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Abstract: The low availability of phosphorus (P) in soil is one of the main constraints on crop
production. Plants have developed several strategies to increase P use efficiency, including
modifications in root morphology, the exudation of different compounds, and associations
with microorganisms such as arbuscular mycorrhizal fungi (AMF). This study aimed to
investigate the effect of sorgoleone compound on AMF colonization and its subsequent
impact on P uptake, rhizosphere microbiota, and sorghum growth. The experiment was
conducted in a greenhouse using the sorghum genotype P9401, known for low sorgoleone
production. Three doses of purified sorgoleone (20 µM, 40 µM, and 80 µM) were added
to low-P soil and plants were harvested after 45 days. Treatments included inoculation
with the arbuscular mycorrhizal fungi Rhizophagus clarus and a negative control without
inoculum. The addition of 40 and 80 µM of sorgoleone did not significantly increase mycor-
rhization. However, treatment with 20 µM sorgoleone combined with R. clarus inoculation
significantly increased total sorghum biomass by 1.6-fold (p ≤ 0.05) compared to the non-
inoculated treatment. AMF inoculation influenced only AMF colonization and the fungal
microbiota, without affecting the bacterial community, whereas sorgoleone showed no
effect on either. The activities of acid and alkaline phosphatases in the rhizospheric soil did
not differ significantly among the treatments. Furthermore, the sorghum genes CYP71AM1,
associated with sorgoleone biosynthesis, and Sb02g009880, Sb06g002560, Sb06g002540, and
Sb03g029970 (related to phosphate transport induced by mycorrhiza) were significantly
upregulated (p ≤ 0.05) in fine roots under these conditions. The 20 µM concentration of
sorgoleone can enhance AMF colonization in sorghum and promote plant growth under
low-P conditions, without significantly altering the microbiota.

Keywords: AMF colonization; P uptake; plant growth; Rhizophagus clarus; Sorghum bicolor

1. Introduction
Arbuscular mycorrhizal fungi (AMF) are vital soil microorganisms that establish a

non-pathogenic symbiotic relationship with the roots of most plant species. The symbiotic
relationship between plants and AMF plays a crucial role in enhancing soil exploitation and
improving nutrient acquisition efficiency, especially in cultivated crops such as maize [1,2],
sorghum [3–6], and soybean [7,8]. The dynamics of mycorrhizal colonization and the
environmental conditions influencing the symbiotic uptake of phosphate is essential for
optimizing phosphorus (P) nutrition in crops [9,10]. Investigating the role of AMF in
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plant nutrition, especially in low-nutrient soils, holds significant potential for practical
applications in agriculture. This is particularly important due to AMF’s capacity to alle-
viate both biotic and abiotic stresses on agriculturally important crops. AMF can induce
morphological, biochemical, and physiological changes in plants, including alterations in
gene expression, which can increase productivity. These effects are primarily attributed to
their ability to enhance nutrient and water uptake through fungal mycelium extension [11].
AMF is estimated to increase the contact surface between plants and soil by up to 20 times,
significantly enhancing phosphorus (P) absorption per unit of root length. This symbiotic
relationship plays a crucial role in the growth and productivity of mycorrhizal plants com-
pared to non-mycorrhizal ones. However, due to the complexity of mycorrhizal symbiosis,
a greater diversity of elements is necessary to strengthen AMF community structure, which
directly influences plant diversity and productivity [11]. Various AMF species contribute
to crop productivity, including Rhizophagus clarus (formerly Glomus clarum), a member
of the Glomeraceae family. This species has been shown to enhance nutrient uptake and
plant growth across multiple agricultural systems and is distributed worldwide. Moreover,
Rhizophagus can thrive and proliferate in semiarid ecosystems, even under conditions of
limited water availability [12]. Notably, R. clarus produces larger spores compared to other
species, such as R. irregularis and R. intraradices [13]. Due to these characteristics, R. clarus
has garnered significant attention, particularly for its ability to grow symbiotically while
utilizing myristate as a carbon and energy source [14,15].

Phosphorus deficiency is a major constraint on plant growth and crop yields in highly
weathered soils, which are prevalent in tropical agricultural regions where food security
remains a critical challenge. In these acidic soils, P becomes strongly bound to clay mineral
surfaces, reducing its availability for plant uptake [16,17]. Plants such as sorghum have
evolved morphological and physiological mechanisms to adapt to low P availability [18].
These adaptations include root system plasticity, the exudation of organic compounds,
and symbiotic associations with microorganisms, such as AMF. Together, these strategies
enhance the absorption and utilization of P nutrients by different crops [19,20]. While exist-
ing studies have primarily focused on the role of root system morphology in developing
cultivars that are efficient in P acquisition [21–25], other mechanisms, such as associations
with microorganisms [19,26,27], also contribute significantly to sorghum development in
low-P soils.

