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Abstract
Modern livestock production systems are characterized by a greater focus on 
intensification, involving managing larger numbers of animals to achieve higher 
productive efficiency and animal health and welfare within herds. Therefore, 
animal breeding programs need to be strategically designed to select animals 
that can effectively enhance production performance and animal welfare 
across a range of environmental conditions. Thus, this review summarizes the 
main methodologies used for assessing the levels of genotype-by-environment 
interaction (G × E) in cattle populations. In addition, we explored the 
importance of integrating genomic and phenotypic information to quantify and 
account for G × E in breeding programs. An overview of the structure of cattle 
breeding programs is provided to give insights into the potential outcomes and 
challenges faced when considering G × E to optimize genetic gains in breeding 
programs. The role of nutrigenomics and its impact on gene expression related 
to metabolism in cattle are also discussed, along with an examination of current 
research findings and their potential implications for future research and 
practical applications. Out of the 116 studies examined, 60 and 56 focused on 
beef and dairy cattle, respectively. A total of 83.62% of these studies reported 
genetic correlations across environmental gradients below 0.80, indicating the 
presence of G × E. For beef cattle, 69.33%, 24%, 2.67%, 2.67%, and 1.33% of 
the studies evaluated growth, reproduction, carcass and meat quality, survival, 
and feed efficiency traits, respectively. By contrast, G × E research in dairy 
cattle populations predominantly focused on milk yield and milk composition 
(79.36% of the studies), followed by reproduction and fertility (19.05%), and 
survival (1.59%) traits. The importance of G × E becomes particularly evident 
when considering complex traits such as heat tolerance, disease resistance, 
reproductive performance, and feed efficiency, as highlighted in this review. 
Genomic models provide a valuable avenue for studying these traits in greater 
depth, allowing for the identification of candidate genes and metabolic pathways 
associated with animal fitness, adaptation, and environmental efficiency. 
Nutrigenetics and nutrigenomics are emerging fields that require extensive 
investigation to maximize our understanding of gene–nutrient interactions. 
By studying various transcription factors, we can potentially improve animal 
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INTRODUCTION

The accurate identification of genetically superior indi-
viduals for economically relevant traits is crucial for the 
success of animal breeding programs (Goddard,  2009; 
Hayes et al., 2007). This involves assessing the genomic 
background of populations and evaluating the pheno-
typic variability from interactions between genetic and 
environmental factors using classical animal models 
(Burrow,  2012; Dickerson,  1962). The environmental 
effect encompasses non-genetic factors that contribute 
differentially to phenotypic variability. Several studies 
have consistently shown that most traits of economic 
relevance to cattle breeding are complex traits largely in-
fluenced by a large number of genes and environmental 
conditions (Carvalho Filho et al., 2022; Mota, Fernandes 
Jr, et al., 2020; Santana Jr et al., 2017). To achieve success-
ful production intensification, it is important to identify 
and select animals with lower environmental sensitivity 
and enhanced adaptive traits (Brito et al., 2021; Henry 
et  al.,  2018). Typically, less environmentally sensitive 
genotypes are preferred, although, in some contexts 
(e.g., more environmentally controlled production sys-
tems), more productive and probably more sensitive may 
be more advantageous. Investigating the implications of 
genotype-by-environment (G × E) is essential for design-
ing mating strategies and selection decisions to increase 
productivity across diverse production systems.

In traditional breeding programs, animals are often 
selected under more favorable or less stringent envi-
ronmental conditions (e.g., nucleus breeding farms), al-
lowing them to express more of their genetic potential. 
However, the offspring of the selected animals are fre-
quently raised under more challenging conditions. As a 
result, in  situations where G × E occurs, the reproduc-
tive and productive performance of specific genotypes 
may become unpredictable in certain environments, 
potentially impacting the overall genetic progress of 
the population (Cardoso & Tempelman,  2012; Rauw 
& Gomez-Raya,  2015). Thus, to minimize these ef-
fects, breeding programs should focus on selecting an-
imals that are more adapted to various environmental 
and management conditions (Hermesch et  al.,  2015; 
Kolmodin & Bijma, 2004; Nirea & Meuwissen, 2017) or 
select animals that perform better in the environmental 
conditions where they will be raised.

A key goal of breeding programs is to comprehen-
sively characterize and understand the impact of G × E 
to minimize or even eliminate the unpredictability 

associated with such interactions. The occurrence of 
G × E can introduce challenges in the design of breed-
ing programs. However, it also presents opportunities 
to strategically identify and combine the most appro-
priate genotypes for given production systems aiming to 
optimize the industry profitability and improve animal 
health and welfare. Despite being a significant source 
of variation in production systems, often leading to re-
duced responses to selection (Hayes et al., 2016; Mota, 
Fernandes Jr, et al., 2020), G × E is often ignored in rou-
tine genetic and genomic evaluations. One of the pri-
mary challenges in G × E modeling lies in disseminating 
and effectively implementing the results at the producer 
level. Furthermore, fitting G × E leads to additional 
complexity in the statistical models, particularly when 
relying solely on pedigree information. This is due to the 
increased number of parameters needed to account for 
interaction effects, the heterogeneous variance caused 
by different environments, the need for including envi-
ronmental covariates, and the creation of complex cor-
relation structures among traits. Additionally, G × E may 
exacerbate non-additive effects, which are already pres-
ent in the population, making them more challenging to 
model accurately with pedigree data alone. This often 
results in less accurate genetic evaluations, especially 
in more extreme environmental conditions (De Leon 
et  al.,  2016; Mulder,  2016; Sae-Lim et  al.,  2016; Tiezzi 
et al., 2017).

G × E can be broadly categorized into two main types: 
(1) changes in the ranking of genotypes across different 
environments; and (2) variations in the dispersion of ge-
netic values across environments without a simultaneous 
shift in the ranking of genotypes (Falconer, 1990; Lynch 
& Walsh, 1998). The impact of G × E is typically quan-
tified based on the genetic correlation of a given trait 
measured in different environmental conditions (and 
considered as a separate trait depending on the envi-
ronmental category). Genetic correlation values falling 
below 0.80 are considered as an indication of substantial 
G × E effects on animal performance (Robertson, 1959).

The occurrence of G × E, particularly when there 
is a reranking of genotypes, has been documented 
for several traits in cattle (Raidan et  al.,  2016; Ruiz-
Sánchez et al., 2007; Santana Jr et al., 2017, 2018; Tsuruta 
et al., 2015). In such cases, substantial discrepancies in 
the genetic variance and shifts in the estimated breeding 
values (EBVs) of the selection candidates are observed 
(Mota et  al.,  2019). In other words, the genotypes that 
perform best in one environment may not necessarily 

metabolism, improving performance, health, and quality of products such as 
meat and milk.
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maintain better performance in other environments 
(Mulder & Bijma, 2005). Advancements in omics tech-
nologies and statistical methods, particularly with the 
implementation of genomic selection, have significantly 
enhanced the performance of genetic evaluations, leading 
to increased selection accuracy, especially for young ani-
mals (Misztal et al., 2020; Mrode et al., 2019; Silva Neto, 
Peripoli, et al., 2023). Adding genomic information to the 
analyses plays a pivotal role in increasing the accuracy 
of genetic variation and breeding value estimates across 
environmental conditions (Carvalheiro et al., 2019; Mota 
et al., 2018; Mota, Fernandes Jr, et al., 2020; Mota, Lopes, 
et al., 2020; Oliveira et al., 2018).

This review exploits the main methods used to quan-
tify G × E levels and their implications for important 
traits within cattle breeding programs. We aimed to dis-
cuss the implications of the reported findings for breed-
ing programs and identify possible knowledge gaps. 
Additionally, we discuss the contribution of genomic in-
formation when estimating and accounting for G × E in 
cattle breeding schemes. Before doing so, we provide an 
overview of the cattle breeding program structure and 
their relationship with key challenges associated with 
harnessing G × E to optimize genetic progress in cattle 
populations. We also summarize key contributions of 
the nutrigenomics field and the role of nutritional strat-
egies in the phenotypic variability of complex traits. We 
explore the relationship between resilience and produc-
tivity in livestock production systems and outline po-
tential opportunities for future research and practical 
applications.

STRUCTU RE OF CATTLE 
BREEDING PROGRA MS

Most cattle breeding programs are structured 
hierarchically, with the most intensive genetic selection of 
animals performed in nucleus or elite herds. Subsequently, 
the superior genetic material is disseminated to 
commercial herds through artificial insemination or 
other reproductive technologies (Raidan et  al.,  2016; 

Schenkel, 2000; Simm, 1998) (Figure 1). In nucleus herds, 
animals are selected under more favorable conditions, 
including better nutritional and management practices, 
enabling them to express their genetic potential fully 
(Raidan et  al.,  2016). However, this scenario contrasts 
with the reality of most commercial herds, where 
significant variation in environmental conditions exists, 
including factors related to nutritional practices, climatic 
conditions, and incidence of diseases. Consequently, the 
average performance of the offspring sired by the bulls 
selected in more favorable environmental conditions 
may deviate from expectations, especially when the 
commercial conditions differ from those where the sires 
were initially evaluated (Burrow, 2012).

