
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10094  | https://doi.org/10.1038/s41598-024-60703-5

www.nature.com/scientificreports

Novel putative causal mutations 
associated with fat traits in Nellore 
cattle uncovered by eQTLs located 
in open chromatin regions
Ingrid Soares Garcia 1, Bárbara Silva‑Vignato 1, Aline Silva Mello Cesar 2, Juliana Petrini 1, 
Vinicius Henrique da Silva 1, Natália Silva Morosini 1, Carolina Purcell Goes 1, 
Juliana Afonso 3, Thaís Ribeiro da Silva 1, Beatriz Delcarme Lima 1, Luan Gaspar Clemente 1, 
Luciana Correia de Almeida Regitano 3, Gerson Barreto Mourão 1 & Luiz Lehmann Coutinho 1*

Intramuscular fat (IMF) and backfat thickness (BFT) are critical economic traits impacting meat quality. 
However, the genetic variants controlling these traits need to be better understood. To advance 
knowledge in this area, we integrated RNA-seq and single nucleotide polymorphisms (SNPs) identified 
in genomic and transcriptomic data to generate a linkage disequilibrium filtered panel of 553,581 
variants. Expression quantitative trait loci (eQTL) analysis revealed 36,916 cis-eQTLs and 14,408 
trans-eQTLs. Association analysis resulted in three eQTLs associated with BFT and 24 with IMF. 
Functional enrichment analysis of genes regulated by these 27 eQTLs revealed noteworthy pathways 
that can play a fundamental role in lipid metabolism and fat deposition, such as immune response, 
cytoskeleton remodeling, iron transport, and phospholipid metabolism. We next used ATAC-Seq assay 
to identify and overlap eQTL and open chromatin regions. Six eQTLs were in regulatory regions, four 
in predicted insulators and possible CCCTC-binding factor DNA binding sites, one in an active enhancer 
region, and the last in a low signal region. Our results provided novel insights into the transcriptional 
regulation of IMF and BFT, unraveling putative regulatory variants.

Backfat thickness (BFT) and intramuscular fat (IMF) are significant economic traits for the beef industry, 
impacting carcass and meat quality. Associated with beef sensorial quality, IMF is positively correlated with meat 
tenderness and juiciness, affecting its flavor, thus resulting in consumer satisfaction and repurchase decision1. 
BFT significantly influences carcass quality and yield, as an appropriate subcutaneous fat cover is essential for 
mitigating issues such as cold shortening and evaporative weight loss during cooling2. There is also a positive 
correlation between BFT and IMF3, making them interesting traits to study simultaneously.

Large-scale RNA-seq and high-throughput genotyping technologies led to genome-wide identification of 
regulatory variants associated with gene expression, also known as expression quantitative trait loci (eQTL)4,5. 
In eQTL analyses, the main goal is to associate variants located throughout the genome with expression levels of 
each gene, providing information about the genetic regulation of gene expression in a given tissue. This assists 
in revealing metabolic pathways, regulatory genes, biological processes, and genetic factors that may be affected 
by the eQTL, and can modulate a phenotype6,7.

Although advances in high-throughput genotyping have made it possible to increase eQTL discovery, the 
high cost of doing so is still a refraining factor, although genotype imputation can be a powerful tool to reduce 
costs. This is possible by genotyping a large population of animals with a lower density panel and imputing the 
genotype of untyped loci using information from a small reference population genotyped with a higher density 
panel8,9. This allows for a larger dataset, increasing the possibility of identifying the regulatory variant associated 
with gene expression. Another tool that can provide more information by improving the fine-mapping of causal 
gene regulatory variants is Assay for Transposase-Accessible chromatin (ATAC-seq), as it can identify open 
chromatin regions10,11.
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We combined RNA-seq data and imputed genotypes to identify eQTLs. The significant eQTLs were associated 
with IMF and BFT to identify gene expression regulatory mutations that could modulate phenotypic variance. 
However, due to linkage disequilibrium, the eQTL may not be the causative variant, so we used ATAC-seq data 
to select eQTLs associated with the phenotypes that are in open chromatin regions. As a result, we identified six 
putative variants that modulate gene expression and are associated with IMF and BFT.

Results
eQTL analysis with the complete SNP dataset and SNP annotation
Aiming to expand our SNP database to detect regulatory variants, we combined genotypes from 778 progenies 
(BovineHD BeadChip 770k, Illumina), DNA-Sequencing from 26 Nellore sires of the population under study, 
and transcribed SNPs called from RNA-Sequence data from the Longissimus thoracis (LT) muscle of 192 animals 
within the progenies. This integration yielded an extensive imputed SNP panel, encompassing a total of 4,522,914 
SNPs. Following stringent quality control measures (including minor allele frequency > 5% and call rate > 95%) 
and pruning (with an r2 threshold of 0.8), we refined the SNP dataset for subsequent eQTL analysis, resulting 
in a set of 553,581 tag-SNPs.