The distinctive physical, chemical, and biological properties of molecules released
in the rhizosphere, including sorgoleone [28], can shape the interactions between plants
and microorganisms [4,5,26,29–31]. A study showed that a sorghum genotype releasing
higher levels of sorgoleone per gram of dry root produced greater root and shoot biomass
compared to lines producing medium or low levels of sorgoleone during the early growth
stage [4]. Understanding the complex interactions between plant root exudates and the
diverse soil microbial communities has the potential to offer valuable insights for improving
crop sustainability and yield [4,5,11,26,31]. Under low-P conditions, the sorghum genotype
P9401, inoculated with Rhizophagus clarus without sorgoleone, exhibited a 15% mycor-
rhizal colonization. However, with the addition of 20 µM sorgoleone, the mycorrhizal
colonization increased significantly to 83%. This finding suggests that sorgoleone enhances
mycorrhizal colonization, P content, and dry weight in P9401 [26]. However, the mecha-
nism behind this enhancement remains unclear—whether increased sorgoleone directly
stimulates AMF, improves P availability to enhance plant growth, or indirectly promotes
root colonization through improved plant performance. The current study aimed to dissect
the effect of sorgoleone on mycorrhizal colonization and rhizosphere microbiota and its
role in improving P acquisition efficiency and sorghum growth.
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2. Material and Methods
2.1. Sorgoleone Production and Purification

The sorghum genotype from Embrapa Maize and Sorghum Breeding Program
(BR007B) was used to produce sorgoleone, as described by [26] for the greenhouse experi-
ment. Briefly, after sorghum seed disinfection, they were placed on filter paper moistened
with deionized water and kept in a germination chamber at a temperature of 25 ◦C for
seven days in darkness. The sorgoleone extraction was performed by immersing roots in
a solution of glacial acetic acid/dichloromethane solution 0.0025% (v/v) for 5 min. The
resulting solution was filtered and the solvent was evaporated in a rotary evaporator
at 40 ◦C. Subsequently, the roots were subjected to a forced air circulation oven at 65 ◦C
until a constant weight was attained, allowing for the determination of dry mass.

The crude sorgoleone extract was applied to silica plates with hexane–isopropanol
mixture (9:1 v/v), and the sorgoleone (RF = 0.35) band was carefully scraped off the plates
and eluted with dichloromethane. The eluted sample was concentrated and the identifi-
cation of sorgoleone was accomplished by comparing it with a standard retention time
(Figure 1), as established by [32], utilizing High-Performance Liquid Chromatography
(HPLC) with a Watters model Alliance 2695, PDA detector 2998, and a column Xbridge
C18 (150 mm × 4.6 mm × 3.5 µm). During the chromatographic run (at 1.0 mL·min−1),
the mobile phase consisted of acetonitrile (75% v/v) and an aqueous acetic acid solution
(2.5% v/v), and the elution was monitored at a wavelength of 280 nm at room tempera-
ture (RT). The calibration curve (ranging from 0.015 to 0.125 mg mL−1), with a purified
sorgoleone standard with a purity of 97.75%, was used to identify sorgoleone’s peak.
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Figure 1. Chromatogram obtained using UPLC-QToF equipment for the sorgoleone standard at
500 ng mL−1 (A) and extracted from sorghum genotype BR007B (B) analyzed on a Waters Acquity
UPLC BEH column in positive mode, with extracted ion m/z 359.2222 [M+H]+. The analysis was
performed at Embrapa Agroindústria Tropical in Fortaleza, CE. The arrow indicates the retention
time of the sorgoleone standard (11.23 min) and BR007B (11.25 min), followed by its relative area
(71—standard and 142—BR007B).

2.2. Inoculation of the P9401 Sorghum Genotype with Arbuscular Mycorrhizal Fungi and
Sorgoleone Under Controlled Conditions

Sorghum P9401 genotype seeds [33] were germinated in paper rolls within a growth
chamber and after four days were transplanted into pots filled with 2 kg of red latosol
soil with a clayey texture (64% clay) from the Cerrado area at the Embrapa Maize and
Sorghum Experimental Station in Sete Lagoas, Minas Gerais, Brazil (19◦28′ S, 44◦15′ W, at
an altitude of 732 m above sea level), as described by [26,34]. The soil properties were as fol-
lows: Mehlich 1 extractable phosphorus (P) = 2.8 mg dm−3; potassium (K) = 44.3 mg dm−3;
calcium (Ca) = 1.78 mg dm−3; magnesium (Mg) = 0.35 mg dm−3; cation exchange ca-
pacity (CEC) = 6.6 cmolc dm−3; potential acidity (H + Al) = 4.36 cmolc dm−3; base
saturation = 33.9%; and organic matter (OM) = 3.49 g kg−1. To improve these properties,
dolomite lime (2 g kg−1) and gypsum (0.5 g kg−1) were applied, and triple superphosphate
was added to reach a final P concentration of 5 mg dm−3. The soil was left non-sterilized
and retained its indigenous AMF community.
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The experiment involved eight treatments distributed in a completely randomized
design, consisting of 0 and 500 spores of mycorrhizal fungus Rhizophagus clarus supple-
mented with 0, 20, 40, and 80 µM sorgoleone. The inoculum was obtained from cultures
of R. clarus (T.H. Nicolson and N.C. Schenck), C. Walker and A. Schüßler, using Brachiaria
decumbens Stapf. Prain. as the host plant, maintained in a greenhouse for three months in
2000 mL pots. The roots of B. decumbens were collected, cut into small pieces, and mixed
with the remaining soil. For spore counting, 1 g of inoculum was homogenized in water,
sonicated, and filtered through sieves (500–38 µm) to remove organic material. The final
fraction was centrifuged in a 20–60% sucrose gradient, and spores were collected from
the supernatant on the 38 µm sieve, then counted on a grooved plate using an AXIO
Zoom V16 stereomicroscope (Zeiss, North York, ON, Canada) [35,36]. The inoculation with
R. clarus consisted of a mixture of 500 spores of R. clarus per plant with soil and grass root
fragments. Each treatment involved two plants per pot, and three pots were employed per
treatment. The sorgoleone solution, prepared in ethanol, was applied by adding 200 µL of
each concentration directly into the planting hole of each seedling, applied once. Ethanol
solvent was used as control [37].