A study by Raidan et  al.  (2016) evaluating the per-
formance of young Nellore bulls in both nucleus and 
commercial herds for reproductive and growth traits, 
revealed significant variations in the estimates of genetic 
parameters. The highest additive genetic variance and 
heritability estimates were observed in more favorable 
environmental conditions. Haile-Mariam et  al.  (2008) 
reported evidence of G × E interaction in calving to first 
service interval and nonreturn rate in Australian dairy 
cattle considering different calving systems and regions. 
Some studies evaluating African Holstein cattle also ob-
served G × E interaction for age at first calving and milk 
production, considering the performance of daughters 
of bulls raised in intensive and extensive production 
systems (Neser et al., 2014). The substantial differences 
between selection and breeding conditions often lead to 
genetic correlations between the same trait measure in 
different environments being close to or below 0.80, in-
dicating a substantial G × E effect on the trait evaluated.

Dairy cattle breeding programs face a major challenge 
when using genetic material imported from countries 
with different environmental conditions and production 
systems. The market for artificial insemination is domi-
nated by companies from the USA, Europe, and Canada 
(Araújo et al., 2016; Santos et al., 2020). In Brazil, around 
80% of the semen used by farmers is imported into the 
country (Araújo et al., 2016). Studies investigating G × E 
in dairy cattle populations in Brazil have confirmed that 

F I G U R E  1   Hierarchical structure 
of cattle improvement programs with 
selection is usually done in elite herds 
with better nutritional and management 
conditions for later dissemination of the 
superior genetic material in commercial 
herds with less ideal environmental 
conditions.
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these animals are more environmentally sensitive. This 
is expected given the countries' production system differ-
ences (Cardoso & Tempelman, 2012; Cooke et al., 2020). 
For instance, Sub-Saharan Africa smallholder dairy 
cattle farmers rely on the importation of sire semen 
(Chawala et  al.,  2021). This dependence contributes to 
slower genetic progress, partly due to the effects of G × E 
interactions.

To minimize the G × E effect, the Interbull organi-
zation conducts an international genetic evaluation of 
dairy bulls based on specific procedures (www.​inter​
bull.​org; Philipsson,  1987, 2011). In these multi-trait 
across-country genetic evaluations, traits such as milk 
yield and milk composition, are fitted as different 
traits across countries, and bulls have EBV for different 
countries participating in the genetic evaluations. This 
approach is feasible in dairy cattle due to the reduced 
number of breeds used and high level of genetic con-
nectedness in worldwide dairy cattle populations due to 
the widespread use of a small number of sires (Hayes 
et al., 2016).

The impact of choosing sires for different produc-
tion systems from where their offspring will be raised 
depends on their genetic potential and adaptability 
to the environment. Breeders must carefully assess 
the performance of sires and their offspring in the 
target environmental conditions before making se-
lection or semen purchase decisions to avoid adverse 
effects. By considering G × E interaction in breeding 
programs, breeders can select more adapted geno-
types that perform well in diverse environments and 
production systems. Nonetheless, genetic evaluations 
that consider G × E have yet to be adopted in com-
mercial breeding companies. This is because the G × E 
effects vary significantly across breeds, strains, and 
production systems, making it challenging to gener-
alize genetic models for all situations. Additionally, 
accurate breeding values require substantial amounts 
of well-structured phenotypic and environmental data 
recorded across environmental levels. As more envi-
ronmental variables and phenotypic traits are included 
in the models, the analyses become more parameter-
ized, and convergence issues may arise in multivariate 
evaluations. As a result, livestock breeding programs 
typically use simpler genetic evaluation models and 
only consider G × E in specific situations.

GEN ETIC ASPECTS OF 
U N I FORM ITY OF PRODUCTION

The demand for enhanced productive efficiency 
and more uniform animal performance is essential 
for the profitability of livestock production systems 
(Júnior et al.,  2022). Given that uniformity holds great 
importance in various stages of animal production, any 
lack of homogeneity within the production chain can 

directly impact the producers' profitability. In intensive 
production systems, such as group-housed pigs, poultry, 
and fish, variability in size and growth rate among 
animals can increase competition for resources, such as 
space, feed, and water. This excessive competition can 
lead to agonistic interactions, resulting in social stress, 
which in turn can negatively affect growth, increase 
mortality and morbidity, reduce milk production in 
dairy species, and impair feed intake in group-housed 
animals (Gilmour et  al.,  2005; Janhunen et  al.,  2012; 
Milligan et  al.,  2002). Therefore, a lack of uniformity 
impacts both meat and milk production, as it can result 
in lower production efficiency and higher management 
costs. One practical approach to address this need for 
greater uniformity is through genetic improvement, 
considering G × E and selecting more robust animals, 
i.e., animals that adapt and perform more consistently 
across environments.

The primary focus of this review was related to fac-
tors associated with macro-environmental effects, which 
are regular, persistent, and global factors (e.g., climatic 
conditions, average herd production, heat stress, and 
varying nutritional levels) that can lead to G × E inter-
actions (Berghof et al., 2019). However, there are micro-
environmental factors that are sporadic, conditional, 
and specific to the individual, such as animal age, health 
status, and social hierarchies. Although these micro-
environmental factors can influence production unifor-
mity and contribute to G × E interactions, few studies 
have evaluated their potential impact on G × E, with 
most focusing on the variance of genotypes in a common 
environment (Mulder et al., 2013; Neves et al., 2012).

Production homogeneity in livestock is somewhat 
influenced by genetic factors (Hill & Mulder,  2010; 
Iung et al., 2018; Mulder, 2016; Mulder et al., 2007; Sell-
Kubiak et al., 2015). This genetic variability can be used 
to enhance animal uniformity through genetic selection. 
In traditional quantitative genetics, models often assume 
that the residual variance is homogeneous, implying 
that genotypes primarily differ in their average effect 
(Falconer, 1996; Lynch & Walsh, 1998). However, genetic 
heterogeneity indicates how animals respond to envi-
ronmental disturbances and their environmental sensi-
tivity as reported in beef cattle studies (Iung et al., 2018; 
Mulder et al., 2013; Neves et al., 2011).

Differences in animal uniformity for a specific trait 
can be characterized as variations in residual variance 
(Iung et al., 2020). The genetic heterogeneity of residual 
variance has been examined through two primary meth-
ods. Mulder et al. (2009) employed a two-step approach 
to estimate the genetic heterogeneity component of resid-
ual variance in female and male broiler chickens. Several 
studies have used this methodology to evaluate G × E 
in cattle (Berghof et  al.,  2019; Ehsaninia et  al.,  2020). 
In the first step, they assessed the variance components 
for the trait's mean and subsequently employed a log 
transformation on the squared residuals, using these as 
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the response variable in their analyses. Alternatively, 
Rönnegård et  al.  (2010) and Felleki et  al.  (2012) intro-
duced the Hierarchical Dual Generalized Linear Model, 
which concurrently fits two sets of mixed model equa-
tions, one for the mean level and another one for the 
residual variance level. Elucidating the relationship 
between uniformity of production and G × E is crucial 
for advancing our understanding of the genetic mecha-
nisms influencing integrated production systems' perfor-
mance. This knowledge, in turn, can aid in developing 
or enhancing selection and mating schemes in the cattle 
industry.

G ×  E INTERACTIONS

G × E refers to the phenomenon in which genotypes 
exhibit varying phenotypic responses due to variations 
in environmental conditions (Falconer,  1996). In the 
context of breeding programs, two primary forms of 
G × E are of major importance, given their far-reaching 
implications for selecting superior genotypes for 
performance in target environments (Figure 2b,c).

The first G × E scenario is typically considered non-
significant, occurring only as an additional effect of the 
environment on the phenotypic response that can be 
adjusted for in the classical model of genetic evaluation 
(BLUP, Best Linear Unbiased Prediction; Figure  2a). 
The second type of G × E is characterized by variations 
in the magnitude of the genetic additive variance across 
the environments evaluated, as shown in Figure 2b.