Before eQTL identification, population stratification was investigated by principal component analysis (PCA). 
Using 192 animals and the SNPs from the BovineHD BeadChip 770k panel, the first two principal components 
(explaining 10.64% and 6.87% of the variance for PC1 and PC2, respectively) were included as covariates in the 
eQTL analysis model, as we observed a sample grouping partially explained by sire (Supplementary Table 1 and 
Supplementary Fig. 1). Our eQTL analysis resulted in 51,324 eQTLs (FDR < 5%, considering that each time a 
SNP regulates a distinct gene, it qualifies as an eQTL). There were 36,916 cis-eQTLs (25,896 for a unique genomic 
position), and 14,408 trans-eQTLs (4685 for a unique genomic position) distributed along the 29 Bos taurus 
autosomal chromosomes (Fig. 1a). Of these, 3823 SNPs act as cis and trans-eQTLs (1950 for a unique genomic 
position). From our 25,896 cis-eQTLs and 4685 trans-eQTLs, 2381 and 663 were novel SNPs, absent from the 
public SNP database (dbSNP), respectively. As for the regulated genes, 5142 genes were affected by cis-eQTLs, 
and 4707 genes had their expression affected by trans-eQTLs. A quantile–quantile plot illustrating the p-values 
from the eQTL analysis and a Manhattan plot for both cis and trans-eQTLs is provided in Supplementary 
Fig. 2. A complete list of cis and trans-eQTLs (FDR < 0.05) and the genes regulated by them can be found in 
Supplementary Table 2.

Ensembl Variant Effect Predictor (VEP) analysis showed that more cis and trans-eQTL were located on 
chromosome 23, while fewer local and distant variants were on chromosome 20 (Fig. 1b,c). Cis-eQTLs were 
predominantly located in 3’UTR, intronic, and downstream gene regions, while trans-eQTLs concentration was 
in 3’UTR, intronic, and intergenic regions. Among them, 23.8% and 21.9% were predicted to be synonymous 
variants, whereas 10.2% and 9.4% were classified as missense for cis and trans-eQTL, respectively (Fig. 1d,e and 
Supplementary Table 3).

Phenotype association analysis, gene annotation, and SNPs in ATAC‑Seq peaks
To discover eQTLs associated with phenotypic variation, we conducted a phenotype association analysis. For 
this, the population was expanded to 374 animals, and after the population stratification test, PC1 (7.89%) and 
PC2 (6.96%) were included as covariates to account for the sire effect (Supplementary Table 4 and Supplementary 
Fig. 3).

A linear model with the effects of PC1, PC2, contemporary group (CG), and hot carcass weight as covariates 
was used to test the association of the 30,581 eQTLs (a sum of unique genomic positions of cis and trans-
eQTLs) with BFT and IMF. Three eQTLs were associated with BFT (Supplementary Table 5) and 24 with IMF 
(Supplementary Table 6). The Circos plot shows the links between eQTLs, phenotypes, and their regulated genes 
(Fig. 2). A quantile–quantile plot and a Manhattan plot illustrating the p-values from the phenotype association 
analysis is provided in Supplementary Fig. 4.

The biological process of immune response can describe some genes regulated by our eQTLs, including 
TAP Binding Protein Like (TAPBPL), V-Set Domain Containing T Cell Activation Inhibitor 1 (VTCN1).). 
In contrast, Protein Kinase C And Casein Kinase Substrate in Neurons 1 (PACSIN1) and Cytoplasmic FMR1 
Interacting Protein 2 (CYFIP2) are involved in cytoskeleton remodeling. Also, we identified genes related to 
phospholipid metabolism and lipid biosynthesis, such as Lysophosphatidylcholine Acyltransferase 3 (LPCAT3), 
Phosphatidylinositol Transfer Protein Alpha (PITPNA), Diacylglycerol Kinase Theta (DGKθ), Growth 
Differentiation Factor 11 (GDF11), and Cytoplasmic FMR1 Interacting Protein 2 (CYFIP2). Trans-Glutathione 
S-Transferase Alpha 2 (GSTA2) is involved in oxidative stress, and Homeostatic Iron Regulator (HFE) is involved 
in iron transport pathways. Other genes have previously been associated with meat and carcass quality or are 
involved in fat-related phenotypes such as Tripartite motif containing 45 (TRIM45), Transmembrane Protein 87A 
(TMEM87A), Transmembrane Protein 175 (TMEM175), Trans- Aldehyde Dehydrogenase 5 Family Member A1 
(ALDH5A1), Glucosidase alpha neutral C (GANC) and, Non-SMC Condensin I Complex Subunit D2 (NCAPD2).

Using MetaCore software, we performed an enrichment analysis of the regulated genes. Figure 3 shows the 
top ten Pathway Maps (Fig. 3a) and the process networks (Fig. 3b) enriched for genes related to IMF and BFT. 
This revealed some noteworthy pathways, such as immune response, cytoskeleton remodeling, iron transport, 
and phospholipid metabolism.

