
Received: 23 August 2024 Accepted: 3 December 2024

DOI: 10.1002/ppj2.70015

O R I G I N A L A R T I C L E

Temporal field phenomics of transgenic maize events subjected to
drought stress: Cross-validation scenarios and machine learning
models

Helcio Duarte Pereira1,2 Juliana Vieira Almeida Nonato1,2

Rafaela Caroline Rangni Moltocaro Duarte1,2,3 Isabel Rodrigues Gerhardt1,2,4

Ricardo Augusto Dante1,2,4 Paulo Arruda1,2,5

Juliana Erika de Carvalho Teixeira Yassitepe1,2,4

1Genomics for Climate Change Research

Center (GCCRC), Universidade Estadual de

Campinas, Campinas, São Paulo, Brazil

2Centro de Biologia Molecular e Engenharia

Genética (CBMEG), Universidade Estadual

de Campinas, Campinas, São Paulo, Brazil

3Embrapa Meio Ambiente, Jaguariúna, São

Paulo, Brazil

4Embrapa Agricultura Digital, Campinas,

São Paulo, Brazil

5Departamento de Genética, Evolução,

Microbiologia e Imunologia, Instituto de

Biologia, Universidade Estadual de

Campinas, Campinas, São Paulo, Brazil

Correspondence
Juliana Erika de Carvalho Teixeira

Yassitepe, Genomics for Climate Change

Research Center (GCCRC), Universidade

Estadual de Campinas, Campinas, São

Paulo, Brazil.

Email: juliana.yassitepe@embrapa.br

Assigned to Associate Editor Sara Tirado

Tolosa.

Funding information
Fundação de Amparo à Pesquisa do Estado

de São Paulo, Grant/Award Numbers:

2016/23218-0, 2022/04930-1, 2023/11640-2

Abstract
Global climate change has driven breeding programs to develop abiotic stress-

resilient plant varieties. Traditionally, assessing drought resilience involves labor-

intensive and time-consuming processes. This study used an unmanned aerial system

(UAS) to predict key phenotyping traits in maize (Zea mays L.) and monitor plant

response to drought during the crop cycle. We grew transgenic maize hybrids in

two trials, one irrigated and another subjected to drought stress, and used a drone

equipped with red–green–blue (RGB) and multispectral sensors to capture images

of the plots over time. Machine learning models and various prediction scenarios

revealed significant correlations between vegetation indices over time. Interestingly,

the RGB sensor outperformed the multispectral sensor in trait prediction. Predic-

tion accuracy across scenarios with untested genotypes and environments ranged

from 0.40 to 0.70 for grain yield, 0.43 to 0.69 for days to anthesis, 0.51 to 0.67 for

days to silking, and 0.35 to 0.57 for plant height. Ridge and random forest models

consistently delivered the most accurate predictions across traits and environments.

The vegetation indices normalized green–red difference index, VARI, and RCC also

effectively predicted and captured the plant response to drought. This study high-

lights the value of UAS phenotyping as a practical tool for assessing abiotic stress

due to its straightforward implementation.

Plain Language Summary
Climate change has become a new threat to crop production, and drought is among the

greatest concerns for sustaining food production. Plant breeding plays a special role

in developing new and more resilient genotypes. Since evaluations under stressful
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conditions require extensive assessments, a new tool to aid breeders was investigated

in this study. A UAS with integrated RGB and multispectral sensors was employed

to capture images at all phenological stages of the maize crop cycle in two experi-

ments: one irrigated and the other under drought stress. These images were used to

monitor the plant response to drought and predict important traits. The prediction

accuracies achieved by machine learning models using RGB data showed promising

applications. Some vegetation indices reflected how plants changed under drought

and correlated highly with the assessed traits. Thus, digital phenotyping can be a

new tool to obtain reliable phenotypes more quickly and affordably.

1 INTRODUCTION

Maize (Zea mays L.) is grown worldwide and is crucial in

ensuring global food security (Erenstein et al., 2022; Zheng

et al., 2018). As the world’s population continues to grow,

the demand for food and resources has increased, leading to

a steady rise in global maize production (FAOSTAT, 2022).

However, global climate change is posing new challenges

to crop production, with drought, heat, and their interac-

tions being the most significant threats to agricultural systems

(Lobell et al., 2011, 2013; Wang et al., 2021). Over time, the

frequency and severity of water stress are expected to increase

(Yuan et al., 2023).

Plant responses to drought are characterized by complex

and interrelated mechanisms that are not yet fully understood

(Li et al., 2023). Factors such as phenological stage, inten-

sity, duration, and interaction with other stresses contribute

to this complexity. Developing drought-tolerant cultivars can

be expensive and time-consuming (McMillen et al., 2022;

Messina et al., 2021). The development and validation of new

tools to assist breeders in creating stress-tolerant cultivars are

in high demand, especially for annual grain crops with shorter

cycles and high replacement rates by new cultivars.