The accuracy of selection in breeding programs can 
be affected by changes in genetic variance across en-
vironments, leading to more biased EBV when G × E 
is ignored in the genetic models, mainly due to the se-
lection of sires from herds with high phenotypic vari-
ability (Meuwissen et  al.,  1996). This means that the 
selection of animals in one environment does not guar-
antee the desired improvement in other environments. 
The genetic parameters of the trait may differ between 

environments, which may affect the correlation between 
phenotypic values and EBV when G × E is ignored. This 
is due to changes in additive genetic (�2

a
) and/or residual 

(�2
e
 ) variances.
G × E can differently affect the phenotypic expression 

of complex traits, in which genotypes may have differ-
ent responses when exposed to contrasting environmen-
tal conditions (Figure 2). In situations where genotypes 
exhibit differences in EBV between environmental con-
ditions, yet without re-ranking, the environmental ef-
fect can result in an EBV scale adjustment when G × E 
is ignored (Figure 2b). G × E plays a substantial role in 
this scale change, even though the best-performing gen-
otype in one environment remains the best in other en-
vironments. However, when genotypes exhibit different 
degrees of response according to the environmental con-
ditions, re-ranking of animals based on their EBV can 
occur (Figure 2c). This significant G × E effect highlights 
that the evaluated trait expression cannot be considered 
the same across environmental conditions (Strandberg 
et al., 2002). For animal breeding purposes, the reclassi-
fication of animals based on their EBV across environ-
ments represents the most critical form of G × E. In other 
words, there may not be a single superior genotype that 
stands out in all environments, and selection for perfor-
mance in one environment may result in smaller genetic 
gains than anticipated in other environments (Mulder & 
Bijma, 2005).

Robertson (1959) suggested that a genetic correlation 
for the same trait evaluated in different environments 
lower than 0.80 indicates potential reclassification of 
animals and the need for selection schemes tailored to 
specific environments (Mulder & Bijma, 2005, 2006). 
However, given the current structure of cattle genetic 
evaluations, breeding programs with specialized se-
lection schemes for each distinct production environ-
ment are not anticipated to be widely implemented in 
the near future. Nonetheless, the evaluation of G × E 
remains a crucial element in cattle breeding and 
management.

F I G U R E  2   Environmental effect on genotype variation, breeding value can change depending on environment, often leading to complex 
interaction between genotype and environment. (a) Additive effect of environment on phenotypic response, genotype by environment 
interaction (G × E), not significant; (b) example of environmental effect leading to scale effect on the genetic value of the genotype; and (c) 
significant rearrangement of genetic value in response to environmental change.
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EN VIRON M ENTA L SENSITIVITY 
A N D PH ENOTY PIC PLASTICITY

Environmental sensitivity or reaction norms can 
be defined based on differences in a genotype's 
or population's performance across environments 
(Falconer, 1990). This sensitivity can be assessed using 
reaction norm models (RNMs), employing random 
regression models to estimate how each individual 
responds to environmental changes. These models map 
trajectories influenced by a continuous environmental 
descriptor (Carvalheiro et  al.,  2019; Kirkpatrick 
et al., 1990; Mota et al., 2019; Schaeffer, 2004). Random 
regression models (RRMs) for reaction norms began 
to gain prominence in the 1990s (Oliveira et  al.,  2019). 
Henderson (1984) established the theoretical foundation 
with his mixed models. The direct application of RRMs 
to reaction norms was first demonstrated by Kirkpatrick 
et al. (1990). In 2004, Schaeffer (2004) further advanced 
the field by refining and expanding the use of RRMs in 
genetic evaluation, enhancing their effectiveness across 
various environmental conditions. These developments 
were pivotal for advancing the modeling of G × E using 
reaction norms.

In general, the sensitivity of animals to environmental 
changes is assessed using linear models, as higher-order 
polynomials can be more complex to estimate and make 
biological interpretations. However, higher-order RNM 
may be indicated when changes in phenotypic expression 
do not exhibit a linear pattern along the environmental 
gradient (Hayes et  al.,  2016; Schaeffer,  2004). Animals 
with a steeper slope in their reaction norms are more 
sensitive to environmental changes, leading to greater 
variations in phenotypes. Conversely, animals with flat-
ter slopes exhibit lower sensitivity to environmental vari-
ations, resulting in smaller phenotypic differences across 
diverse environmental conditions (Carvalho et al., 2019; 
Oliveira et  al.,  2018). Consequently, more resilient ani-
mals, i.e., those with a greater ability to be minimally 
affected by environmental variations or rapidly return to 
the unperturbed state (Colditz & Hine, 2016), are partic-
ularly valuable for breeding purposes in more challeng-
ing conditions.

Understanding the genetic factors that underlie the 
sensitivity of the animals to environmental variations 
holds significant importance in optimizing cattle breed-
ing programs. In this context, incorporating genomic 
data in the analyses has expanded the application of 
RNM, transitioning from individual-level analyses to 
the level of single nucleotide polymorphisms (SNPs). 
This can be achieved by leveraging extensive genotypic 
data from animals exposed to diverse environmental 
conditions that might not be necessarily connected at the 
pedigree level (Carvalho et al., 2019; Hayes et al., 2009; 
Mota, Lopes, et al., 2020; Silva et al., 2014).

An important term to be addressed is phenotypic 
plasticity, defined by De Jong and Bijma  (2002) and 

Sommer (2020) as the ability of a genotype to exhibit dif-
ferent phenotypic responses in different environments. 
This includes morphological, physiological, and be-
havioral variations of an animal's phenotype (Pelster & 
Burggren, 2018; Sommer, 2020) and is considered a fun-
damental mechanism for animal adaptation to environ-
mental changes (Murren et al., 2015). Although genotype 
and gene expression determine an individual's pheno-
type, phenotypic plasticity allows the same genotypes 
to present considerable variation in their performance 
(West-Eberhard,  2003). Like environmental sensitivity, 
phenotypic plasticity can be measured by RNM, and 
factor-analytic (FA) models can also be used. As the 
multi-trait animal model that will be covered in the next 
session, the FA model is limited to discrete environments 
and does not assume a scaled classification of environ-
ments or physiological continuity across different envi-
ronments (De Jong & Bijma, 2002).

Although we focused on exploring genotype plasticity 
in macro-environments, Pelster and Burggren  (2018) 
highlight that the conventional definition of phenotypic 
plasticity typically overlooks ‘response time.’ This refers 
to the period required for a phenotypic modification to 
manifest, with time intervals for these changes varying 
significantly, from minutes to years. Furthermore, the 
authors highlighted that when considering the temporal 
aspect of phenotypic plasticity, it must be clear whether 
the observed change is a real change in phenotype or a 
change in performance due to homeostatic adjustment.

ASSESSING TH E RELATIONSH IP 
BETW EEN RESILIENCE A N D 
PRODUCTIVITY IN LIVESTOCK 
SYSTEMS

It has been known for a long time that the environment 
can influence the phenotype of animals (Lamarck, 1914). 
However, as suggested by Lerner  (1954), populations 
can balance their genetic background and resist 
environmental changes. In livestock production systems, 
there has been an emphasis on animal resilience, which 
involves both crossbreeding to introduce suitable genetic 
variations and selecting animals with higher genetic 
potential for desired traits, as well as the ability to adapt 
to environmental conditions.

Resilience, understood as an animal's ability to 
adapt and maintain its performance in the face of chal-
lenges or environmental changes, is critical in ensur-
ing productive stability (Berghof et  al.,  2019; Colditz 
& Hine, 2016). Resilient animals are characterized by 
their ability to recover from a disturbance quickly. 
Despite experiencing a sharp initial decline in produc-
tivity, these animals demonstrate a remarkable abil-
ity to return to pre-disturbance levels swiftly, while 
less resilient animals may take longer to recover and 
may not fully return to their previous state (Berghof 
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et al., 2019). Thus, the intrinsic relationship between an-
imal resilience and productivity in agricultural systems 
is a fundamental element of sustainability. Resilient 
animals have shown a remarkable ability to adapt to 
climate variations, resource scarcity, and environmen-
tal stress, maintaining productivity or minimizing 
losses (Poppe et al., 2021, 2022; Poppi et al., 2018). This 
adaptive capacity provides a more favorable scenario 
for maintaining consistent production levels in agro-
industrial systems. Furthermore, animal resilience has 
a genetic correlation with the efficiency in resource 
use, health, fertility, and longevity of animals (Chen 
et al., 2023; Poppe et al., 2020).

Measuring resilience can be difficult, and the mech-
anisms involved strongly depend on the nature of the 
disturbance, that is, the results are dependent on the dis-
turbance investigated in the study (Berghof et al., 2019; 
Colditz & Hine, 2016). Colditz and Hine (2016) proposed 
a diverse set of response variables that enables the mea-
surement of resilience for disturbance events. These 
variables encompass deviations between expected and 
observed production over the duration of the distur-
bance, aiming to assess animals' response after a severe 
drop in production (Van der Waaij et al., 2000).

Precision livestock farming technologies, such as au-
tomated feeding systems and automated milk sensors 
in milking parlors, have emerged as a strategic solu-
tion for longitudinal data sampling to assess resilience 
indicators based on variability in animal performance 
(Brito et al., 2020). With repeated records of frequently 
measured traits, estimating an individual's performance 
without environmental challenges is possible using lin-
ear and nonlinear statistical models (the differences be-
tween expected and observed production yield contain 
valuable information about the animal's adaptability to 
known and unknown macro- and micro-environmental 
disturbances). Based on these deviations, Berghof 
et al. (2019) suggested using skewness, residual variance, 
and autocorrelation of deviations in productive perfor-
mance as resilience indicators in livestock production 
systems. This finding is based on the aspect that re-
peated measures over time for the same production trait 
contain relevant insights into an animal's ability to cope 
with micro-environmental challenges.

