

45ª Reunião Anual da Sociedade Brasileira de Zootecnia

Lavras, MG - UFLA - 22 a 25 de julho de 2008

Degradabilidade in situ da matéria seca das silagens de seis híbridos de sorgo¹

Vera Lúcia de Araújo², Eloísa de Oliveira Simões Saliba³, Lúcio Carlos Gonçalves³, José Avelino Santos Rodrigues⁴, Luiz Orcírio Fialho de Oliveira⁵, Marina Greco Magalhães Guerra de Andrade⁶

Resumo: Foi avaliada a degradabilidade *in situ* da matéria seca das silagens de seis híbridos de sorgo em delineamento estatístico de parcelas subdivididas. As médias foram comparadas pelo teste SNK (*Student Newman Keuls*). Foram utilizados três bovinos Nelores para incubação das amostras no rúmen. As silagens dos híbridos avaliados não tiveram degradabilidades efetivas da MS diferentes para o tempo final de incubação de 96 horas. Porém, a silagem do híbrido Volumax apresentou maior degradabilidade potencial e maior taxa de degradação da MS.

Palavras-chave: degradabilidade, forrageira, valor nutritivo

Dry matter in situ degradability of silage of six sorghum hybris

Abstract: Dry matter in situ degradability silage from six hybrids of sorghum was evaluated using a split splot design. SNK (*Student Newman Keuls*) test was used to compare means. Were used three Nelore bovine for the sample rumen incubation. Dry matter *in situ* degradability was no different among the silages. Volumax had had the greatest dry matter potential degradability and dry matter degradation rate.

Keywords: degradability, forage, nutritive value

Introdução

Para se obter uma formulação eficiente de dietas, predição da resposta animal e avaliação qualidade de forrageiras é necessário que se tenha estimativas acuradas da digestibilidade das forrageiras. A técnica *in situ* de incubação de sacos de náilon no rúmen é capaz de estimar a taxa de desaparecimento e o potencial de degradabilidade dos alimentos e de seus constituintes. A técnica é muito utilizada para avaliar o valor energético e protéico dos alimentos para ruminantes, além de gerar dados possíveis de predizer o consumo e a avaliar os efeitos de fatores antinutricionais (Minson & Wilson, 1994). A técnica é rotineiramente utilizada quando se que obter dados sobre as condições de digestão ruminal de um limitado número de amostras. Além disso, permite o estudo de alimentos sob condições ruminais constantes de diferentes alimentos, e também o estudo de um alimento sob diferentes condições ruminais. O objetivo deste trabalho foi estudar a degradabilidade da matéria seca das silagens de seis diferentes silagens de sorgo utilizando a técnica de degradabilidade *in situ*.

Material e Métodos

Foram avaliadas seis silagens de diferentes híbridos de sorgo de duplo propósito (ATF54*9929036, CMSXS217*9929012, CMSXS206*9930002, BR 601, BR 700 e Volumax). O cultivo foi feito na

¹Parte da tese da primeira autora – Projeto financiado pela Embrapa Milho e Sorgo

²Médica Veterinária, Doutora em Ciência Animal EV/UFMG – Bolsista PROSET-CNPq/UFT

³ Professor Adjunto do Departamento de Zootecnia da EV/UFMG

⁴ Pesquisador da Embrapa Milho e Sorgo

⁵Engenheiro Agrônomo (UFV), Médico Veterinário (UFMS), Doutor em Ciência Animal EV/UFMG