Forty-five days after inoculation, the shoots were harvested, and the roots of both
plants were carefully removed from the pots and thoroughly washed. Measurements were
taken to assess root and shoot dry weight, P content, root morphology, and AMF coloniza-
tion. The values represent the average of the two plants per pot. Roots were separated from
the shoot, scanned, and analyzed with the software WinRHIZO v. 4.0 (Regent Systems Inc.,
Quebec City, QC, Canada) to measure traits related to root morphology, such as total root
surface area (SA), surface area of roots with diameters between 0 and 1 mm (SA1), 1–2 mm
(SA2), and larger than 2 mm (SA3) (cm2), total root length (L), and average root diameter
(D) [38]. Roots and shoots were individually dried at 65 ◦C in a forced-air oven until a
constant weight was achieved, allowing for the determination of the dry weight. For P
content analysis, root and shoot tissues were ground using a Wiley mill and underwent
nitric perchloric acid digestion at the Laboratório de Análises Ambientais e Agrícolas
(LABRAS, Monte Carmelo, MG, Brazil) [39]. The P content was calculated by multiplying
the dry weight of shoots and roots by their respective P concentrations.

2.3. Qualitative and Quantitative Assessments of Mycorrhizal Colonization

Fine fresh roots (~1 g) from the sorghum plants were placed in 70% (v/v) ethanol and
stored in a refrigerator at 4 ◦C for 3 days. Then, the roots were washed with deionized
water, clarified in a potassium hydroxide solution [KOH 10% (w/v)] overnight at RT, and
washed and immersed in hydrochloric acid (HCl 0.3 M) for 30 min at RT. Following the
acid treatment, the roots were stained with trypan blue solution [0.01% (w/v) trypan blue,
2.5% (v/v) acetic acid, and 50% (v/v) glycerol] for 30 min at RT.

The stained roots were transferred to conical tubes containing an acidified glycerol
solution (1:1 glycerol and 0.3 M HCl). Mycorrhizal colonization was quantified using the
gridline intersect method, as described by [40] with modifications from [26]. Total colo-
nization was calculated by determining the proportion of intersections exhibiting specific
fungal structures, such as vesicles or arbuscules. This assessment was conducted under
an Axio Zoom V16 stereoscope (Zeiss, North York, ON, Canada) at 20-fold magnification,
covering 100 intersection points per root sample.

Mycorrhizal colonization data were analyzed using analysis of variance (ANOVA),
and treatment means were compared using Tukey’s test (p ≤ 0.05). Statistical analysis was
conducted using Sisvar software, version 5.6 [41]. To ensure accurate statistical evaluation,
mycorrhizal colonization percentages were normalized through an arcsine square root
transformation prior to analysis.
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2.4. Sorghum Gene Expression

Total RNA was isolated from fine root tissues of sorghum using the SV Total RNA
Isolation System kit (Promega Corporation, Madison, WI, USA), according to the manu-
facturer’s instructions. Total RNA was used for cDNA synthesis using the High-Capacity
cDNA Reverse Transcription kit (Applied Biosystems, Foster City, CA, USA), following
the manufacturer’s instructions. Transcripts were quantified by quantitative real-time PCR
(qPCR-RT), using SYBR Green technology with the ABI Prism 7500 Fast system (Applied
Biosystems, Foster City, CA, USA). The relative gene expression (RQ) was calculated using
the 2−∆∆CT method [42].

The expression profile of the genes related to sorgoleone biosynthesis—CYP71AM1 [43],
the phosphate transport induced by mycorrhiza—Sb02g009880, Sb06g002560, Sb06g002540,
and Sb03g029970 [44], and AM3 and RiEF (Table 1) were assessed in the roots of the P9401
sorghum genotype with 0 and 20 µM sorgoleone inoculated and non-inoculated with
R. clarus, as described above. We used 18S rRNA as the reference gene (Table 1), and all
reactions were performed in triplicate.

Table 1. Primers used for gene expression analysis in sorghum roots by quantitative real-time
PCR (q-PCR).

Description Gene Primer Sequence (5′–3′)

Cytochrome P450 enzyme involved in
biosynthesis of sorgoleone CYP71AM1 21G12 Fwd—AAGATCCAAGGCTACCATGTGC

Rev—AACGTTGGCGACGACTATTG

AMF colonization AM3 SbAM3 Fwd—GGCAGCAACAAGGCTAATTC
Rev—ACCCTTGTGACGGAGAACAC

Rhizophagus irregulares
Elongation factor RiEF RiEF Fwd—TGTTGCTTTCGTCCCAATATC

Rev—GGTTTATCGGTAGGTCGAG

AMF-induced Pi transporter Sb02g009880 SbPT8 Fwd—GCAGCGAGGCCAATGAGACT
Rev—TTGGCTCCGGTAGGAAGCAG

AMF-induced Pi transporter Sb06g002560 SbPT9 Fwd—GAGGACGAGCCGTTCAAGAG
Rev—CGCGACGGAGAAGAAGTACC

AMF-induced Pi transporter Sb06g002540 SbPT10 Fwd—CACCATGTGCTGGTTACTTC
Rev—GATAATCGCCTGAGTACGTG