Residual variance is a measure calculated based on the 
analysis of variability patterns originating from repeated 
measurements over time, reflecting the impact of envi-
ronmental disturbances at an individual level (Berghof 
et al., 2019; Chen et al., 2023; Elgersma et al., 2018; Poppe 
et al., 2020, 2021, 2022; Rodrigues et al., 2024; Scheffer 
et  al.,  2018). Animals lowly affected by environmental 
fluctuations tend to have low residual variance, while the 
opposite is observed in animals more susceptible to envi-
ronmental disturbances. The autocorrelation (Lag-one) 
of the deviations signals the duration of the impact of 
the disturbances (Chen et al., 2023). For animals without 
disturbances or with rapid recovery, the autocorrelation 

approaches zero. For animals influenced by distur-
bances, with a slower recovery, the autocorrelation ap-
proaches +1, indicating that subsequent deviations are 
similar. In cases of rapid and overcompensation re-
sponses to perturbations, such as compensatory growth, 
the autocorrelation approaches −1, indicating that sub-
sequent deviations are the opposite (Berghof et al., 2019; 
Chen et al., 2023). In turn, the deviations' skewness high-
lights the direction of these variations. For animals with-
out disturbances or with little influence, the asymmetry 
approaches zero. However, a positive skewness suggests 
positive deviations, mainly due to favorable responses to 
environmental improvements, while a negative skewness 
indicates predominantly negative deviations resulting 
from disturbances (Poppe et al., 2020).

In a study conducted by Chen et al. (2023) to assess re-
silience indicators based on daily milk yield variability, 
moderate genetic correlations were found between resid-
ual variance and cow's productive life in months, with 
estimates of −0.30. This suggests that more resilient cows 
(i.e., less affected by environmental challenges) tend to 
have a longer productive life. The same authors also re-
ported genetic correlations of −0.20 between the auto-
correlation of deviations and productive life in months. 
However, Poppe et al. (2020), evaluating the skewness of 
deviations, found insufficient genetic variability for this 
indicator. Furthermore, the authors also did not identify 
any significant genetic correlation between skewness 
and health, longevity, fertility, or metabolic traits.

Efficient adaptation to variable environments is an 
intrinsic characteristic of resilient animals, positively im-
pacting agricultural production's sustainability (Berghof 
et al., 2019). Resilience is also closely related to animals' 
welfare and tolerance to disease and stress (Doeschl-
Wilson et al., 2021). The animals' ability to quickly re-
cover after stressful events contributes to maintaining 
productivity, as it reduces the duration of periods of 
production loss (Colditz & Hine, 2016; Doeschl-Wilson 
et  al.,  2021). This relationship between welfare, toler-
ance, and resilience emphasizes the importance of these 
attributes in the sustainability of agro-industrial produc-
tion systems.

STATISTICA L MODELS FOR 
QUA NTI FY ING G ×  E

The analysis of G × E interactions has undergone 
significant evolution over time. Initially, these interactions 
were primarily examined through analysis of variance 
(ANOVA) in experiments with small, balanced datasets, 
focusing on the identification of simple interaction 
effects. As statistical analysis advanced, the introduction 
of mixed models in animal breeding (Henderson, 1984) 
laid the foundation for more sophisticated methods. 
In the 1990s, Kirkpatrick et  al.  (1990) pioneered the 
application of RRMs to capture the nuances of reaction 
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norms, overcoming the limitations of traditional ANOVA 
methods. Subsequently, Jensen (2001) further advanced 
the application of RRMs in dairy cattle breeding, while 
Schaeffer  (2004) refined and expanded these models 
for genetic evaluations under diverse environmental 
conditions. The transition from basic analyses to more 
complex and precise models has significantly enhanced 
the understanding of G × E interactions, enabling a more 
detailed analysis of genotypic responses to varying 
environmental contexts.

The models for assessing G × E include two main com-
ponents, the genotype (G) and environmental (E) effects, 
as well as the interactions among them (Falconer, 1996; 
Lynch & Walsh, 1998). To evaluate a trait and obtain (G)
EBV across environments, three main statistical models 
can be used: (1) analytical factorial mixed models; (2) 
multi-trait models (MMs); and (3) RNMs (or RRMs). 
Among these options, 2 and 3 are the most used methods 
for assessing G × E in beef and dairy cattle populations 
(Crossa et al., 2022; Hayes et al., 2016; Mota, Fernandes 
Jr, et  al.,  2020; Mota, Lopes, et  al.,  2020; Santana Jr. 
et al., 2014). Each of these models has unique character-
istics, which will be discussed in detail below.

FA mixed models

FA models were initially proposed for analyzing multi-
environment trials in plant breeding (Li et  al.,  2017). 
Meyer (2009), when examining FA models in a standard 
linear mixed model framework, showed that the models 
are applicable in animal breeding. FA models can identify 
environmental factors that cause G × E by structuring the 
genetic (co)variance matrix into two main components, 
i.e., common factor and specific effect. Common factors 
establish correlations between variables, whereas 
specific factors aim to identify those factors that explain 
the maximum variation (Meyer,  2009). Factor analysis 
is a valuable multivariate tool for assessing interrelated 
traits and streamlining redundant information inherent 
in multiple variables (Corrales et al., 2011; Vukasinovic 
et  al.,  1997; Xu et  al.,  2022). This, in turn, enhances 
the accuracy of variance estimates and reduces 
computational demands, especially when working 
with large-scale datasets (Mazza et  al.,  2015; Olasege 
et al., 2019).

The mixed animal FA model can be described as 
(Meyer, 2009; Sae-Lim et al., 2014):

where, Pijk is the phenotypic record of the ith individual 
of the jth genotype in kth environment, � is the overall 
trait mean, ef k is the fixed environmental effect, ac,i and 
as,ik are the random additive genetic effects of the i-th 
individual due to the common factor(s) and specific ef-
fects for the k-th environment, respectively, and (ac, as) 

∼MVN
(

0 ,A⊗GFA

)

. The GAF = ��� + Ψ is the matrix of 
genetic (co)variance for common and specific additive ge-
netic effects; � is the matrix of factor loadings; and Ψ is the 
diagonal matrix of the specific variances (Ψk), accounting 
for the additional variance, i.e., the variation that is not ex-
plained by the common factor(s) of the k-th environment. 
This additive genetic variance not explained by the com-
mon latent factor is captured by the specific effects. The 
matrix of loading factors, Γ, is obtained from the analysis 
of the environmental variables, and its interpretation de-
pends on the relationship of these loadings with the envi-
ronmental gradients studied.

When the common factor delineates different propor-
tions of genetic variance across different environments, 
it indicates the existence of G × E. The environmental 
factor responsible for G × E can be identified by correlat-
ing the estimated factor loadings with the observed en-
vironmental variables. For the FA model to adequately 
capture G × E interactions, it is essential that the animals 
are evaluated in multiple environments, allowing genetic 
and environmental variations to be captured in a multi-
variate way. Despite the possibility of using the FA model 
in livestock G × E studies, no studies using this methodol-
ogy were found in the literature. One of the explanations 
for this scenario may be due to the greater complexity 
of animal data, involving a wider range of variables to 
be evaluated, making FA modeling more challenging 
to implement and interpret the results. For example, in 
plants, genetic structure often follows simpler patterns 
of inheritance, which can facilitate G × E modeling. In 
contrast, factors such as sex-linked inheritance, epistatic 
interactions, and more significant genetic variability can 
make modeling more challenging in animals.

MMs

In MMs in the context of G × E, the same trait 
recorded under different environmental conditions is 
considered as a potentially different trait (Falconer & 
Latyszewski, 1952). The MM is well-suited for situations 
where the environmental effects are considered to be 
categorical factors (Calus et al., 2002; Hayes et al., 2016; 
Kolver et  al.,  2002; Mulder et  al.,  2004). Such factors 
include diets, production systems, milking type, 
production levels, and geographical region. This model 
is a reliable tool for analyzing data containing multiple 
variables and can effectively capture their relationships. 
Therefore, the MM allows for quantifying the genetic 
variance of the trait and ranking of genotypes in each pair 
of environments. In livestock production, the genotype 
is usually defined as the individual animal, given that 
the same animals are not recorded across multiple 
environments. Consequently, the genetic performance 
of an animal can be defined based on the degree of 
relatedness among related animals raised in different 
environments (Hayes et al., 2016; Henderson, 1984).

Pijk = � + ef k + ac,i + as,ik + eijk,
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For two environments (two traits), the MM can 
be described as (Hayes et  al.,  2003, 2016; Mulder 
et al., 2004):

where, y1 and y2 are the phenotypic records for a cer-
tain trait in environments 1 and 2, respectively; I1 and 
I2 are identity matrices, �1 and �2 are the phenotypic 
means for the trait in environments 1 and 2; Z1 and Z2 
are the incidence matrices relating the (G)EBV (addi-
tive genetic values) to the response variables; g1 and g2 
are the additive genetic values for the genotypes in en-
vironments 1 and 2, and e1 and e2 are the residual vec-
tors for environments 1 and 2. The residuals are 
assumed 

[

e1
e2

]

∼N(0 ,I⊗R), where, 
R =

[

�2
e1

�e12

�e12
�2
e2

]

 is 

the matrix of residual variances and covariances for 
environments 1 and 2 and ⊗ is the Kronecker product 
(Hayes et al., 2016).