The response to drought involves physiological and mor-

phological adaptations throughout the plant life cycle (Yan

et al., 2023). To fully understand this phenomenon, multiple

phenological aspects must be assessed over time, requiring

labor expertise that is not widely affordable to many research

groups. Tools that allow for repeated, fast, and accessible

recording over time, such as unmanned aerial systems (UASs)

phenotyping, can contribute to a more comprehensive under-

standing of plant responses to drought stress (Araus & Cairns,

2014). UAS has been applied in a low-cost, high-throughput

manner for phenomic selection in wheat (Triticum aestivum
L.) and poplar (Populus nigra L.), providing numerous vari-

ables that can be used as regressors or to estimate kinship

in the statistical models used in genomic selection (Rincent

et al., 2018). With advancements in sensors, unmanned aerial

vehicles (UAVs), geographic information systems, and image

processing software, phenomic prediction has increasingly

been applied in field trials (Aguate et al., 2017; Anderson

et al., 2019).

Understanding how new plant genotypes behave in differ-

ent environments is challenging for plant breeding programs.

The interaction effects between genotype and environment are

usually significant for most crops. Due to limited resources

and seeds, evaluating all target environments is impossible,

which is why prediction is so important. Researchers have

looked into the potential of phenomic prediction to be used

across different environments or for unassessed genotypes

since its first applications (Lane et al., 2020; Montesinos-

López et al., 2017; Wijewardane et al., 2023). Designing

appropriate cross-validation (CV), namely, predicting incom-

plete field trials, new genotypes, or new target environments

that have not been observed in the field, can allow the breeding

program to advance while still using the same amount of plots

(Jarquin et al., 2017; Pandey et al., 2020). The CV scheme,

aligned with a powerful prediction tool, will borrow genetic

relationships or phenotypic correlations among environments

and can aid in increasing the accuracy of selection in early

screenings (Jarquin et al., 2020).

Compared to genomic selection, a well-established tool in

breeding, phenomic prediction has generally demonstrated

superior performance across diverse environments, largely

due to its ability to capture nonadditive effects (Robert et al.,

2022; Winn et al., 2023). It is also less affected by popula-

tion structure and kinship (Weiß et al., 2022) and the size of

the training population (Zhu et al., 2022). On the other hand,

genomic selection relies on fixed information from molecular

markers that are not influenced by environmental conditions.

Different from genomic selection models that are largely

based on a mixed model framework (RRBLUP, GBLUP) or

Bayesian inference (Bayes-A, Bayes-B, Bayes-least absolute

shrinkage operator [LASSO], etc.), the phenomic prediction

models are mainly based on machine learning techniques,

such as penalized regressions (elastic net, ridge regression

[Ridge], LASSO regression), decision trees (random for-

est [RF]), and variable selection approaches (partial least
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squares [PLS]) (Chafai et al., 2023). Machine learning mod-

els outperformed their genomic counterparts in predicting

grain yield (GY) and grain protein content using spectral

information in a wheat breeding program (Sandhu et al.,

2021).

Using phenomic prediction for quantitative traits in initial-

stage field trials is an emerging trend in plant breeding

programs. In the early generations, the limited number of

seeds forced breeders to use small plots and fewer replica-

tions/environments, challenging traits like GY to be assessed.

However, small-field wheat trials have observed good corre-

lations between phenomic predictions and GY (Krause et al.,

2020). Similarly, developing biotech traits encounters obsta-

cles, including a scarcity of genetically engineered seeds, high

trial costs, and the necessity to rely on highly heritable sec-

ondary traits related to GY for effective field evaluation. In

light of these challenges, our study aims to (1) investigate the

potential of phenomic prediction for early screenings, includ-

ing assessments under drought conditions, and (2) identify

the most effective vegetation indices for predicting primary

traits and evaluating water stress. The study also examined the

impact of sensors, prediction scenarios, and machine-learning

regressions on these predictions.

2 MATERIALS AND METHODS

2.1 Genotypes and experimental design

Two trials involving 21 F1 hybrids, including 18 transgenic

events overexpressing drought-tolerance candidate genes and

three non-transgenic genotypes (Table S1), were planted in

Campinas, SP, Brazil (22˚54′23″ S 47˚3′42″ W) during the

dry season (April–September) of 2023. These transgenic

events consisted of different genes and genetic backgrounds

(temperate, tropical, and adapted) selected based on their

demonstrated drought tolerance in controlled environments,

including growth chambers and greenhouses. The genotypes

were assessed using a randomized complete blocks design

with three replications. The experimental plots were set up in

single rows with a length of 5 m and spaced 0.45 m apart. The

soil was prepared through conventional tillage, and all crop

management practices were consistent between the two trials,

except for the water supply. The trial area had been uncul-

tivated for the previous 3 years and had a uniform and flat

surface.

