anthocyanin extraction method based 
on the predominant plant matrix and its structural characteristics.[19,21,23,24,27,35,37,40,42,44,45,48,57,146] 

These characteristics include porosity (PRS), which indicates whether the structure allows easy passage 
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of water (hydrophilic) or not (hydrophobic), and polarity affinity (AFNT) in water (polar) or alcohols
(nonpolar).[31,53,55,114] However, plant extract anthocyanins are sensitive to harsh conditions and may 
exhibit acidic or basic properties depending on their affinity in water (AFNT).[22,44] Acidic conditions are 
present when the pH value is below 4.5, while primary conditions occur above pH 4.5. Furthermore, 

Figure 5. Accumulation of anthocyanins in the main plant organs (A) and their predominant physicochemical structures (B).
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plant structures may have protective components such as coatings (MCC) in films or fibers.[41,55,87] Films 
and fibers can be disrupted through heat or high pressures that exceed their elastic limit.[6,36]

Vegetables possess diverse anatomical textures, which vary from species to species. These textures 
may be juicy, fleshy, or dry, sometimes featuring mixed structures.[15,28,43,102,119] These structures are 
composed of different polysaccharides, which determine the suitable disruption mechanism. 
Polysaccharides may be stored in different structural sections depending on the plant organ (ENE).[57]

After selecting a matrix for anthocyanin extraction, researchers must conduct fundamental analyses. 
Firstly, they must identify the type of plant structure they are working with, such as leaves, floral organs, 
roots or tubers, root system developments, or fruits.[44,49,57,76,113,132] Secondly, they should determine the 
characteristics of the plant structure, identifying the fraction or tissue where anthocyanins are concentrated. 
Researchers should analyze the components that make up the structure, particularly those that contribute to 
anthocyanin coloration, and understand their physical and chemical properties.[95] This information can be 
used to identify appropriate mechanisms for extraction, including pre-treatments, extraction techniques, 
and solvent selection. Finally, researchers can select one or more extraction methods that align with the 
principles established through their analysis.[143]

Decision-tree applicability criterion an example of its use

Our laboratory research focused on developing natural dyes from two distinct matrices: blackberry and 
purple sweet potato. We optimized the extraction conditions for these matrices, which typically take 
about six months. However, questions about the optimal extraction method for less-studied matrices are 
common in the research environment. This underscores the importance of a decision-tree. For instance, 
consider the decision logic applied to Blackberry. Blackberries are a type of drupe fruit with specific 
attributes, including porosity (PRS)-1, affinity (AFNT)-4, state of matter (STM)-5, coating component 
(CCM)-7, PS-10, anatomical texture (ATXT)-12, polysaccharide type (PSCT)-16, 18, and 19, and 
anatomical structure (ANE)-20, 23. To ensure the preservation of mesocarp anthocyanins while breaking 
down macro surface structures, a suitable method must be selected based on Figure 6 and the principles 

Figure 6. Decision- tree for selecting anthocyanin extraction methods based on intrinsic characteristics and response to solvents. 
RS – Porosity; AFNT – Affinity; STM – State of Matter; CCM – Coating Component; PS – Particle Size; ATXT – Anatomical Texture; 
PSCT –Polysaccharide Type; ANE – Anatomical Structure; (1) Hydrophilic; (2) Hydrophobic; (3) Water; (4) Alcohol; (5) Acid; (6)Basic; 
(7) Film; (8) fiber; (9) Micro; (10) Macro; (11) FLS – Fleshy; (12) JCY – Juicy; (13) DRY – Dry; (14) LGN – Lignin; (15) STC – Starch; (16) 
PCN – Pectin; (17) Gel; (18) CLS – Cellulose; (19) HCL – Hemicellulose; (20) MC – Mesocarp; (21) PR – Pericarp; (22) CPR – Receptacle; 
(23) EXP -Exocarp; (24)EC -Endocarp; (25) EP – Epidermis.
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of anthocyanin extraction methods. Conventional methods, such as maceration, may be appropriate, but 
prolonged exposure could lead to degradation. Alternatively, traditional percolation could be used if 
blackberry is lyophilized. However, methods such as decoction, Soxhlet extraction, infusion, and diges
tion could be more practical due to the need for continuous heating.