The genetic values based on the relationship between 
the animals can be assumed through the pedigree-based 
relationship matrix A (Henderson, 1984) as follows:

where T =

[

�2
g1

�g12

�g12
�2
g2

]

 is the genetic variance and covari-

ance matrix for environments 1 and 2.
The estimates of genetic correlations between pheno-

typic performance in two environments can be calculated 
as (Falconer & Latyszewski, 1952; Gilmour et al., 2006):

where, �̂g12 is the genetic covariance between the same 
trait measured in environments 1 and 2; �̂g1 is the square 
root of genetic variance for trait measured in environment 
1; and �̂g2 is the square root of genetic variance for trait 
measured in environment 2.

Genomic-based MM can also be obtained by replac-
ing the A by the G or H matrices, which enables the cal-
culation of GEBV for each environment. The H matrix 
was defined by Legarra et al. (2009) and its inverse H−1 
can be calculated as (Aguilar et al., 2010):

where A−1 is the inverse of the pedigree-based relationship 
matrix; A−1

22
 represents the inverse of the pedigree-based 

relationship matrix for the genotyped animals, and G−1 is 

the inverse of the genomic relationship matrix obtained ac-
cording to VanRaden (2008).

An illustration of the use of MM for the estimation of 
EBV across environments was demonstrated by Williams 
et al. (2012) for the growth of Angus cattle at high and 
low altitudes. The authors evaluated the weaning weight 
of over 77 000 cattle raised in Colorado (USA) farms 
located at different altitudes as two traits: (1) weaning 
weight at high altitudes; and (2) weaning weight at low 
altitudes. The genetic correlation for growth at high and 
low altitudes was 0.74 ± 0.07, suggesting a re-ranking of 
genotypes raised on farms located at different altitudes. 
Therefore, the authors recommended that genetic evalu-
ations for growth in Angus cattle raised on farms located 
at different altitudes consider the influence of G × E 
within their statistical modeling. For Holstein cows 
raised in 805 Chilean herds, Chuma-Alvarez et al. (2021) 
reported genetic correlations of 0.73 ± 0.06 between milk 
yield measured in the central region (low production 
technology level) and the southern region (high produc-
tion technology level). This finding suggests a re-ranking 
of genotypes of animals raised in different locations in 
Chile.

RNMs

The RNM is an alternative to MM when the environ-
mental gradients are described on a continuous scale 
(Hayes et al., 2016). These aspects are often referred to 
as infinite dimensional resources because they allow for 
an infinite number of values along the environmental 
gradient trajectories and because these values are con-
sidered different (Meyer, 1998). G × E in beef and dairy 
cattle for several traits has been widely described in the 
literature (Calus et al., 2006; Corrêa et al., 2010; Pegolo 
et al., 2011; Santana Jr. et al., 2014; Nguyen et al., 2016; 
Silva Neto, Mota, et al., 2023).

The expression of genotypes across different en-
vironmental conditions is often modeled as a linear 
function (reaction norm) of an environmental value 
or gradient (Kirkpatrick et  al.,  1990). RNM assumes 
that the phenotypic value is expressed as a polynomial 
function associated with the environmental gradient. 
In this framework, the polynomial coefficients indi-
cate the average EBV of the animal (intercept), while 
the slope coefficient represents the animal's response to 
environmental changes (de Jong, 1995). The covariance 
estimates between the random regression coefficients 
yield estimates of covariance functions (Kirkpatrick 
et al., 1990). In this context, a covariance function de-
scribes the covariance between measurements obtained 
in given environments as a function of those environ-
mental conditions (Figure 3).

The RNM can be applied in two steps (Calus & 
Veerkamp,  2003; Mota, Fernandes Jr, et  al.,  2020). In 
the first step, BLUE (Best Linear Unbiased Estimates) 

[

y1
y2

]

=

[

I1 0

0 I2

]

[

�1

�2

]

+

[

Z1 0

0 Z2

]

[

g1
g2

]

+

[

e1
e2

]

,

[

g1
g2

]

∼N(0,A⊗ T),

rg12 =
�̂g12

�̂g1�̂g2
,

H−1 = A−1 +

[

0 0

0 G−1−A−1
22

]

,
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solutions are obtained from an animal model and sub-
sequently used to define the environmental conditions. 
In the second step, the general RNM can be used to esti-
mate genetic parameters across environments conditions 
(EC):

where, y represents the phenotypic information recorded 
at different EC; b is a vector of the fixed effects to adjust 
the phenotypic information; X is an incidence matrix link-
ing the fixed effects to the phenotypic information (y); a is 
the vector of random animal additive genetic effects of RN 
parameters (intercept and slope) corresponding to the EC 
levels; Z is the incidence matrix relating the records to ad-
ditive genetic effects of RN parameters and e is the random 
residual (Mota, Lopes, et al., 2020). In RNM, RN param-
eters (intercept and slope) on phenotypic information can 
also be included as fixed effects.

In RNMs, the EC levels can be modeled using differ-
ent polynomials such as ordinary, Legendre, or spline 
polynomials. Details about each of these models are 
presented in Table S1. Ordinary polynomials are simple 
algebraic expressions of variables, often used as a linear 
form using directly EC information. Ordinary polyno-
mials are typically used in simple models to establish an 
understanding of how an environmental variable affects 
a trait. For example, they can be used to model growth 
rates or milk yield as a function of temperature humid-
ity index (THI). By contrast, Legendre orthogonal poly-
nomials are a specific type of orthogonal polynomial, 
useful in RNM due to their mathematical properties. 
These properties reduce the correlation between polyno-
mial terms, meaning that the different polynomial terms 
are uncorrelated with each other (Meyer, 1998). This re-
duces the multicollinearity problems in the model, which 
leads to more reliable estimates of coefficients and better 
model interpretation. Legendre orthogonal polynomials 
are often better at generalizing beyond the range of ob-
served data compared to ordinary polynomials, particu-
larly when the reaction norm must be extrapolated.

Spline polynomials consist of segmented functions 
that are connected at specific points known as knots, for 
modeling segmented regressions, where each segment 
are smoothly linked (Meyer, 2005). Splines provide high 
flexibility as they enable the model to adjust to local 
changes in the data (Misztal, 2006). This is particularly 
valuable when the relationship between the environment 
and the trait shows multiple inflection points offering 
local control (Carvalheiro et  al.,  2019; Carvalho Filho 
et al., 2022). Splines are especially beneficial in situations 
where the reaction norm is expected to vary nonlinearly 
across a range of environmental conditions. RNM can 
also be used in sire models, which can facilitate the se-
lection of the most adaptable and efficient sires across 
various environments, particularly in systems where the 
available data are predominantly paternal.

The genetic correlation between EC levels (rECj,ECk
) 

can be calculated as:

where, �ECj,ECk
 is the covariance between the level of EC

j and the level of ECk; �
2
aECj

 and �2
aECk

 are the genetic var-
iance for the trait at each level of ECj and ECk. These 
variances can be obtained through various modeling 
techniques, which may include the use of transformed 
covariates, such as orthogonal polynomials, or untrans-
formed covariates, depending on the approach used to 
capture genetic variation across different environmental 
levels.

The EBVs associated with each level of EC are ob-
tained using the following equation: ĝjECj

 = α̂iϕj; where 
α̂i is the estimated additive genetic value for intercept 
and slope estimates of animal i and ϕj is the vector repre-
senting the specific characteristics of the ECj. Genomic 
information can also be considered into RNM by re-
placing the A matrix with a genomic (G) or hybrid ge-
nomic relationship matrix such as H (Aguilar et al., 2010; 

y = Xb +Za + e,

rECj,ECk

=
�ECj,ECk

√

�2
aECj

∗�2
aECk

,

F I G U R E  3   Reaction norms for genetic values in relation to environmental conditions. (a) The polynomial intercept and slope coefficients 
of an animal with lower resilience to variations in environmental conditions (higher slope coefficient). (b) The polynomial intercept and slope 
coefficients of an animal with higher resilience to variations in environmental conditions (lower slope coefficient).
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Legarra et al., 2009), resulting in GEBV for each individ-
ual and environment.