To investigate which eQTLs are located at potential regulatory regions, we performed ATAC-Seq in bovine 
muscle samples. We identified 33,734 ATAC-Seq peaks with an average width of 2193 base pairs (bp) using a 
Fraction of Reads in Peaks (FRiP) score of 0.2 (Supplementary Table 7). The peaks were selected based on the 
FRiP score values and were overlapped with Transcriptional Start Sites (TSSs) in each replicate as a quality metric 
(Supplementary Fig. 5). As expected, the peaks were centralized on TSSs, which indicate high accessibility and, 
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thus, gene expression. We overlapped our 27 traits-associated eQTLs with ATAC-Seq peaks to identify putative 
causal variants. The overlap resulted in six variants associated with the modulation of gene expression and 
phenotype, and located in open chromatin regions. Thus, we considered these as candidate regulatory regions 
(Table 1).

In addition to overlapping our variants with ATAC-Seq peaks, we also consulted the ChromHMM 
model-based profile of chromatin states for cattle muscle (Functional Annotation of Animal and Genomes 
consortium database—FAANG). This model uses known epigenetic signals of histone marks and CTCF sites to 
characterize regulatory elements along the chromatin12. Figure 4 illustrates the genome location of a novel SNP 
on chr21:55370318 present in a predicted insulator. Visualization in The Integrative Genomics Viewer (IGV) of 
the other five eQTLs, located in peaks, can be seen in Supplementary Figs. 6, 7, and 8. Three of those five eQTLs, 

Figure 1.   Cis and trans-eQTL distribution along the 29 Bos taurus autosomal chromosomes of a Nellore 
cattle population. (a) Scatter plot of affected genes and eQTL (FDR < 0.05). Y-axis is representing gene order 
and X-axis is representing SNP order in relation to chromosome position in the genome. Diagonally scattered 
points indicate cis-eQTL. Vertically scattered points indicate trans-eQTL. Vertical blue lines denote individual 
autosomal chromosomes. (b,c) Distribution of cis (b) and trans-eQTLs (c) across the chromosomes. X-axis is 
the chromosomes, and Y-axis is the number of variants per chromosome. (d,e) Most severe consequences of the 
cis (d) and trans-eQTL (e) predicted by the Ensembl Variant Effect Predictor.
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rs208816180, rs721933457 and rs469481754, are in regions predicted to be insulators. The rs523028000 and 
rs456412241 eQTLs are in a region with low signal and active enhancer, respectively.

Discussion
Our research group focuses on unraveling the genetic mechanisms underlying fat deposition in beef cattle. 
To achieve this, our prior investigations have employed a multi-faceted approach, utilizing Genome-Wide 
Association Studies (GWAS) to pinpoint relevant genomic regions13, RNA-seq analysis to characterize gene 
expression profiles in animals exhibiting divergent IMF levels14, and eQTL analysis to identify variants influencing 
gene expression within QTLregions14.

Herein, we expanded our search for variants by combining genotypes from 374 progenies, whole genome 
DNA-Sequencing of 26 Nellore sires, and transcribed SNPs obtained from RNA-Seq data from LT of 192 animals 
to generate a total of 4,522,914 SNPs inputted across 374 animals. The number of SNPs discovered considerably 

Figure 2.   Circos plot of eQTL regions associated with backfat thickness (BFT) and intramuscular fat (IMF) and 
their regulated genes. Colored boxes represent each chromosome while the colored lines show the association 
between the regions that harbor the eQTLs and their regulated genes. IMF trans-eQTLs are shown in red, IMF 
cis-eQTLs are shown in blue and BFT cis-eQTLs are shown in black.

Figure 3.   Top ten Pathway Maps (a) and the process networks (b) enriched for the genes regulated by the 
eQTLs associated with IMF and BFT in a Nellore cattle population.
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increased our chances of finding causative mutations. However, we had to use linkage disequilibrium to reduce 
the number of SNPs for eQTL and phenotype association analyses. This reduction in number was essential 
to decrease the number of multiple tests from SNPs capturing the same effect, thus reducing our analyses to 
553,581 tag-SNPs. We also used ATAC-Seq from muscle to localize open chromatin regions. The combination of 
phenotype association analysis, eQTL, and ATAC-Seq data allowed us to identify mutations in open chromatin 
regions that control gene expression and are associated with fat deposition.

Most eQTLs identified were in 3’UTR, introns, intergenic, and downstream gene regions. These results 
corroborate the hypothesis that untranslated gene regions are involved with gene expression regulation15. It is 
essential to point out that the SNPs identified in this study may not be the actual causal mutation since any SNP 
within the same LD block has the potential to be the causal variant16. Our association analysis uncovered 27 
eQTLs associated with phenotypic variation, in agreement with previous results on the importance of regulatory 
mutations for phenotypic variation14,17.