Regarding emerging methods, microwave, ohmic heating, and high-voltage electric fields are 
considered unsuitable due to the heat they generate during operation. On the other hand, pressurized 
fluid, high hydrostatic pressure, and ultrasonication methods can be used without difficulty. The 
Purple Sweet Potato is a tuberous root-type matrix with specific attributes (PRS-1; AFNT-4; STM-6; 
CCM-8; PS-10; ATXT-13; PSCT-15; ANE-22). Conventional methods such as maceration, infusion, 
and digestion can be applied. Percolation is viable with pre-treatment like freeze-drying, although it 
may reduce the yield.

Conversely, methods like Soxhlet and decoction are considered unsuitable. Among the emerging 
techniques, microwave, enzymatic, ohmic heating, and high voltage electric fields (HVEF) are 
considered the most suitable. Conversely, high hydrostatic pressure and pressurized fluids can be 
used with matrix pre-treatment. However, tank agitation, radio frequency, irradiation, ultrasonic bath, 
and ultrasonication methods may need to be more efficient due to the relationship between their 
operating principle and the need to induce mass diffusion in the matrix.

Laboratory tests confirmed the effectiveness of these recommendations (data not shown). For 
blackberries, the best results were obtained using conventional extraction with 50% ethanol, regardless 
of the acidification level, at room temperature. In the case of purple sweet potatoes, the best results 
were obtained using 50% ethanol acidified to pH 2, especially when subjected to agitation in a shaking 
bath for one hour at 40°C (data not shown). The anthocyanin extraction behavior was similar across 
three different cultivars of both raw materials.

Conclusion

In conclusion, this study provides a comprehensive evaluation of various methodologies used for 
anthocyanin extraction, ranging from conventional techniques to more innovative, non-conventional 
methods. Each technique leverages fundamental chemical and physical principles, with their efficacy 
largely dependent on key variables such as solvent selection, temperature control, solvent-to-matrix 
ratio, contact time, and the pre-treatment of plant matrices. These factors significantly optimize the 
yield and purity of anthocyanins, influencing both laboratory research and industrial applications.

The morpho-anatomical structures of plant tissues – whether roots, tubers, leaves, flowers, fruits, or 
seeds – present unique challenges and opportunities for anthocyanin extraction. Each plant organ 
contains specialized cells and varying distributions of key substances like cellulose, hemicellulose, 
lignin, amylose, amylopectin, and pectin, which must be carefully considered when selecting an 
extraction method. The presence of these structural components can significantly impact the interac
tion between the extraction solvent and the matrix, as well as the efficiency of cell wall disruption, 
which is a critical step in the extraction process.

By implementing a decision-tree approach, this study offers a practical tool to help researchers and 
industry professionals systematically select the most appropriate extraction method based on the 
specific characteristics of the plant matrix. This framework considers the morpho-anatomical struc
ture, extraction parameters, and solvent systems to streamline the decision-making process. As 
a result, this approach can optimize resource use, reduce experimental trial and error, and enhance 
the overall efficiency of anthocyanin extraction.

The decision-tree model was validated using blackberry and purple sweet potato matrices, demon
strating its applicability across different plant structures. The results show that this tool can not only 
improve the selection process but also significantly contribute to reducing time and time and resource 
investment. This methodology provides a valuable contribution to anthocyanin research by facilitating 
more more targeted and efficient extraction methods, which are critical for both scientific inquiry and 
commercial applications in the food and nutraceutical industries.
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In the broader context, this study underscores the importance of considering plant matrix varia
bility and extraction method characteristics in anthocyanin research. It also opens avenues for further 
development of decision-support tools that can be adapted to other bioactive compound extractions, 
enhancing productivity in natural product research. Ultimately, this decision-tree framework repre
sents a significant step forward in optimizing extraction protocols and contributing to more sustain
able and efficient food science and technology practices.

Advancements and certain limitations

Scalability: Current research has focused mainly on laboratory-scale extraction methods, leaving their 
industrial applicability largely unexplored. Environmental Concerns: The reliance on organic solvents 
calls for the development of greener and more sustainable extraction methods.Matrix-Specific 
Optimization: Variations in plant cell structures necessitate further research on a broader range of 
plant matrices to optimize extraction across diverse sources.

Future research

Scaling up extraction techniques for industrial applications. Developing sustainable, environmentally 
friendly extraction processes. Exploring underutilized plant matrices to expand the potential for 
anthocyanin extraction.
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