⁶Médica Veterinária EV/UFMG

Embrapa Milho e Sorgo (Sete Lagoas, MG) e os materiais ensilados em silos de PVC em estádio de grãos leitosos/pastosos. Após a abertura dos silos o material foi submetido à pré-secagem, sendo parte das amostras foram moídas a cinco (5) mm a fim de ser submetido a incubação ruminal em sacos de náilon, e parte a um (1) mm para determinação da MS a 105°C (AOAC, 1995). O experimento foi conduzido na Fazenda Rancho Alegre (Campo Grande, MS) e foram utilizados três bovinos machos da raça Nelore, peso vivo médio de 350 kg providos de cânula ruminal. A relação peso da amostra/área do superficial do saco de náilon utilizada foi de 12,5 mg/cm² (Nocek, 1988). Os sacos de náilon foram incubados simultaneamente e retirados nos tempos de incubação de 6, 12, 24, 48, 72 e 96 horas. Após a incubação no rúmen os saquinhos foram lavados em máquina de lavar, para posterior determinação da MS (AOAC, 1995). Para determinação do tempo de colonização (t₀) e fração solúvel seguiu-se a mesma metodologia incubação e avaliação dos resíduos. Utilizou-se delineamento em parcelas sub-divididas, sendo os animais os blocos, os genótipos os tratamentos e os tempos de incubação as sub-parcelas, e as médias foram comparadas pelo teste SNK (Student Newman Keuls) (P<0,05). As equações de regressão para o desaparecimento da matéria seca foram obtidas utilizando-se os procedimentos de análise de regressão não linear do método interativo do algoritmo de Marquardt. Para o cálculo da degradabilidade potencial das silagens foi utilizado o modelo proposto por Ørskov & McDonald (1979) modificado por Sampaio (1988), e para o tempo de colonização e as degradabilidades efetivas (DE) foram calculadas segundo modelo proposto por Ørskov & McDonald (1979).

Resultados e Discussão

A composição bromatológica das silagens avaliadas encontra-se na Tabela 1.

Tabela 1. Composição bromatológica das silagens avaliadas.

Híbridos	MS (%)	FDN (%)	FDA (%)	Lignina (%)
ATF54*9929036	33,99	60,81	37,79	4,95
CMSXS217*9929012	39,99	61,63	35,68	6,70
CMSXS206*9930002	36,61	58,05	36,36	4,70
BR 601	34,09	58,71	25,19	4,97
BR 700	35,46	61,40	35,19	3,57
VOLUMAX	40,18	58,07	35,18	5,21

As silagens dos híbridos ATF54*9929036 e Volumax obtiveram as maiores porcentagens de desaparecimento da MS nos horários de 6 e 24 horas de incubação (P<0,05). Já no tempo de 12 horas as silagens dos híbridos ATF54*9929036, Volumax e BR 700 também apresentaram maiores valores de desaparecimento de MS. Em 48 horas de incubação o desaparecimento da MS foi maior para as silagens dos híbridos ATF54*9929036, Volumax e BR 700 além do híbrido BR 601. Após 72 horas as silagens apresentaram desaparecimento da MS semelhantes (P>0,05). Os dados obtidos neste experimento convergiram para o modelo de exponencial proposto por Ørskov e McDonald (1979), adaptado por Sampaio (1988). Os parâmetros de degradação ruminal e a degradabilidade efetiva da MS das silagens (5 %) (Tabela 2). O maior potencial de degradação (A) foi obtido pela silagem do híbrido Volumax (77,25 %), seguida pela silagem do híbrido CMSXS206*9930002 (76,39 %). A maior taxa de degradação foi encontrada para a silagem do híbrido Volumax (2,91 %/h), seguido pelas silagens dos híbridos BR 601 (2,63 %/h), CMSXS217*9929012 (2,25 %/h), ATF54*9929036 (2,25 %/h), CMSXS206*9930002 (2,05 %/h) e BR 700 (2,24 %/h) (Tabela 2).

Na tabela 2 encontram-se os valores referentes aos parâmetros de degradabilidade das silagens avaliadas. As degradabilidades efetivas para taxa de passagem de 5 %/hora foram de 38,57 % para a silagem do híbrido ATF54*9929036; 37,15 % para CMSXS217*9929012; 37,34 % para CMSXS206*9930002; 38,96 % para BR 601; 36,63 % para BR 700 e 42,43 % para o Volumax. As degradabilidades efetivas foram maiores para a silagem do híbrido Volumax para todas as taxas de passagens. Silagens com elevados valores da fração solúvel no tempo zero (S) e menores taxas de degradação (c) favorecem um aumento na degradabilidade efetiva de silagens.