When exploring our set of 27 eQTLs in the cattle Genotype-Tissue Expression atlas (cGTEx—https://​cgtex.​
roslin.​ed.​ac.​uk/), we identified four cis-eQTLs associated with intramuscular fat (IMF), confirming our results. 
These include rs380143588 (chromosome 5), rs378206508 (chromosome 5), rs385973669 (chromosome 5), 
and rs209748084 (chromosome 19). Notably, none of the eQTLs associated with backfat thickness (BFT) were 

Table 1.   Relevant eQTLs associated with intramuscular fat (IMF) and backfat thickness (BFT) located in 
open chromatin regions in a Nellore cattle population. rsID variant identifier, CHR SNP located chromosome, 
Position SNP position in Mb, ATAC-Seq peak window position in Mb of the peak containing the eQTL, FDR 
phenotype associated False Discovery Rate, iBFT initial backfat thickness, fBFT final backfat thickness, IMF 
intramuscular fat.

rsID CHR Position Gene sequence consequences ATAC-Seq peak window Cis regulated genes FDR Phenotype

Novel SNP 21 55370318 5’ UTR variant of PDIA3-201 gene and intron variant of 
CATSPER2-201 gene chr21: 55368993–55371299 TGM5 003952 fBFT

rs208816180 23 31876455 Exon variant of H1-2 chr23: 31875786–31877998 HFE; H2BC15 002021 iBFT

rs721933457 5 103915474 5’ UTR variant of VAMP1 gene chr5: 103914423–103916378 NCAPD2 006543 IMF

rs523028000 5 103856234 Upstream gene variant of IFFO1gene chr5: 103855741–103857330 TAPBPL; U7 006543 IMF

rs469481754 10 37638576 Upstream gene variant of TMEM87A gene and 5’ UTR 
variant of GANC gene chr10: 37636085–37639779 TMEM87A 006543 IMF

rs456412241 19 53553145 3’ UTR variant of USP36 gene chr10: 37636085–37639779 USP36 0.08356 IMF

Figure 4.   Visualization of the genome location of novel SNP chr21:55370318 on IGV software. The SNP 
chr21:55370318 is highlighted as "tag-SNP’’ with an arrow; the ATAC-Seq Peak is highlighted in a red circle; 
the 14-state ChromHMM model probabilities for cattle muscle were obtained from12, the E12 state predicts an 
Insulator. The tracks represent the genome position in kb; the ATAC-Seq peaks; the tag-SNPs representing our 
eQTLs associated with the studied traits; the Bos taurus annotated genes (Ensembl Genes); and, the 14-state of 
chromatin based on Kern et. (2021) according to the figure legends.

https://cgtex.roslin.ed.ac.uk/
https://cgtex.roslin.ed.ac.uk/
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identified in cGTEx. It is important to note that although certain eQTLs were not detected in this database, a 
subset of them comprises novel SNPs that have not yet undergone annotation. Additionally, considering that 
many of our eQTLs associated with IMF and BFT originate from RNA-seq data, SNPs in regulatory regions may 
not be comprehensively annotated in existing databases, which predominantly consist of SNPs in intronic and 
more conserved regions, primarily derived from SNP chips.

Three cis-eQTLs were associated with BFT. Among these, a novel SNP (chromosome 21:55370318) was found 
to modulate the expression of the Transglutaminase 5 (TGM5) gene. TGM5 belongs to the transglutaminase 
family (TGs), a group of calcium-dependent enzymes responsible for posttranslational modification of proteins 
through deamidation and amine incorporation processes. These proteins also serve as scaffolds, maintain 
membrane integrity, regulate cell adhesion, and modulate signal transduction18,19. TGM5 was associated with 
high triglyceride levels in humans20, although this gene’s mode of action is unknown. Another member of the TGs 
family, TGM2, a more extensively studied gene, has been indicated as a novel negative regulator of adipogenesis21. 
In addition, higher expression levels of TGM2 were associated with animals of low genomic estimated breeding 
values (GEBV) for IMF in a previous study of our group with this same Nellore population17.

The cis-eQTL rs208816180, associated with BFT, regulates the expression of H2BC15 and HFE. The first 
gene, present in a small histone gene cluster, is a histone H2B family member involved in DNA replication22. 
The second gene, HFE, regulates iron (Fe2+) absorption by mediating the interaction of transferrin receptors 
with transferrin. This enables the protein to competitively bind to the transferrin receptor at the same site as 
iron-loaded transferrin molecules, preventing iron uptake23. Previous studies suggest that reduced lipogenic 
activities can occur with lower iron content in the muscle of Nellore steers24. This might happen because iron 
is essential to the adipocyte’s physiological functions, such as differentiation, endocrine, and energy supply25. 
Another study discusses how HFE knockout mice can alter lipid metabolism by modifying the expression of 
lipid metabolism markers26.

The last gene regulated by a cis-eQTL associated with BFT is Cilia And Flagella Associated Protein 97 
(CFAP97), which is predicted to be involved in spermatogenesis27. Although its function in adipose tissue is 
poorly understood, this gene was associated with adiposity traits such as percent of intramuscular fat, abdominal 
fat, and blood lipid levels in broilers28.

Regarding IMF, 24 eQTLs were associated, regulating 28 genes (six being novel genes). From these, five 
genes are more directly involved in phospholipid metabolism or lipid biosynthesis, such as LPCAT3, PITPNA, 
DGKθ, GDF11 and, CYFIP2. LPCAT3 is an isoform of lysophatidylcholine acyltransferases, which participates 
in phosphatidylcholine (a major phospholipid class) remodeling29. This gene is the main isoform in primary 
metabolic tissues, such as the skeletal muscle. It has an important role in lipoprotein production and lipogenesis. 
In contrast, its deficiency reduces lipid absorption30,31. LPCAT3 is also involved in the lipid organization of the 
plasma membrane and insulin sensitivity in skeletal muscle. Knockout of LPCAT3 increased plasma membrane 
lipid clustering and reduced phospholipid packing of cellular membranes, suggesting that this gene modulates 
plasma membrane lipid organization32.