AMF-induced Pi transporter Sb03g029970 SbPT11 Fwd—CGTGGTTCCTTCTGGACATA
Rev—TCTCGAACACCTCCTTGAGT

Endogenous control 18S rRNA 18S Fwd—AATCCCTTAACGAGGATCCATTG
Rev—CGCTATTGGAGCTGGAATTACC

2.5. Microbial Diversity and Composition in the Sorghum Rhizosphere
2.5.1. Soil DNA Extraction

Total DNA was extracted from 0.45 g of rhizospheric soil samples using the DNeasy
PowerSoil Pro Kit (Qiagen, San Diego, CA, USA), according to the manufacturer’s in-
structions. DNA concentration was determined using a Nanodrop® spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA), and the samples were adjusted to a final
concentration of 5 ng µL−1.

2.5.2. 16S and 28S rRNA Gene Amplification

For bacterial community analysis, the 16S rRNA gene was amplified using the
fluorescence-labeled 8F-FAM primer (5′-AGAGTTGATCCTGGCTCAG-3′) [45] and the
1492R primer (5′-TACGGTACCTTGTACGACTT-3′) [46]. The PCR reaction mixture con-
tained 2.5 ng of DNA, 1.0 µM of each primer, 1X reaction buffer, 3.12 mM MgCl2, 0.125 mM
of each dNTP, and 1.25 U of Taq DNA polymerase (Invitrogen, Paisley, UK), in a final
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volume of 50 µL. Amplification was carried out with an initial denaturation at 94 ◦C for
3 min, followed by 25 cycles of 94 ◦C for 45 s, 55 ◦C for 45 s, and 72 ◦C for 2 min, with a
final extension at 72 ◦C for 5 min.

For the analysis of the AMF community, a nested PCR approach was used
to amplify the 28S rRNA gene. The first PCR reaction utilized the primers LR1
(5′-GCATATCAATAAGCGGAGGA-3′) and FLR2 (5′-GTCGTTTAAAGCCATTACGTC-3′) [47],
and the reaction mixture contained 2.5 ng of DNA, 1.0 µM of each primer, 1X reac-
tion buffer, 2.5 mM MgCl2, 0.125 mM of each dNTP, 1.5 U of Taq DNA polymerase
(Invitrogen, Paisley, UK), and 1 mM betaine, in a total volume of 50 µL. For the sec-
ond PCR, 2.5 µL of the first reaction product was used, along with the FAM-labeled
FLR3 primer (5′-TTGAAAGGGAAACGATTGAAGT-3′) and the HEX-labeled FLR4 primer
(5′-TACGTCAACATCCTTAACGAA-3′) [48], at a final concentration of 1.0 µM each, 1X re-
action buffer, 2.5 mM MgCl2, 0.125 mM of each dNTP, and 1.5 U of Taq DNA polymerase
(Invitrogen, Paisley, UK), in 50 µL. The amplification of AMF was performed with an initial
denaturation at 95 ◦C for 5 min, followed by 35 cycles of 94 ◦C for 1 min, 60 ◦C for 1 min,
72 ◦C for 1 min, and a final extension at 72 ◦C for 10 min.

A 1 µL aliquot of the PCR products was stained with GelRed (Biotium, Fremont, CA,
USA) and analyzed using 1% (w/v) agarose gel electrophoresis, with a 1 Kb Plus DNA
Ladder (Life Technologies, Carlsbad, CA, USA). The amplified DNA was visualized under
ultraviolet light using a transilluminator and photographed with the L-PIX Image EX
system (Loccus Biotecnologia, Cotia, SP, Brazil).

2.5.3. Terminal Restriction Fragment Length Polymorphism (T-RFLP) Profile Analysis

The amplified fragments were digested with the restriction enzymes AluI, HaeIII, and
HpaII (Invitrogen, Carlsbad, CA, USA). To prepare the DNA fragments for analysis, 2 µL of
the digestion product was mixed with 9.8 µL of deionized formamide (Applied Biosystems,
Foster City, CA, USA) and 0.2 µL of the ROX 500 standard (Applied Biosystems, Foster City,
CA, USA). The PCR-digested products were then resolved via capillary electrophoresis
using the Genetic Analyzer 3500XL (Applied Biosystems, Foster City, CA, USA), with data
analysis performed using GeneMapper 5.0 software (Applied Biosystems, Foster City, CA,
USA). Terminal Restriction Fragment (T-RF) peaks ranging from 30 to 500 bp and exhibiting
fluorescence intensities greater than 40 fluorescence units (peak height) were included in
the profile analysis.

The T-Rex program was used to align the samples and generate consensus profiles
from two parallel runs of each sample. Only T-RFs with a relative abundance of ≥1%
(calculated as the individual peak area divided by the total peak area) were considered for
data generation. The relative abundance of microbial species was determined based on the
average T-RF size values resulting from digestion with the restriction enzymes. To calculate
the similarity between fragment sizes, Past software [49] was used. The diversity profiles of
bacteria and AMF were then evaluated using non-metric multidimensional scaling (NMDS),
based on the Bray–Curtis distance matrix. To assess whether the sample groups exhibited
significantly different means, a one-way similarity analysis test (ANOSIM) was conducted,
with a significance level of 95% (p ≤ 0.05).