An inline drip irrigation system was used to water the plants

until they reached the V6 stage. After that stage, only the trial

with irrigation continued to receive water until the R5 stage.

Tensiometers were installed at 20- and 40-cm depths to man-

age the irrigation system. Each experimental area consisted of

20 rows of a commercial single-cross hybrid planted around

as a border.

Core Ideas
∙ Temporal imaging captures most vegetation

indices variation throughout the maize plant cycle.

∙ Vegetation indices show low to moderate correla-

tion between and within each imaging time.

∙ Red–green–blue sensors provide more accurate

predictions than the multispectral sensor.

∙ Ridge and random forest models yield consistent

predictions across traits and scenarios.

2.2 Plant imaging and trait extraction

We used a DJI Mavic 3 M UAV (drone) harboring

two sensors—red–green–blue (RGB) and multispectral. The

drone flew at a height of 12 m and captured RGB images

(5280 × 3956 pixels) using a standard integrated camera and

multispectral images (2592 × 1944 pixels) with the follow-

ing bands: green (560 ± 16 nm), red (650 ± 16 nm), red-edge

(730 ± 16 nm), and near-infrared (860 ± 26 nm). The frontal

and side overlap between images were 90% and 80%, respec-

tively. Each flight lasted around 10 min, and we recorded

290 images during each flight. The flights were conducted

between 11 a.m. and 1 p.m. to ensure perpendicular solar inci-

dence, clear skies, and minimal wind conditions whenever

possible.

The raw images were processed using the software Open

Drone Map (WebODM interface) to generate the ortho-

mosaic. In the main user interface, the RGB images were

processed with the options High Resolution and No Resize
Images, and the multispectral images with multispectral and

radiometric calibration: camera+sun. With these settings

and the flight parameters, the average ground sampling dis-

tance was approximately 0.5 cm for RGB and 0.7 cm for

multispectral orthomosaics.

From all flights, we selected the ones without blurred or

cloudy areas. Eighteen flights with the RGB sensor and 13

with the multispectral sensor, covering the entire crop cycle,

were chosen for further analysis (Figure 1).

The polygons for each plot were set using the QGIS soft-

ware (QGIS Development Team, 2024) to create ESRI shape

files (.shp file extensions) for each trial on each flight date. A

fixed percentage buffer of 80% was applied using the Buffer
by percentage plugin to minimize the influence and over-

lap of adjacent plots. Once a shape file was created, it was

adjusted manually to ensure the correct position over the plots

for another orthomosaic and then saved. These shape files of

the plots were later utilized to extract the vegetation indices

in each trial and flight date.

The orthomosaic and shape file archives were imported into

R to obtain the plot-based vegetation indices. The first step
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F I G U R E 1 Flight dates as days after planting (DAP) selected for each sensor and the corresponding phase of the crop cycle in which they were

located. RGB, red–green–blue.

in the workflow was to clip all the plots from the orthomo-

saic using an R script with the terra package (Hijmans, 2024),

which helped save memory and processing time. A color mask

was then applied to separate the plants from the soil using

the field mask function from the FIELDimageR R package

(Matias et al., 2020), using the overall hue index and the nor-

malized difference vegetation index (threshold 0.6) for RGB

and multispectral orthomosaics, respectively.

A total of 630 (35 × 18) and 702 (54 × 13) temporal pheno-

types were calculated, including 35 RGB and 54 multispectral

vegetation indices (also considering the single bands of each

sensor) for each flight date from imaging phenotyping. All

calculations of the vegetation indices were performed using an

R script with the terra package. The study’s vegetation indices

and their expressions and references can be found in Tables S2

and S3 for RGB and multispectral sensors, respectively. Each

plot-based vegetation index used the trimmed mean, discard-

ing 10% of the pixels with extreme values to remove any noise

pixels that could remain from soil segregation.

2.3 Statistical analysis of ground and
imaging phenotyping

We studied 10 traits related to plant growth and production,

including anthesis silking interval (ASI), days to anthesis

(DTA), days to silking (DTS), ear diameter (ED), ear height

(EH), ear index (EI), ear length (EL), GY, 100-grain weight

(HGW), and plant height (PH). The flowering time was

recorded when 50% of the plants were shedding pollen or

when the first silk emerged. ASI was calculated as the differ-

ence between these two dates. PH and EH were measured as

the distance from the soil to the flag leaf and the insertion of

the first ear, respectively. ED was measured as the diameter at

the middle of the ear, while EL was measured as the distance

between the base and the tip of the ear. EI was determined as

the ratio between the total number of ears and the number of

plants in the plot. HGW was calculated as the mean weight

of 100 kernels per plot, and GY was determined by weigh-

ing all the plot’s threshed ears and adjusting the moisture

to 14%.