PITPNA encodes a family of lipid-binding proteins that transfer molecules of phosphatidylinositol or 
phosphatidylcholine between membrane surfaces33. One isoform of Diacylglycerol Kinase, DGKθ, is a 
transferase that generates phosphatidic acid (another phospholipid involved in cell signaling) by catalyzing 
the phosphorylation of diacylglycerol using ATP as the phosphate donor, having a role in lipid homeostasis34.

Growth Differentiation Factor 11 (GDF11) is a member of the Transforming Growth Factor β superfamily. 
This gene has been reported to be involved in adipogenesis by reducing lipid deposition35. Also, GDF11 inhibits 
peroxisome proliferator-activated receptor γ (PPAR-γ) expression, one of the central genes involved in adipocyte 
differentiation36.

A recent study in cultured cells reported that CYFIP2 is involved in thermogenesis and regulation of lipid 
metabolism in white adipocytes, explicitly influencing the browning of white adipocytes37. Other studies reported 
the possibility of the CYFIP2 locus being associated with diet-induced obesity and metabolic dysfunction in 
mice38,39. CYFIP2 was also among the top 10 novel candidate genes for obesity in humans in another study40.

The GSTA2 gene can also play a role in fat deposition and obesity, as this gene is related to oxidative stress, 
producing an antioxidant enzyme that reduces lipid peroxidation41. Oxidative stress can stimulate white adipose 
tissue deposition and alter food intake, triggering obesity. Studies demonstrated that oxidative stress can increase 
preadipocyte proliferation, adipocyte differentiation, and mature adipocyte size42,43. GSTA2 may also interact 
with CCAAT/enhancer binding protein-β (C/EBPβ) which is a fat deposition promoter44.

Some identified regulated genes are related to immune response and cytoskeleton remodeling pathways. 
TAPBPL and VTCN1 are involved in antigen presentation, allowing immune cells to monitor the body for 
intracellular infection45,46. H2BC15 also has its expression regulated by several immune stimuli in fish, which 
is probably related to its relevance to immune response47. PACSIN1 can transform the liposome membrane 
into tubes with different diameters, generating various membrane morphologies48,49. CYFIP2 protein is also a 
component of the WAVE regulatory complex (WRC) that controls actin cytoskeleton organization50.

Other regulated genes have already been associated with meat quality. The TRIM45 gene regulates cell 
proliferation, growth, and apoptosis and was highlighted in Gene Ontology (GO) terms, linked to meat quality51. 
In another study, analyzing gene expression by RNA sequencing in LT muscle of Maremmana and Chianina cattle 
breeds, TRIM45 was identified as a gene overexpressed in tender Chianina meat52. TMEM87A and TMEM175 
are part of a huge family of transmembrane protein genes (TMEM). Variants in TMEM genes were associated 
with obesity (and body fat traits) in human adults and children53,54. Moreover, a previous work with this Nellore 
population found TMEM39B as a hub gene in co-expression networks associated with intramuscular fat content 
traits4.

The ALDH5A1 gene, which is related to glycolipid metabolism pathways, has been identified to play roles 
in IMF deposition55. GANC is an enzyme in glycogen metabolism, which is involved in the hydrolysis of this 
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polysaccharide. This gene was linked to energy, carbohydrates, and lipid metabolism pathways. It was also 
identified as a candidate gene to explain differences in intramuscular fat observed between divergent lines 
of domestic rabbits56. NCAPD2 enables histone binding activity and is involved in mitotic chromosome 
condensation and segregation57,58.

Our enrichment analysis revealed pathways related to lipid metabolism. Regarding the phospholipid pathways, 
lipid intermediates, such as diacylglycerol and fatty acids released from phospholipids, play a crucial role in 
triglyceride synthesis within the body59,60. Additionally, we identified genes associated with immune response and 
cytoskeleton remodeling. One of the consequences of obesity is the presence of chronic inflammation in adipose 
tissue. When there is an increase in adipocyte volume, the enlarged adipocyte begins producing proinflammatory 
chemokines, which in turn recruit immune cells to the tissue61,62. Also, when the adipocyte enlarges to store lipids, 
the cell must undergo a remodeling of its cytoskeleton63. This means that fat deposition, immune response, and 
cytoskeleton remodeling are associated, and with a gain of adipose tissue mass, genes and pathways related to 
immune response and cytoskeleton remodeling are likely upregulated.

Some of the genes regulated by the six eQTLs located in ATAC-Seq peaks in our study have been associated in 
the past with fat-related phenotypes, having their expression regulated by other variants14,20. An example of this 
is the eQTLs rs721933457 and rs523028000, which in our study, regulate NCAPD2 and TAPBPL respectively. In 
another study with our current Nellore cattle population, these genes were regulated by different eQTLs that were 
associated with IMF14. Also, another variant located in TGM5 was associated with high triglyceride levels20, but in 
our study the eQTL that regulates this gene is a novel SNP (chromosome 21:55370318). In these cases, ATAC-Seq 
data can help us determine that the eQTLs rs721933457, rs523028000 and novel SNP (chromosome 21:55370318) 
are more likely the putative causal mutations, as this analysis prioritizes variants located in regulatory regions.