2.5.4. Bacterial Community Identification

The T-RFs were compared by aligning the observed fragment lengths with the pre-
dicted lengths generated from the three restriction enzymes. This alignment was performed
using the Microbial Community Analysis III (MiCA 3) tool (http://mica.ibest.uidaho.edu/,
accessed on 10 January 2023). For taxonomic classification, data were obtained from NCBI

http://mica.ibest.uidaho.edu/
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using the Taxonomy Status tool (https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/
tax_identifier.cgi, accessed on 10 February 2023).

2.6. Phosphatases Activities

The methods employed for assessing phosphatase enzyme activities were detailed
by [50]. The procedures encompass the extraction and quantitative determination of
micrograms of p-nitrophenol released during soil incubation with either p-nitrophenyl
phosphate or bis-p-nitrophenyl phosphate. This incubation occurs in a modified universal
buffer adjusted to pH 6.5 and 11 for acid and alkaline phosphatase, respectively. The
enzymatic reactions were halted by adding CaCl2 and NaOH, and the resulting solutions
were subjected to centrifugation at 6000× g for 5 min. Subsequently, the supernatant
was utilized for colorimetric measurements at 400 nm. Enzyme activities (µg pnitrofenol
h−1 g−1 dry soil) were assessed in triplicate for each rhizosphere soil sample.

2.7. Data Statistical Analysis

The analysis of variance (ANOVA) for root morphology traits, dry weight, P content,
mycorrhizal colonization, gene expression, and soil enzymatic activity was conducted using
the “ExpDes.pt” package [51] within the R software [52]. The Tukey test was employed for sta-
tistical comparisons of means, with a significance level of 95% (p ≤ 0.05). Principal Component
Analysis (PCA) was conducted with the “factoextra” package [53] in the R software.

For the relative abundance analysis of bacterial community phyla resulting from
taxonomic identification via T-RFLP analysis, ggplot2 [54] and reshape2 [55] packages in
the R software were utilized. ANOVA was conducted for the evaluated treatments using
the “ExpDes.pt” package [51], and for statistical comparisons of means, the LSD test was
employed, with a significance level of 95% (p ≤ 0.05).

3. Results
3.1. The Concentration of 20 µM Sorgoleone Promotes Increased Mycorrhization, P Content, and
Plant Biomass

The analysis of variance for root morphology, plant biomass, P content, and AMF colo-
nization revealed significant variability in the traits (Table 2). A significant increase in plant
length, total surface area, plant biomass, and shoot, root, and total P content was observed in
the presence of the fungus R. clarus with 20 µM sorgoleone (Table 2). However, higher concen-
trations of sorgoleone (40 and 80 µM) did not lead to a significant increase in mycorrhization
(Table 2), suggesting that the response to sorgoleone addition is dose dependent.

Table 2. Analysis of Variance (ANOVA) for morphophysiological traits and mycorrhization of the
sorghum genotype P9401 cultivated with different concentrations of sorgoleone, in the presence
(Myc+) and absence (Myc−) of the arbuscular mycorrhizal fungus (AMF) Rhizophagus clarus, under
low phosphorus (P) in greenhouse conditions.

Traits AMF
Sorgoleone (µM)

0 20 40 80

L (cm) Myc+ 2472.57 ± 268.16 ABa 3360.02 ± 579.36 Aa 2930.90 ± 34.44 Aa 1355.48 ± 439.70 Ba
Myc− 1769.02 ± 127.39 Aa 2082.23 ± 119.22 Ab 2830.16 ± 600.79 Aa 1683.63 ± 128.02 Aa

SA (cm2)
Myc+ 557.71 ± 20.88 Aa 636.14 ± 96.29 Aa 484.39 ± 52.93 Aa 214.84 ± 59.21 Ba
Myc− 347.40 ± 35.85 Ab 360.20 ± 49.57 Ab 385.97 ± 93.79 Aa 216.76 ± 31.95 Aa

D (mm) Myc+ 0.370 ± 0.04 Aba 0.376 ± 0.07 ABa 0.311 ± 0.03 Ba 0.509 ± 0.02 Aa
Myc− 0.313 ± 0.02 Aa 0.272 ± 0.02 Aa 0.388 ± 0.08 Aa 0.301 ± 0.12 Ab

SA1 (cm2)
Myc+ 195.47 ± 22.23 ABa 268.42 ± 54.08 Aa 233.40 ± 7.17 Aa 115.03 ± 33.94 Ba
Myc− 136.23 ± 10.80 Aa 162.21 ± 1.96 Ab 218.70 ± 49.54 Aa 135.95 ± 10.20 Aa

SA2 (cm2)
Myc+ 108.96 ± 11.55 ABa 129.58 ± 20.86 Aa 96.15 ± 13.68 ABa 56.19 ± 16.30 Ba
Myc− 68.68 ± 4.82 Ab 74.89 ± 11.64 Ab 70.73 ± 17.11 Aa 38.50 ± 9.90 Aa

https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi
https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi


Microorganisms 2025, 13, 423 8 of 17

Table 2. Cont.