Cheruiyot et  al.  (2020) presented an application of 
RNM to explore G × E, specifically in relation to heat 
tolerance in milk yield and composition in Australian 
Holstein cattle. The study incorporated a large data-
set, encompassing 6.7 million milk production records 
from 491 562 cows across three lactations and 6410 
sires with offspring across multiple environments. The 
authors used the THI derived from climate data ob-
tained from 163 meteorological stations as the envi-
ronmental gradient. As a result, the authors observed 
that the heritability estimates decreased as THI in-
creased throughout the trajectory for fat and increased 
for THI > 70 for milk and protein yield. The correla-
tion estimates between the 5th and 95th THI percen-
tiles (extremes) for milk, protein, and fat yield were 
close to 0.80, with values of 0.88 ± 0.01, 0.79 ± 0.02, and 
0.86 ± 0.02, respectively. The percentage of bulls with 
EBV with a lower slope, with at least 100 daughters 
with multi-parity records, was 65%, 57%, and 64%, re-
spectively, demonstrating the presence of G × E in that 
population.

Silva Neto, Mota, et al. (2023) and Mota, Fernandes 
Jr, et al. (2020) applied RNMs in Nellore cattle to inves-
tigate G × E interactions, observing significant genetic 
reranking across different environmental gradients. 
Silva Neto, Mota, et  al.  (2023) identified G × E inter-
actions for dry matter intake and residual feed intake 
using contemporary group solutions for average daily 
gain as the environmental gradient. The lowest genetic 
correlations between extreme environmental levels were 
0.22 for residual feed intake and 0.26 for dry matter in-
take, resulting in selection coincidences of 53.3% and 
40.0%, respectively. Mota, Fernandes Jr, et  al.  (2020) 
reported G × E interactions for early pregnancy and 
scrotal circumference, using yearling weight as the en-
vironmental gradient, with genetic correlations of 0.30 
and −0.12 between more favorable and more unfavor-
able environments. Both studies confirmed variability 
in genetic variance and reranking of selection candi-
dates, highlighting the importance of considering G × E 
in breeding programs.

The clear and comprehensive definition of the envi-
ronmental gradient plays a crucial role in G × E anal-
ysis, significantly influencing the results obtained in 
scientific studies (Fikse et al., 2003; Freitas et al., 2021). 
When the definition of the environmental gradient is 
inadequate or imprecise, distortion can occur in G × E 
analyses (Fikse et  al.,  2003). If environmental varia-
tions are not correctly identified or quantified, the real 
effects of genotypes can be misinterpreted, resulting 
in mistaken conclusions about the adaptability or re-
silience of different genotypes across environments 
(Freitas et al., 2021). Therefore, a precise definition of 
the environmental gradient is essential to obtain accu-
rate estimates of G × E.

G ×  E INTERACTION STU DIES 
PUBLISH ED FROM 1967 TO 2023

To evaluate trends over time and the degree of G × E 
interaction for traits measured in cattle breeding 
programs, we performed a literature search from October 
to December 2023 in six electronic databases (Scielo, 
PubMed, Google Scholar, Scopus, Science Direct, and 
Web of Sciences). A total of 116 beef and dairy cattle 
articles published from 1967 to 2023 were identified [see 
Tables  S2 and S3]. The success of breeding programs 
hinges upon identifying the best-performing animals 
for the target production systems and environmental 
conditions. In the G × E studies summarized, various 
definitions of environmental gradients were used, 
including diets (Hay & Roberts,  2018), temperature 
and humidity indices (Santana Jr et  al.,  2018), weight 
gain (Santana Jr et al., 2015), somatic cell count (Calus 
et al., 2006), productive indices (Lillehammer et al., 2009), 
production systems (Raidan et  al.,  2016), milking type 
(Hammami et al., 2015), geographical regions (Fennewald 
et  al.,  2018), and countries (Hammami et  al.,  2009). 
Hence, the G × E levels were presented based on the 
magnitude of genetic correlations. Among the 116 studies 
(60 in beef cattle and 56 in dairy cattle, see Tables S2 and 
S3, respectively), a total of 97 studies (83.62%) reported 
genetic correlations below 0.80, indicating the presence 
of G × E. Furthermore, differences in protocols for 
measuring traits may result in lower genetic correlations.

The variability in the estimates of genetic correla-
tion for the same trait evaluated in different environ-
ments could be due to the genetic differences between 
the herds evaluated; the models used to quantify 
G × E, and the definitions of the environmental gra-
dients (Araujo Neto et  al.,  2018; Calus et  al.,  2004). 
Approximately 69.33% of the 60 studies on beef cattle 
(see Table S2) focused on growth traits, 24% on repro-
ductive and fertility traits, 2.67% on carcass and meat 
quality traits, 2.67% on survival traits, and 1.33% on 
feed efficiency traits. In contrast, 79.36% of the 56 
studies on dairy cattle (see Table S3) focused on milk 
production and quality traits, 19.05% on fertility and 
reproduction traits, and 1.59% on survival and pro-
ductive life traits. A notable divergence was evident in 
the geographical regions of the G × E studies, in which 
25.33% of the G × E studies in beef cattle were published 
using datasets from countries with a more temperate 
climate, while 74.67% of the studies were conducted in 
tropical countries, in which there is more significant 
variability in nutritional practices, management, and 
weather and/or geographical conditions. In contrast, 
for the dairy G × E studies, 66.67% of the studies were 
performed in countries with more temperate climatic 
conditions and 33.33% in countries with more tropical 
climate conditions. RNMs and MMs were used most 
to evaluate G × E, which was approximately 50% for 
each model. More beef cattle studies applied RNM 
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(~60%) than MM (~40%) to assess G × E. Conversely, 
the reverse trend was observed for dairy cattle, with 
MM being used more than RNM. Among the traits 
evaluated in the studies listed in Tables  S2 and S3, 
traits with lower heritability estimates, such as repro-
duction, displayed a more pronounced effect of the 
G × E.

Although most of the traits recorded in breeding pro-
grams have been used to assess the effect of the G × E (see 
Tables S2 and S3), one study has evaluated feed efficiency 
traits in beef cattle and none in dairy cattle populations. 
This is a notable knowledge gap, considering that 55% 
to 80% of the total cost of cattle production is related 
to feeding, especially in more intensive production sys-
tems (Anderson et al.,  2005; Herd et al.,  2003; Ramsey 
et al., 2005; Rolf et al., 2010). Therefore, there is a need to 
investigate G × E on feed efficiency traits in cattle popu-
lations, especially in herds raised in countries with large 
variations in soil, climate, or other sources of heteroge-
neity in production environments. In such conditions, 
nutrition level and quality may restrict the expression of 
the full genetic potential of an animal, and this is even 
more pronounced in extensive production systems, par-
ticularly in tropical regions where animal diets may be 
suboptimal. In these situations, even if management is 
ideal for the environmental conditions, the lack of ad-
equate nutrients can prevent the expression of superior 
alleles. Thus, it is crucial to clearly define the production 
system in question and assess whether the environment 
and management are optimized for animals to reach 
their full genetic potential.

According to the Food and Agricultural Organization 
(FAO,  2009), global meat consumption is expected to 
increase by 30% until 2050. To meet this demand, beef 
production needs to increase by approximately 72%. 
Beef represents a quarter (25%) of the overall global 
meat production and consumption is projected to rise 
from 60 million to 130 million tons. At least 70% of the 
anticipated rise in beef production essential to meet the 
escalating demand is projected to come from subtropical 
and tropical regions (FAO, 2009). In this context, G × E 
emerges as a critical factor, especially in subtropical 
and tropical regions where climatic and breeding condi-
tions vary considerably and animals are raised in more 
extensive production systems. As ~80% of the world's 
livestock population is concentrated in these locations 
(Cooke et  al.,  2020), identifying genotypes adapted to 
these specific climatic contexts is essential to maxi-
mize production efficiency. Breeds and lineages genet-
ically adapted to such environments have the potential 
to offer superior performance in animal production in 
these regions. Therefore, understanding the complex in-
teraction between the genotype and the environment is 
fundamental in optimizing livestock production, ensur-
ing an efficient response to growing global food needs, 
particularly in places where climatic conditions favor 
food production.

INCLUSION OF GENOM IC 
IN FORM ATION IN TH E 
ASSESSM ENT OF G ×  E

The integration of genomic information into genetic 
evaluations has resulted in major advancements in 
animal breeding. Genomic evaluations result in more 
accurate breeding values for younger animals and enable 
a considerable reduction in generation interval, to name 
some of the benefits of genomics (Oliveira et  al.,  2018; 
Silva Neto, Peripoli, et al., 2023). By including genomic 
information in G × E studies, researchers have better 
understood the genetic factors contributing to variation 
in complex traits across environmental conditions 
(Carvalheiro et  al.,  2019; Mota, Lopes, et  al.,  2020; 
Oliveira et al., 2018). Quantifying and modeling the G × E 
in the context of genomic selection is a valuable approach 
for addressing the impact of G × E on selection decisions 
and investigating the genetic basis of animal adaptation 
and environmental sensitivity (Carvalheiro et al.,  2019; 
Mota, Lopes, et al., 2020; Oliveira et al., 2018).