When considering the regions where the eQTLs were found within ATAC-Seq peaks, integrating multiple 
epigenomic marks provides further insights into their biological relevance within a spatial context; these regions 
are commonly referred to as chromatin states64. Chromatin states can be used to identify different genomic 
elements, such as active enhancers, transcription start sites, and insulators. This allowed us to identify regulatory 
regions and better explain gene expression regulation65. When visualizing the eQTLs located in ATAC-Seq 
peaks in IGV, four of them were co-located within regions where the chromatin state was predicted to act as 
insulators, alongside potential CCCTC-binding factor (CTCF) binding sites. Insulators are regions in the DNA 
where some elements can bind to protect the expression of genes from signals emitting from their surrounding 
regions. Insulators can protect gene expression in two ways: by acting as an enhancer-blocking element or by 
functioning as a barrier, preventing the advance of condensed chromatin that could silence expression66. CTCF 
are highly conserved zinc finger proteins that act as a transcription factor by activating and repressing gene 
expression or by acting as an insulator protein. CTCF can recruit other transcription factors while binding to 
chromatin domain boundaries, preventing the advance of condensed chromatin and creating an open chromatin 
region67,68. An eQTL located in a cis-regulatory element such as insulators can, in turn, affect gene expression69.

SNPs rs523028000 and rs456412241 are in a region with low signal and active enhancer, respectively. An active 
enhancer is a cis-regulatory region where some elements, such as transcription factors, can bind to regulate the 
intensity of gene transcription70.

In conclusion, by integrating different methods, we could identify putative regulatory variants that are 
associated with BFT and IMF. Most of our genes and pathways regulated by eQTLs are directly or indirectly 
involved in lipid metabolism and fat deposition. Furthermore, we identified eQTLs that are in open chromatin 
regions, colocalized with a profile of noteworthy chromatin states, which assist us in pinpointing candidate 
regulatory variants. This finding can contribute to improving livestock traits of economic relevance by helping 
us unravel how these regulatory genomic variants affect fat traits in Nellore cattle.

Materials and methods
Animals, samples, and phenotypes
Experimental procedures related to animal handling and care were approved by the Institutional Animal Care and 
Use Committee Guidelines of the Brazilian Agricultural Research Corporation (EMBRAPA) (CEUA 01/2013). 
All methods were performed in accordance with the relevant guidelines and regulations. This study was carried 
out in compliance with the ARRIVE guidelines.

We used a population of 374 Nellore steers derived from an experimental herd of EMBRAPA, that originated 
from 34 unrelated bulls representing the main Brazilian Nellore genealogies. Between the years 2009–2011, 
animals were raised in grazing systems and finished in feedlots with the same handling and nutritional conditions. 
Steers were slaughtered at an average age of 25 months and 452 kg in a commercial slaughterhouse located in 
Bariri (São Paulo, Brazil), following the Brazilian Ministry of Agriculture, Livestock and Food Supply (MAPA) 
guidelines. For additional details see71,72.

A muscle sample from the Longissimus thoracis (LT) was collected for RNA extraction. Approximately 5 g was 
collected from the right side of each carcass between the 12th and 13th ribs immediately after the animal’s death 
and stored at − 80 °C until analysis. At the beginning of the feedlot period, initial backfat thickness (iBFT, mm) 
was measured on the animal’s back, between 12th and 13th ribs using a Pie Medical Aquila ultrasound device 
(Pie Medical, Inc. Maastricht, The Netherlands) equipped with a 17-cm 3.5 MHz transducer73. For measurements 
of intramuscular fat content (IMF, %) and final backfat thickness (fBFT, mm), a beef sample of the LT muscle 
(12th–13th ribs, left side of the carcass) was collected 24 h after slaughter. For IMF analysis, beef samples of 
approximately 100 g were lyophilized and ground, then IMF was measured using the Ankom XT20 extractor, 
following the AOCS protocol96, more details have already been described in another study of our group72. The 
fBFT was measured using a graduated ruler, as previously described71.
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DNA extraction and high‑density genotyping data
Genotyping analysis was performed for the 374 animals at the Bovine Functional Genomics Laboratory ARS/
USA and ESALQ Genomics Center (Piracicaba, São Paulo, Brazil). Steers and their sires were genotyped using 
the BovineHD 770 k BeadChip (Infinium BeadChip, Illumina, San Diego, CA, USA), which included 783,450 
SNPs, following Illumina’s protocol. The DNA of the steers was isolated from the blood through a salting-out 
method. As a quality control step, SNPs with call rate ≤ 95%, minor allele frequency (MAF) ≤ 5%, located in 
sexual chromosomes, and those not mapped in the Bos taurus ARS-UCD1.2 reference genome were excluded 
from further analysis. This analysis was already described in more detail by72,74. Sires’ DNA was extracted from 
straws of frozen semen by using a standard phenol–chloroform method; more details can be found in75. Whole-
genome sequence data of the 26 sires were obtained with the Illumina HiSeq 2500 System (Illumina Inc., San 
Diego, CA, USA), as previously described by76. Briefly, reads were trimmed and filtered using the Trimmomatic 
v.0.3677 program and mapped to the ARS-UCD1.2 Bovine reference genome using the Burrows–Wheeler Aligner 
(BWA) v.0.7.1778. Samtools v.1.879 was used to sort the mapped reads by sequence coordinates. The SNPs were 
then called using the GATK ‘HaplotypeCaller’.