Traits AMF
Sorgoleone (µM)

0 20 40 80

SA3 (cm2)
Myc+ 163.04 ± 22.14 Aa 149.99 ± 13.34 Aa 90.15 ± 29.53 ABa 21.00 ± 1.42 Ba
Myc− 92.33 ± 21.30 Ab 75.36 ± 19.38 Ab 45.21 ± 17.78 Aa 15.78 ± 7.29 Aa

RDW (g) Myc+ 0.87 ± 0.09 Aa 0.92 ± 0.11 Aa 0.62 ± 0.15 Aa 0.19 ± 0.00 Aa
Myc− 0.44 ± 0.11 Aa 0.46 ± 0.10 Aa 0.91 ± 0.73 Aa 0.08 ± 0.10 Aa

SDW (g) Myc+ 1.36 ± 0.16 Aba 1.72 ± 0.43 Aa 1.37 ± 0.27 ABa 0.60 ± 0.10 Ba
Myc− 1.20 ± 0.18 Aa 0.84 ± 0.21 Ab 0.75 ± 0.12 Ab 1.11 ± 1.04 Aa

TDW (g) Myc+ 2.23 ± 019 Aba 2.64 ± 0.53 Aa 1.99 ± 0.42 ABa 0.79 ± 0.10 Ba
Myc− 1.64 ± 0.27 Aa 1.30 ± 0.28 Ab 1.66 ± 0.75 Aa 1.19 ± 1.15 Aa

MYC (%) Myc+ 26.00 ± 1.82 Ba 67.25 ± 2.99 Aa 39.50 ± 4.58 ABa 20.00 ± 4.24 ABa
Myc− 17.75 ± 1.19 Ba 24.25 ± 1.72 Bb 28.25 ± 2.27 Aa 18.50 ± 2.12 ABa

RPCont (g) Myc+ 0.45 ± 0.03 Aa 0.51 ± 0.06 Aa 0.36 ± 0.08 Aa 0.03 ± 0.00 Aa
Myc− 0.24 ± 0.06 Aa 0.25 ± 0.05 Ab 0.43 ± 0.37 Aa 0.06 ± 0.08 Aa

SPCont (g) Myc+ 1.00 ± 0.09 Aa 1.56 ± 0.44 Aa 1.20 ± 0.08 Aa 0.83 ± 0.35 Aa
Myc− 1.06 ± 0.14 Aa 0.83 ± 1.16 Ab 1.10 ± 0.25 Aa 0.72 ± 1.75 Aa

TPCont (g) Myc+ 1.46 ± 0.10 Aa 2.07 ± 0.44 Aa 1.57 ± 0.16 Aa 0.87 ± 0.35 Aa
Myc− 1.30 ± 0.21 Aa 1.08 ± 0.18 Ab 1.54 ± 0.36 Aa 1.78 ± 1.84 Aa

Soil_PCont (g) Myc+ 13.50 ± 2.95 Aa 11.27 ± 1.56 Aa 13.45 ± 2.28 Aa 8.60 ± 2.54 Aa
Myc− 12.65 ± 2.50 Aa 11.15 ± 1.18 Aa 15.95 ± 6.77 Aa 10.50 ± 0.56 Aa

Means followed by the same capital letters indicate non-significant differences between sorgoleone concentrations,
and identical lower-case letters indicate non-significant differences between non-inoculated and inoculated with
AMF, using Tukey’s test at 5% probability. Standard error of the mean (SEM) of three biological replications. Total
root length (L), total root surface (SA), average root diameter (D), surface area of roots with diameters between 0
and 1 (SA1), 1 and 2 (SA2), and 2 to 4, 5 mm (SA3), root, shoot, and total dry weight (RDW, SDW, and TDW),
quantitative analysis of AMF colonization (MYC) and root, shoot, total, and soil P content (RPCont, SPCont,
TPCont, and Soil_PCont).

In the PCA, the first and second principal components (PC1 and PC2) explained 62.9%
and 23.5%, respectively, totaling 86.4% of the variation within treatments (Figure 2). PCA
was able to differentiate treatments based on the selected traits. In general, treatments
with AMF (M+) were in the right quadrants, while those without AMF (M−) inoculation
were on the left. The treatments with 20 and 40 µM of sorgoleone were in the upper
quadrant and without sorgoleone in the lower quadrant. Considering the results (Table 2)
and comparing them with their position on the scatterplot, we observed that 20 µM of
sorgoleone presented higher mycorrhization, dry weight, and total root surface than the
other treatments (Figure 2).
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without (M−) inoculation of Rhizophagus clarus. SA: total surface area; TDW: total dry weight; P: total
P content; and MYC: mycorrhization.
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3.2. Overexpression of Genes Related to Sorgoleone Pathway and Mycorrhization

We selected 0 and 20 µM sorgoleone treatments for further examination based on the
morphophysiological analysis. The gene expression results revealed a significant upregula-
tion (p ≤ 0.05) of the CYP71AM1 (21G12) gene, associated with sorgoleone biosynthesis,
and Sb02g009880 (SbPT8), Sb06g002560 (SbPT9), Sb06g002540 (SbPT10), and Sb03g029970
(SbPT11) genes, linked to phosphate transport induced by mycorrhiza and RiEF, which is a
marker for AMF inoculation with sorgoleone and AMF inoculation (Figure 3). There was
an increased expression, although not significant, of the AM3 (SbAM3) gene, which served
as marker for AMF colonization (Figure 3).
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Figure 3. Relative expression of genes of CYP71AM1 (21G12), RiEF, AM3 (SbAM3), Sb02g009880
(SbPT8), Sb06g002560 (SbPT9), Sb06g002540 (SbPT10), and Sb03g029970 (SbPT11) measured in the
roots of sorghum plants grown in a greenhouse under low-P conditions with 0 (0SGL) and 20 µM
(20SGL) of sorgoleone, with (M+) and without inoculation (M−) of Rhizophagus clarus after 45 days.
Error bars are standard error of the mean (SEM) of three biological replications. The bars with the
same letter do not differ by the Tukey test (p < 0.05).