Understanding the genomic background of G × E 
for traits under selection is highly relevant and contrib-
utes to improving the robustness of genetic evaluations. 
This is because an animal can have a reasonably accu-
rate GEBV in an environment where they have not been 
measured yet based on information from their relatives 
(Cao et  al.,  2020; Hayes et  al.,  2016). However, one of 
the main challenges in implementing genomic selection 
is the development of a reference population consisting 
of genotyped animals with phenotypic records in a wide 
range of environmental conditions (Mota, Fernandes Jr, 
et  al.,  2020). Hence, genotyping and phenotyping ani-
mals widely distributed across environmental conditions 
can lead to more accurate GEBV predictions.

Incorporating genomic information into models 
for evaluating G × E can enhance breeding schemes by 
contributing to a more accurate selection of the most 
resilient animals based on genotypic performance con-
sistency across environments. In addition to greater se-
lection accuracy, genomic information also enable the 
identification of genomic regions that influence plasticity 
or stable phenotypic performance across environments 
(Mulder, 2016). The evaluation of G × E effects has been 
deepened by including genomic information combined 
with pedigree information for several traits evaluated in 
cattle breeding programs, such as body weight (Oliveira 
et al., 2018), tick resistance (Mota et al., 2016), traits related 
to sexual precocity (Mota, Fernandes Jr, et al., 2020), and 
milk production (Toro-Ospina et al., 2023).

Genome-wide association studies in the 
identification of G × E

In the context of G × E, the single-step genome-wide 
association study (GWAS) approach has been used to 
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detect SNP markers and genomic regions associated 
with resilience and environmental sensitivity in animals 
(Carvalheiro et al., 2019; Mota et al., 2018; Mota, Lopes, 
et al., 2020). An important question in the G × E is whether 
the quantitative trait loci (QTL) that control a trait show 
consistent effects across different environments, varying 
only in magnitude and direction as environmental 
conditions vary, or whether these QTL change in each 
specific environment (Lillehammer et  al.,  2008, 2009). 
Certain QTL might be more favorable for particular 
environments. As a result, we expect a higher prevalence 
of these QTL in comparable environments (i.e., 
genetic correlations >0.80), while in more divergent 
environments, others have a greater effect on the trait 
(i.e., genetic correlations <0.80).

Mota, Fernandes Jr, et  al.  (2020), using genomic 
RNM to assess G × E in traits related to sexual precocity 
in Nellore cattle, reported dependent SNPs of some envi-
ronments, indicating strong SNP-by-environment inter-
action with changes in the magnitude and direction of the 
SNP effects on the trait. The authors suggested the use of 
these genomic regions and SNPs in statistical models so 
that the process of genetic selection could obtain animals 
with greater genetic potential for sexual precocity and 
tolerance to variations in environmental conditions. For 
example, the weighted single-step genomic BLUP model 
can highlight regions that explain a large proportion of 
the genetic variance of the trait (Wang et al., 2012). This 
approach would allow the weighting of SNPs adjacent to 
these regions, informing the model about their greater 
relevance for the trait in a specific environment allow-
ing adjustments in the weightings according to the in-
teractions between SNP and environment. Lillehammer 
et al. (2008), using random regression models to identify 
QTL related to production traits in Australian dairy cat-
tle, reported that the greatest variation in SNP effects 
occurred when environmental conditions became less 
restrictive. In addition, the authors observed that those 
genomic regions with the higher effect on the trait were 
not equally significant across environments.

Mota et al. (2018), evaluating the genomic background 
of tick resistance in Hereford and Braford cattle using 
reaction norms, observed that an allele can additively 
increase the value of the trait as much as decrease it in 
different environments. This is because gene expression 
can vary and, therefore, the function of a gene and the 
percentage of genetic variance explained by the SNP 
marker near this gene is expected to change (Des Marais 
et  al.,  2013; El-Soda et  al.,  2014; Gibson,  2008; Hayes 
et al., 2009; Mota, Fernandes Jr, et al., 2020).

Oliveira et  al.  (2018) and Carvalheiro et  al.  (2019), 
using the intercept and slope of the RNM as the target 
traits for the GWAS analyses, identified SNP markers 
corresponding to different types of biological functions 
and regulatory genes associated with environmental 
plasticity. Biological mechanisms associated with an-
imal environmental sensitivity depend on the extent 

of the environmental effect on the trait (Lillehammer 
et al., 2007; Streit et al., 2013). Lillehammer et al. (2009) 
reported that some QTL were not reported in previous 
GWAS that did not consider G × E interactions. They 
suggested that SNP-by-environment interaction effects 
could explain inconsistencies between QTL mapping 
studies, particularly when a QTL in one environment is 
not detected in another or has different effects.

Among the effects of G × E, the variation in SNP 
marker effects represents one of the main challenges for 
performing more accurate genomic selection in cattle. 
This is because the best subset of SNP markers might dif-
fer across environments (Des Marais et al., 2013; Mota, 
Lopes, et  al.,  2020; Nirea & Meuwissen,  2017; Oliveira 
et al., 2018). This variation in SNP effects underscores the 
importance of considering G × E in breeding programs, 
as the animals' ability to adapt to adverse conditions in 
production systems can be strongly influenced by these 
interactions. Therefore, it is crucial that breeding pro-
grams include strategies that integrate G × E to ensure 
that genetic selection is adaptive and effective under dif-
ferent environmental conditions.

A practical approach to addressing G × E in animal 
breeding programs is through progeny tests, which in-
volve collecting data on animal performance in different 
locations, management systems, and climatic conditions. 
From these data, statistical models can be used to esti-
mate the specific genetic effects of each environment, al-
lowing a more precise understanding of how genotypes 
behave under different circumstances. However, it is 
crucial to keep it simple to make it easier for breeders 
to understand and make decisions. A viable strategy 
for this simplification is the development of selection 
indices that incorporate G × E (Mulder & Bijma, 2006). 
These indices would combine EBV from different envi-
ronments into a single measurement, considering how 
animals respond in varying conditions (Mulder,  2016; 
Mulder & Bijma,  2006). This simplified approach can 
assist breeders in making more informed selection deci-
sions, contributing to improved animal adaptation and 
performance in diverse environments.

N UTRIGEN ETICS, 
N UTRIGENOM ICS, A N D G ×  E IN 
LIVESTOCK PRODUCTION

With advances in nutrition, biochemistry, molecular 
biology, and genomics are transforming nutritional 
studies into an integrated science (Osorio et  al.,  2017; 
Sato, 2016), where we are now better able to understand 
how nutrients interact with the animal genome, which 
is crucial to understanding G × E in animal production 
systems. Nutrition evaluates the effects of nutrients on 
animal physiology (Osorio et  al.,  2017). Nutrigenomics 
and nutrigenetics are new research approaches that 
aim to study the interaction between food nutrients 

 13652052, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/age.13483 by C

A
PE

S, W
iley O

nline L
ibrary on [09/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



884  |      SILVA NETO et al.

and gene expression in individual animals (Neibergs & 
Johnson,  2012). Nutrigenetics focuses on the study of 
genetic variations in a genome and the response of those 
organisms to a given diet (Neibergs & Johnson,  2012). 
Nutrigenomics, in turn, investigates the relationship 
between nutrition and the genome at the molecular, 
cellular, and systemic levels. In other words, it focuses on 
how the nutrients present in the diet interact with genes 
and their effects on gene regulation processes, such as 
transcription factors, RNA, protein expression, and 
metabolite production (Benítez et  al.,  2017; Gonçalves 
et al., 2009; Osorio et al., 2017; Trujillo et al., 2006).

There are various databases useful in these fields, 
including the dbSNP database (www.​ncbi.​nlm.​nih.​gov/​
proje​cts/​SNP), gene ontology (www.​geneo​ntolo​gy.​org), 
the Kyoto Encyclopedia of Genes and Genomes (www.​
genome.​jp/​kegg), carbohydrate-active enzymes (www.​
cazy.​org), peptidase database (http://​merops.​sanger.​ac.​
uk), gene cards (www.​genec​ards.​org), and the bovine 
gene atlas (http://​bovin​eatlas.​mssta​te.​edu), as well as 
websites hosting the cattle genome sequences (Neibergs 
& Johnson, 2012). These resources can enable the assess-
ment of the impact of different dietary environments on 
gene expression levels, offering a better understanding of 
G × E in livestock.

The possibility of adapting the diet to the individual's 
genome has encouraged researchers worldwide to de-
velop studies in this research area. According to Trujillo 
et al. (2006), nutrigenomics presents four basic premises: 
(1) diet and dietary components can alter the risk of dis-
ease development by modulating multiple processes in-
volved with onset, incidence, progression, and severity of 
disease; (2) food components can act on the genome, ei-
ther directly or indirectly, to alter the expression of genes 
and gene products; (3) diet could potentially compensate 
or accentuate the effects of genetic polymorphisms; and 
(4) the consequences of diets are dependent on the bal-
ance of health and disease states and on an individual's 
genetic background. These premises illustrate how diet, 
part of the environment, interacts with the genome to 
influence the phenotype, exemplifying the importance 
of G × E in animal performance and environmental ad-
aptation. Thus, knowing that the diet and the nutrients 
present in the food are an important part of the environ-
ment in which the animals are raised and greatly affects 
variations in performance. Using new tools and results 
obtained in nutrigenomics would make it possible to un-
derstand how the genes of animals respond to different 
diets and how this interaction can influence their per-
formance, health, and adaptation to the environment in 
which they are raised. This knowledge is valuable for de-
veloping schemes for specific diets or more efficient nutri-
tional strategies and for selecting more genetically suitable 
animals for given production systems or environments.