RNA‑sequencing
RNA-Sequencing data acquisition was already described elsewhere17. Briefly, a subset of 192 animals from the 
374 animals used for the phenotype association analysis were selected. A sample of 100 mg of the LT muscle 
was processed using the Trizol reagent (Life Technologies, Carlsbad, CA, USA), following the manufacturer’s 
guidelines. After extraction, RNA integrity was verified using the Bioanalyzer 2100 (Agilent, Santa Clara, CA, 
USA), and the samples presenting RNA integrity numbers (RIN) greater than 7 were considered for the next 
analyses. A total of 2 µg of RNA from each sample was used for the cDNA library preparation, according to 
the protocol described in the TruSeq RNA Sample Preparation kit v2 guide (Illumina, San Diego, CA, USA). 
The libraries were sequenced using the Illumina HiSeq2500 ultra-high-throughput sequencing system with 
the TruSeq SBS kit v3-HS (200 cycles), as described in17. All sequencing analyses were performed at ESALQ 
Genomics Center (Piracicaba, São Paulo, Brazil). After sequencing, the SeqyClean package v. 1.4.13 (https://​
github.​com/​ibest/​seqyc​lean) was utilized to remove low complexity reads and adapter sequences from the library 
preparation step. For quality control visualization, FastQC software v. 0.10.1 (https://​www.​bioin​forma​tics.​babra​
ham.​ac.​uk/​proje​cts/​fastqc/) was used. The RNA-sequencing dataset analyzed in this study can be found in the 
European Nucleotide Archive (ENA) repository (EMBL-EBI) under the following accession codes: PRJEB13188, 
PRJEB10898, and PRJEB19421.

Variant calling analysis and SNP annotation
SNPs were identified in the gene expression data using the Genome Analysis Toolkit (GATK) program v. 4.1.0.0 
in Genomic Variant Call Format (GVCF) mode, following the program’s best practices manual80,81. Data from 
192 animals with RNA-seq information were used to call the variants individually by haplotype, and the Ensembl 
Bos taurus database SNP (release 96) was used as a database of known variants. Identified SNPs that had variant 
quality based on Phred (Phred scaled polymorphism probability) > 30 and minimum variant coverage > 10, 
were also filtered for call rate > 95% and MAF (minor allele frequency) > 5%. Non-biallelic SNPs located on 
sex chromosomes were not considered in the analysis. This variant acquisition step from RNA-Seq data was 
previously described in another study of our group14.

SNP imputation data
Identified SNPs in the genomic DNA sequence of 26 sires were jointly imputed imputed to 778 progenies with 
genotypes obtained from the BovineHD BeadChip 770 k panel (Illumina, San Diego, CA, USA), using the 
programs Eagle82 (for phasing) and Minimac383 (for imputation). Imputation accuracy was obtained using leave-
one-out cross-validation, in which each sequenced animal was removed once from the reference population 
and included in the target population along with the progenies genotyped with the high-density panel. Thus, 
imputation accuracy metrics were calculated by comparing imputed alleles to alleles observed in the DNA 
sequence of each sire. The allelic imputation error rate was estimated as the ratio between the number of 
incorrectly imputed alleles and the total of alleles imputed. We also estimated the correlation between imputed 
and actual genotype. Only SNPs with a correlation greater than 0.98 and allelic imputation error rate < 2% were 
kept for further analysis. Therefore, positions with low imputation accuracy were discarded. Additionally, only 
SNPs in autossomol chormossome and with an allele frequency greater than 5% were maintained for the analysis.

The 123,300 SNPs identified in RNA sequencing of 192 animals within the progenies (call rate < 95%) were 
subsequently jointly imputed to the panel formed by imputed DNA-Seq variants plus SNPs from the high-
density panel, using Eagle and Minimac3 programs for phasing and imputation, respectively. After imputation, 
96.195 SNPs were kept with R2 (calculated by Minimac3) > 0.90. The SNPs were also filtered for allele frequency, 
removing monomorphic and SNPs with MAF < 5%. A graphical summary of the imputation analysis can be seen 
in Supplementary Fig. 9.