3.3. Effect of Treatments on Soil Microbiota

The non-metric multidimensional scaling (NMDS) analysis indicated that the bacterial
community remained unchanged with the introduction of AMF and sorgoleone (Figure 4A).
However, a significant difference was detected in the genetic diversity profile of the AMF
community, indicating dissimilarity between treatments with and without R. clarus inoc-
ulation, but not sorgoleone (Figure 4B). Moreover, no statistically significant differences
were detected in the relative abundance of bacterial phyla across the treatments (including
both sorgoleone and AMF inoculation) (Figure 4C). The most abundant phylum in the
four treatments were Bacillota, Pseudomonadota, and Actinomycetota (Figure 4C). There
was no significant increase in the enzymatic activity of acid and alkaline phosphatases
(Figure 4D).
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sorgoleone. Error bars are standard error of the mean (SEM) of three biological replications. The bars
with the same letter do not differ by the Tukey test (p < 0.05).

4. Discussion
In a previous study by [26], low concentrations of sorgoleone (5, 10, and 20 µM) were

tested in the sorghum genotype P9401. This genotype is known for its resistance to Striga,
an obligate parasitic plant prevalent in regions of Africa and Asia, which commonly infests
various crops, including sorghum [56–59]. Additionally, P9401 exhibits low root exudation,
resulting in the minimal stimulation of Striga seed germination [58,59]. In the present study,
we investigated the effects of higher sorgoleone concentrations, both with and without
AMF, on sorghum growth, rhizosphere microbiota, the expression of genes related to the
sorgoleone pathway, and AMF. Our results confirmed that 20 µM of sorgoleone improved
mycorrhization, plant biomass, and P content in mycorrhizal plants compared to non-
mycorrhizal plants cultivated under low P. The response to sorgoleone appears to have an
optimal dose, as the plant becomes unresponsive at lower doses [26], while higher doses
exceeding 20 µM do not inhibit root and plant growth (Table 2). It is still necessary to
understand the relationship between the various genes and enzymes of the pathway and
their interactions with different plant hormones, especially auxin, as has been advanced for
strigolactone [60]. Our work (Table 2) corroborated the findings that sorghum inoculation
with AMF enhances plant growth, leading to significant increases in shoot height and root
length [61], and dry weight [62]. Furthermore, AMF inoculation contributes to greater
nutrient absorption [4,5,63] and higher grain productivity [6].
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It is crucial to recognize the increase in root surface area facilitated by hyphae of AMF,
as observed in this study (Table 2). The expanded volume and extension of soil explored by
fungal hyphae are instrumental in enhancing nutrient absorption, particularly P. Hyphae,
which can extend beyond the nutrient-depleted zone that forms around absorbing roots.
In this zone, there is a reduction in the concentration, especially of P, which has a slower
transport rate in the soil solution and limited availability compared to the plant’s demand.
While roots rapidly absorb phosphate ions in their proximity, the soil solution struggles
to balance the concentration in this region due to slow transport and low P concentration.
Thus, AMF plays a crucial role in P absorption by extending beyond the depletion zone
and exploring a larger soil volume in their search of nutrients [64].

Although sorghum varieties with higher sorgoleone exudation tend to develop a
denser mycorrhizal network in rhizosphere soils [4,12,65], mycorrhizal colonization appears
to be suppressed with more than 20 µM sorgoleone. The plant roots incur an energy
cost with the exudation of signaling compounds for spore germination and branching
of fungal hyphae in the rhizosphere during pre-symbiotic recognition. Additionally, in
plant–mycorrhizal symbiosis, both symbionts are capable of detecting variations in the
resources provided by each other, allowing them to adjust their resource allocation to strike
a balance between costs and benefits under varying P conditions [15,66]. Therefore, it is
conceivable that 20 µM represents the optimal concentration for plant–AMF signaling,
consistent with the sensitivity expected for a plant signaling substance [67]. Strigolactones,
which are phytohormones known to enhance plant growth under abiotic stress, present the
optimal concentration for mitigating drought stress in maize [68].

Furthermore, in a greenhouse, no alteration was observed in the bacterial and fungal
communities of rhizosphere soil with the addition of sorgoleone (Figure 4). We observed a
higher relative abundance of taxa associated with efficient carbon mineralization, including
Bacillota, Pseudomonadota, and Actinomycetota, along with an underrepresentation of
phyla negatively correlated with carbon mineralization (Figure 4). This increased microbial
carrying capacity likely reflects the enhanced nutrient flux in absorptive fine roots and cor-
responds to the proliferation of taxa known for their copiotrophic lifestyles. Nevertheless, a
significant difference was observed in the genetic diversity profile of the AMF community,
emphasizing the dissimilarity between treatments with and without R. clarus inocula-
tion. Some studies indicate that sorgoleone does influence the dynamics of the microbial
community structure in rhizosphere soils of field-grown sorghum [5,27], highlighting the
necessity for further investigation. It is worth noting that sorghum’s field performance,
especially its response to AMF colonization in terms of improved growth and/or P uptake,
may vary depending on the genotype, adding another variable to consider. The genotype
significantly influences the microbial communities in the rhizosphere and the regulation
of ecological services provided by plant-associated microbes in interaction with the plant.
The composition of rhizosphere communities is predominantly influenced by the plant
species they are associated with [69], primarily through the selection of microbes capable
of utilizing the carbon source profile released by the roots [70]. Although indigenous soil
was used, the experiment was conducted under controlled conditions and within a limited
time frame, which may have constrained the modulation of the bacterial community. The
introduction of AMF was expected to induce a more pronounced shift in the microbiota,
which is consistent with our findings. Alternatively, it is possible that changes in fungal
communities occur first, with subsequent alterations in the bacterial communities develop-
ing over time. To validate this hypothesis, more extensive, long-term studies, including
field experiments, are needed.