Tabela 2. Desaparecimento médio (%) da MS das silagens de sorgo nos horários de incubação no rúmen (horas)

Híbridos									
Horários(h)	ATF54*9929036	CMSXS217*9929012	CMSXS206*9930002	BR 601	BR 700	Volumax			
06	30,25 ^{Ad}	25,14 ^{Bd}	27,61 ^{Bd}	23,54 ^{Bd}	$24,62^{Bc}$	34,92 ^{Ac}			
12	35,22 ^{Ad}	27,69 ^{Bd}	$29,37^{\mathrm{Bd}}$	$27,72^{Bd}$	39,77 ^{Ab}	38,96 ^{Ac}			
24	43,91 ^{Ac}	39,36 ^{Cc}	36,03 ^{Cc}	41,48 ^{Cc}	$40,26^{\text{Cb}}$	47,23 ^{Ab}			
48	51,21 ^{Ab}	$44,03^{\mathrm{Bb}}$	$44,72^{\mathrm{Bb}}$	54,25 ^{Ab}	50,87 ^{Ab}	55,21 ^{Ab}			
72	$57,40^{\mathrm{Aa}}$	58,01 ^{Aa}	57,18 ^{Aa}	58,40 ^{Aa}	56,88 ^{Aa}	62,32 ^{Aa}			
96	$60,98^{Aa}$	62,89 ^{Aa}	59,68 ^{Aa}	62,98 ^{Aa}	59,21 ^{Aa}	66,73 ^{Aa}			
A (%)	75,00	75,00	76,39	75,00	74,05	77,25			
c (%/h)	2,25	2,25	2,05	2,63	2,24	2,91			
S(%)	22,18	20,12	21,33	20,01	19,89	22,85			
B_{1} (%)	52,82	54,88	55,06	55,0	54,11	53,23			
\mathbb{R}^2	0,92	0,92	0,90	0,87	0,95	0,89			
0,05/h	38,57	37,15	37,34	38,96	36,63	42,43			

Médias seguidas por letras maiúsculas iguais na mesma linha (entre híbridos) e minúsculas na mesma coluna (entre horários) não são estatisticamente diferentes entre si pelo teste SNK (P>0,05). CV=8,23%. A= degradabilidade potencial; c= taxa fracional constante de degradação; S= fração rapidamente degradável ou fração solúvel que corresponde à porcentagem de desaparecimento no tempo zero; $B_1=$ fração lentamente degradável ou fração degradável obtida pela diferença entre o potencial de degradação e a fração solúvel (A-S); TC= tempo de colonização; $R^2=$ coeficiente de determinação

Conclusões

A silagem do híbrido Volumax apresentou maior degradabilidade potencial e maior taxa de degradação da MS.

Literatura citada

ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS - AOAC.. Official methods of analysis. 16ed. Washington: AOAC, 1995. 2000p.

MINSON, D.J.; WILSON, J.R. Prediction of intake as an element of forage quality. In: FAHEY Jr, G.C. FORAGE QUALITY, EVALUATION AND UTILIZATION. Madison: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, p. 533-563, 1994.

NOCEK, J.E. *In situ* and other methods to estimate ruminal protein and energy digestibility. *Journal of Dairy Science*, v.71, n.8, p.2051-2069, 1988.

ØRSKOV, E.R.; McDONALD, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. *Journal of Agriculture Science*, v. 92, p. 499-503, 1979.

SAMPAIO, I.B.M. Experimental designs and modeling techniques in the study of roughage degradation in the rumen and growth of ruminants. Reading: University of Reading, 228p. 1988 (Thesis).