Population stratification test
Population stratification was investigated by principal component analysis (PCA) using the genotypes from the 
BovineHD 770 k BeadChip and our population of 192 (for eQTL mapping) and 374 animals (for association 
analysis). We first filtered the variants for MAF > 5% and call rate > 95%. Then, using the PLINK software84 we 
tested the population stratification with 446,498 genotypes and used the sires to test for sample clustering since 
our population was sired by 34 unrelated bulls.

https://github.com/ibest/seqyclean
https://github.com/ibest/seqyclean
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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eQTL identification and functional annotation
The imputed SNPs were filtered for the subset of 192 animals with RNA-Seq information. Additionally, we 
performed quality control of the variants keeping only SNPs with MAF > 5% and call rate > 95%, totaling 4,436,504 
SNPs. PLINK v. 1.0784 was used in the set of imputed SNPs to select these, based on linkage disequilibrium (LD) 
calculation and pruning of the variants. Parameters applied to variant pruning were pairwise connections with a 
minimum r2 of 0.8 and a window size of 100 SNPs, shifting 10 SNPs in each step, to obtain a subset of informative 
SNPs (tag-SNPs) within linkage disequilibrium (LD) blocks. The R package, Matrix eQTL v. 2.385, was used 
to perform cis and trans-eQTL identification, with the expression of 12,991 muscle genes data normalized in 
log2-CPM (counts per million of mapped reads) and adjusted for lane and flow cell effects; the genotype file 
containing the tag-SNPs; the first two main principal components (PC1 and PC2), to correct putative effects 
from population stratification, and CG (animals from the same farm, year, and slaughter date) as covariates 
in the model. In this study, cis-eQTLs were defined as SNPs located up to 1 Mb away from the regulated gene, 
while trans-eQTLs were SNPs located > 1 Mb away from the gene. The additive effect of each gene-SNP pair was 
tested by linear regression and false discovery rate (FDR), based on the Benjamini–Hochberg methodology86, 
was calculated separately for cis and trans-eQTLs85. The lists of cis and trans-eQTL (FDR < 5%) were annotated 
separately using VEP v. 101.087.

Phenotype association analysis
Association between 30,581 significative eQTLs (FDR < 5%) and the phenotypes were performed in PLINK v. 
1.07 software84, using a linear model and a SNP-by-SNP approach, with adjustment for multiple tests, and a 
population of 374 animals, the same used by13. This analysis was performed considering the same effects used 
in the eQTL mapping, being PC1, PC2, and CG. Furthermore, following the model used in a previous study 
by our research group13, hot carcass weight was included in the model as a covariate. SNPs associated with the 
phenotype at FDR < 10%86 were considered significant.

Gene’s annotation and functional enrichment
Annotation of eQTL-regulated genes was performed using the Ensembl Biomart tool (Ensembl Genes 104). To 
find molecular pathways in which genes regulated by the representative eQTL were involved, we used MetaCore 
software (https://​portal.​genego.​com/) from Clarivate (London, GBR) with the Homo sapiens database and the 
list of annotated genes.

ATAC‑Seq
We performed ATAC-Seq analysis in two LT samples from Nellore males, purchased from a commercial 
slaughterhouse, and then replicated in two technical replicates for each sample using the protocol described by88. 
A paired-end sequencing (2 × 100) using HiSeq 2500 was performed, and approximately 40 million reads were 
generated per library. Trimmomatic (v:0.36)77 was used to remove adapters from read ends, using the FastQC 
tool for quality control89,90. Then, we generated ATAC-Seq pileup files from FASTA files using the nfcore/atacseq 
pipeline implemented in Nextflow (https://​nf-​co.​re/​atacs​eq). A consensus peak mapping was obtained from the 
four samples by considering only regions with counts higher than zero in all. In these regions, the FRiP score 
was calculated for each of the replicates, and an ATAC-Seq Peak region was considered when the average FRiP 
score in the four replicates was higher than 0.2, following the ENCODE consortium (Encyclopedia of DNA 
Elements) recommendations91. The deepTools v.3.5.192 was used to create the matrix, heatmaps and line plots of 
overlapping peaks with TSS from individual and merged replicates as another quality control93.

To explore the genomic overlap between eQTLs associated with the phenotypes and ATAC-Seq peaks, we 
used an in-house R script based on the subsetByOverlaps function from the GenomicRanges R/Bioconductor 
package94. The Integrative Genomics Viewer (IGV – v.2.15.4) was used for data visualization95. The ATAC-Seq 
dataset analyzed in this study can also be found in the ENA repository (EMBL-EBI) under the accession code 
PRJEB64479.

Data availability
The datasets used in this study can be found in online repositories. The RNA-sequencing dataset analyzed in 
this study can be found in the European Nucleotide Archive (ENA) repository (EMBL-EBI) under the following 
accession codes: PRJEB13188, PRJEB10898, and PRJEB19421. The Atac-Seq dataset analyzed in this study can 
also be found in the ENA repository (EMBL-EBI) under the accession code PRJEB64479. Accession: https://​
www.​ebi.​ac.​uk/​ena/​brows​er/​view/​PRJEB​13188; https://​www.​ebi.​ac.​uk/​ena/​brows​er/​view/​PRJEB​10898; https://​
www.​ebi.​ac.​uk/​ena/​brows​er/​view/​PRJEB​19421; https://​www.​ebi.​ac.​uk/​ena/​brows​er/​view/​PRJEB​64479.
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