The analogy also extends to the observation that no significant difference was noted in
the activity of acid and alkaline phosphatases (Figure 4D). The activity of acid phosphatase
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was higher than that of alkaline phosphatase, which is expected since acid phosphatase
is produced by both plants and microorganisms, while alkaline phosphatase is primarily
of microbial origin. These enzymes are linked to P remobilization in plants, and higher
enzyme activity is typically associated with low cellular phosphate levels [71–73]. Since
AMF promotes increased phosphate uptake, there is no incentive for plant roots to invest
in secreting phosphatases. Hyphae prove to be much more efficient in creating a plant–soil
contact surface for nutrient capture, with substantially lower carbon (energy) expenditure
than roots. Consequently, it is more efficient for the plant to invest in mycorrhiza than in
root production.

The findings of our study also revealed an upregulation in the expression of a genes
involved in the sorgoleone biosynthesis pathway and phosphate transporters induced by
AMF (Figure 3). P uptake in plants involves the transport of Pi (inorganic orthophosphate)
across the plasma membrane into the root symplasm, mediated by Pi/H+ symporters
from the Pht1 gene family [74,75]. Pht1 genes are predominantly expressed in rhizodermal
and cortical cells, supporting the “direct pathway” of Pi uptake from the soil. In AMF
symbiosis, an additional “mycorrhizal pathway” is utilized, where Pi is absorbed by
fungal extraradical hyphae, translocated to the roots, and released into the periarbuscular
space [76]. Pi is subsequently taken up by AMF-specific Pht1 transporters, which are
classified into subfamilies I and III [70]. Subfamily I transporters are expressed in cortical
cells containing arbuscules, while subfamily III transporters are generally induced in roots,
but are particularly concentrated in cortical cells during AM symbiosis [77,78]. Therefore,
the overexpression of SbPT8, SbPT9, SbPT10, and SbPT11 genes, which are essential for
mycorrhizal Pi uptake [79], provides strong evidence that sorgoleone and AMF together
enhance AMF colonization. The biosynthesis of sorgoleone involves several key enzymatic
steps. It begins with the production of an alkylresorcinol intermediate (SbARS2) from
fatty acyl-CoA, catalyzed by Sorghum bicolor fatty acid desaturases (SbDES2 and SbDES3).
This intermediate is methylated by O-methyltransferase SbOMT3. The final step involves
the cytochrome P450 enzyme (CYP71AM1), which converts 5-pentadecatrienyl resorcinol-
3-methyl ether into dihydrosorgoleone. Released into the soil, dihydrosorgoleone auto-
oxidizes to form the more stable benzoquinone, sorgoleone [43,80]. The overexpression of
CYP71AM1 provides evidence that sorgoleone production was induced by the presence
of AMF and exogenous sorgoleone. Additionally, the overexpression of the fungal RiEF1
reference gene further supports the observed increase in AMF colonization in the presence
of both AMF and sorgoleone (Table 2). While the importance of root exudation for effective
symbiosis between plants and AMF has been established across various plant species such
as maize, soybean, and sorghum [3–5,9,26,31,81–83], this study reaffirms sorgoleone’s role
as a signaling mechanism for symbiosis with AMF and a subsequent increase in P uptake.

Despite the highly regulated and dynamic nature of mycorrhizal colonization, the
factors influencing sorgoleone’s mode of action, bioactive concentration, persistence, and
release in the rhizosphere, as well as its absorption and translocation, remain incompletely
understood [5,11,43,84,85]. Further studies are warranted to explore the effects of bioactive
molecules on plants, given that the root exudation of fungal signaling compounds is a
fundamental aspect of the symbiotic response [11]. This understanding not only sheds light
on the regulation of sorgoleone production, but also offers opportunities to manipulate
crop levels to enhance agricultural productivity.

5. Conclusions
Since its discovery, sorgoleone has been recognized as a key secondary metabolite with

diverse applications. Understanding the hormetic effects of this plant-released phytotoxin
is essential for unraveling its role in microorganism–plant–soil interactions. A concentra-
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tion of 20 µM sorgoleone has been shown to positively impact sorghum mycorrhization,
leading to increased plant dry weight and P content. Additionally, the upregulation of
sorghum genes involved in the sorgoleone biosynthesis pathway and phosphate trans-
porters, induced by AMF, highlights its role as a signaling molecule in AMF symbiosis,
enhancing phosphorus uptake. Investigating genes and functional genomics is critical for
understanding the transcriptional regulation of genes and regulatory factors involved in
sorgoleone biosynthesis and AMF colonization. Ongoing research in this area promises
to reveal the complexities of sorgoleone’s biosynthesis and function, especially related to
AMF, with significant potential for applications in agriculture and ecology.
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