DNA methylation is one of the most studied forms 
of epigenetics, which involves adding methyl groups 
to certain DNA regions, inhibiting or activating gene 

expression (Lesta et al., 2023; Xue et al., 2023). These epi-
genetic changes can be, in some cases, heritable, affect-
ing gene expression in future generations (Fitz-James & 
Cavalli, 2022; Van Cauwenbergh et al., 2020). Epigenetic 
changes, resulting from interactions between genes and 
the environment, are an essential component of G × E, 
showing how the environment can have lasting effects 
on gene expression and, consequently, on phenotype. 
Thus, environmental effects can permanently influence 
the animal's genotype, changing how genes are expressed 
and its impact on the target phenotype. This complex in-
teraction between the environment and the genotype is 
fundamental for the adaptation of animals to different 
environmental conditions and for developing genetic 
improvement strategies that consider these epigenetic 
influences.

Several studies conducted in humans and mice have 
focused on exploring the molecular basis of multifacto-
rial diseases, such as obesity, cardiovascular diseases, 
and cancer, interpreting them as a result of interactions 
between genes and diet (Ferguson et al., 2009; Ordovas 
& Corella, 2004; Šedova et al., 2004; Trujillo et al., 2006). 
Notably, they revealed significant interactions resulting 
from combining specific foods or dietary components. 
These studies demonstrate clearly the G × E, where dif-
ferent genotypes respond differently to the same nutri-
tional conditions. For example, combined consumption 
of soy with black or green tea has demonstrated greater 
efficacy in preventing the growth and metastasis of pros-
tate cancer in men than alone consumption (Gonçalves 
et  al.,  2009; Lyn-Cook et  al.,  1999; Zhou et  al.,  2003). 
Furthermore, in humans, an understanding of the impli-
cations of early maternal nutrition on epigenetic changes 
and how they translate into phenotypic changes has al-
ready been clarified (Burdge & Lillycrop, 2010).

In domestic animals, although part of the informa-
tion about the genes that make up the genome and their 
respective locations on the chromosome, structure, and 
function have been identified (Barbosa et al., 2023; Marti 
et al., 2005), there are still scarce studies on how genes 
act in animal metabolism. Recent studies investigating 
the molecular interactions of dietary nutrients have re-
vealed that gene expression undergoes modifications due 
to various nutritional elements. These include carbohy-
drates, proteins, fatty acids, vitamins, minerals, and 
phytochemicals such as flavonoids and isothiocyanates 
(Abete et al., 2012; Benítez et al., 2017; Mutch et al., 2005; 
Raqib & Cravioto, 2009).

In cattle, variations in dietary mineral require-
ments between breeds indicate that genetic factors 
influence the individual requirements of each an-
imal. An example of this is the study carried out by 
Mullis et  al.  (2003) with Angus and Simmental heif-
ers housed together during pregnancy and early lac-
tation, in which the authors observed differences in 
plasma concentrations between breeds, with Angus 
heifers having higher plasma copper concentrations, 
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suggesting a lower copper requirement compared to 
Simmental heifers (Mullis et al., 2003). In a study con-
ducted by Joseph et al.  (2010), they examined the im-
pact of diverse dietary supplements on the expression 
of genes associated with lipid metabolism in Angus 
steers. The study compared several animal groups: 
those solely consuming grass, pasture-fed steers sup-
plemented with soy hulls and corn oil, pasture-fed 
steers supplemented with corn grain, and a group on 
a high-concentrate diet. The findings highlighted that 
alterations in diet, mainly through high-concentrate 
supplementation, influenced the transcription of genes 
linked to fat metabolism. This, in turn, impacted the 
fatty acid composition in carcass tissues, thereby in-
fluencing carcass quality. Notably, supplementing with 
corn, whether in oil or grain, influenced the expression 
of genes associated with fatty acid synthesis.

It has long been agreed that nutrition and genetic 
predisposition significantly influence reproductive 
performance and fertility in dairy cattle (Butler,  1998; 
Roche, 2006; Sammad et al., 2022). This association be-
comes particularly crucial during transitional phases 
and early lactation when the animals are highly sensitive 
to nutritional fluctuations (Laible, 2009). Du et al. (2010) 
state that adequate maternal nutrition during gestation 
increases the Wingless and Int (Wnt). This pathway, re-
sponsible for bolstering myogenesis and curbing adipo-
genesis in skeletal muscle, regulates body fat levels and 
reduces susceptibility to obesity. It facilitates heightened 
myogenesis during early and mid-gestation through an 
epigenetic mechanism (Yan et al., 2013).

Among livestock species, cattle have one of the most 
complete and detailed sets of comparative SNP arrays, 
mainly due to their economic relevance (Seo et al., 2013). 
Databases and livestock-specific web-based pathway ge-
nomics tools (cited earlier), facilitate the functional anal-
ysis of diverse ‘omics’ data types, such as transcriptome, 
proteome, and metabolome (Seo et  al.,  2013). For beef 
and dairy cattle production, the overall efficiency of nu-
trient use during growth and lactation hinges on a com-
bination of management practices and environmental 
factors, which influence metabolic responses through an 
integrated system of genetics, nutrition, immunity, and 
physiological processes (Berry et  al.,  2011; Hocquette 
et al., 2010; Loor, 2010). Hence, information from nutrig-
enomics studies has the potential to guide the formula-
tion of more specific diets, taking into account the health 
status of the animals and the nutritional composition of 
the feed, which may result in improved metabolic re-
sponses and, therefore, higher production.

PERSPECTIVES ON RESEARCH 
A N D APPLICATION

G × E interaction is relevant for production and 
many other complex traits such as heat tolerance, 

disease resistance, reproductive and feed efficiency, 
as demonstrated in this review. With the use of omics 
data, it is possible to advance significantly in researching 
these traits identifying genes and metabolic pathways 
associated with animal adaptation. It is expected that 
the results obtained in the present and those that will 
be obtained in the future directly benefit the genetic 
improvement programs in livestock production. 
Evaluating and elucidating the G × E in feed efficiency 
traits will provide knowledge of the complex genetic 
background regarding feed efficiency in cattle, allowing 
the selection of animals with greater genetic potential for 
feed efficiency under different production conditions. 
In addition, the results from GWAS for these traits 
in contrasting environments (low, medium, and high 
environmental gradient levels) can be used to identify 
important genomic regions associated with these traits. 
This information can then contribute to the development 
of more comprehensive SNP panels that cover all 
relevant genomic regions, improving the accuracy of 
genomic evaluations by focusing on genomic regions 
with significant associations. Ultimately, advancements 
in omics technologies will support the creation of more 
efficient selection strategies and tools, aiming to enhance 
production sustainability.

Studies on nutrigenetics and nutrigenomics are ex-
panding areas of science that still require many studies 
to maximize the benefits of understanding gene–nutri-
ent interactions. There are several transcription factors 
with great potential to be studied to improve animal 
metabolism for greater performance, health, and the 
quality of the inputs produced, such as meat and milk. 
Nutrigenomic analyses can prevent diseases linked to 
the individual's nutritional condition, formulating diets 
based on gene mapping. Diseases such as ketosis, a 
metabolic disease that mainly affects dairy herds with 
a body condition above that recommended at the time 
of parturition (Goodacre,  2007; Ingvartsen,  2006), can 
be partially prevented, reducing its incidence. The gen-
eral results of the nutrigenomic experiments produced 
so far seem promising. However, practical applications 
are not yet available, partly due to the complexity of the 
systems under study. The discoveries to be made in the 
coming decades using molecular tools will revolutionize 
our basic understanding of the physiology of herds and 
will help in the improvement and development of new 
methods for the nutritional control of animals.

CONCLUSIONS

Based on the literature results presented in this review, it 
is clear that G × E is a reality in cattle breeding programs 
leading to a loss in selection response, especially when 
genetic evaluations of sires are performed in different 
environments. In most studies, the genetic correlations 
were below 0.80, demonstrating the significant effect on 
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the genetic reranking of the selection candidate, which 
results in changes in the residual and additive genetic 
variance of the traits. Consequently, there are expected 
changes in heritability estimates and breeding value 
across environments, which decreases the expected ge-
netic gain. It is necessary conduct studies to understand 
the relationship between differences in animal perfor-
mance and the effects of the G × E, as well as the best way 
to include them in the statistical models used in genetic 
evaluations. In the face of climate change, monitoring 
the G × E is essential, aiming to select resilient animals to 
ensure the sustainability of production systems.
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