The data from temporal phenotypic imaging were analyzed

using a nested design to obtain temporal best linear unbi-

ased predictions for each genotype. A fully random model

was fitted using the sommer R package (Covarrubias-Pazaran,

2016), with variance components estimated by restricted max-

imum likelihood and genetic effects estimated by best linear

unbiased prediction (BLUP). Each temporal vegetation index

was modeled for both sensors as follows:

𝑌𝑖𝑗𝑘 = 𝜇 + 𝜑𝑖 + 𝛽𝑖(𝑗) + 𝜃𝑖(𝑘) + ε𝑖𝑗𝑘 (1)

where 𝑌𝑖𝑗𝑘 is the vegetation index value for the genotype 𝑗 in

the replication 𝑘 at each flight 𝑖, given as days after plant-

ing (DAP); 𝜇 is the overall mean; 𝜑𝑖 is the random effect

of 𝑖th flight time with 𝜑𝑖
𝑖𝑖𝑑

∼ N(0, σ2
𝜑𝑖
), 𝑖 ∈ {26, 35, 40,

49, 55, 60, 67, 74, 91, 95, 99, 104, 109, 113, 119, 126, 131,

139} for RGB sensor, and 𝑖 ∈ {26, 35, 40, 49, 55, 74, 76,

95, 99, 104, 110, 113, 123} for multispectral sensor; 𝛽𝑖(𝑗) is

the random effect of 𝑗th genotype within the 𝑖th flight time

with 𝛽𝑖(𝑗)
𝑖𝑖𝑑

∼ N(0, σ2
𝛽𝑖(𝑗)

), 𝑗 ∈ {1, 2, 3 . . . 21}; 𝜃𝑖(𝑘) is the

random effect of 𝑘th replication within the 𝑖th flight time

with 𝜃𝑖(𝑘)
𝑖𝑖𝑑

∼ N(0, σ2
𝜃𝑖(𝑘)

), 𝑘 ∈ {1,2,3}; and ε𝑖𝑗𝑘 is the residual

pooled error with ε𝑖𝑗𝑘
𝑖𝑖𝑑

∼ N(0, σ2ε𝑖𝑗𝑘 ). Temporal repeatability

of the genotypic effect was calculated by Equation (2) for each

vegetation index.

Temporal repeatability =
𝜎2
𝛽𝑖(𝑗)

𝜎2
𝛽𝑖(𝑗)

+
𝜎2ε𝑖𝑗𝑘

number of replications

(2)

where 𝜎2
𝛽𝑖(𝑗)

is the genotypic variance regarding all flights and

𝜎2ε𝑖𝑗𝑘𝑙𝑚
is the residual error variance.

The same previous model was used with the ground phe-

notypic data, without the flight component, as we have single

time-measured traits, as follows:
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𝑌𝑗𝑘 = 𝜇 + 𝛽𝑗 + 𝜃𝑘 + ε𝑗𝑘 (3)

The traditional heritability was calculated based on the

variance components from Equation (3), as follows:

Heritability =
𝜎2
𝛽𝑗

𝜎2
𝛽𝑗
+

𝜎2ε𝑗𝑘
number of replications

(4)

where 𝜎2
𝛽𝑗

is the genotypic variance and 𝜎2ε𝑗𝑘
is the residual

error variance.

The R2 (total variance explained by the model) for both

the imaging phenotyping and traditional ground phenotyp-

ing analyses was calculated using the conditional R2 approach

for mixed models, as presented by Nakagawa and Schielzeth

(2013). We studied the relative difference between the mean

of each vegetation index in the drought and irrigated trials

to identify the most sensitive among them. This difference

accounted for the vegetative stage, excluding the possible

influence of flowering organs or natural leaf senescence.

Figure 2 provides an overview of the field-based imaging

phenotyping process.

2.4 Prediction scenarios and machine
learning regression

The temporally adjusted breeding values for all RGB and

multispectral vegetation indices across the flight dates were

used to predict ground phenotyping traits (predicted vari-

ables) using machine learning regressions, adjusted in the

caret R package (Kuhn, 2008). The indices GR and VEG in

the RGB data (Table S2) and the indices MNDRE, MRETVI,

REGNDVI, REGRVI, RENDVI, and RESR in the multi-

spectral data (Table S3) were excluded from further analyses

due to their minimal genotypic variance, identified by the

caret::nearZeroVar function. Hence, predictions based on

RGB and multispectral data used 594 (630 − 2 × 18) and

625 (702 − 6 × 13) imaging phenotyping data, respec-

tively. The genotypes were divided into training and validation

datasets of 80% and 20%, respectively, in 500 bootstrap

resampling. It is important to note that the same division was

employed within each iteration to ensure fair comparisons.

Four prediction scenarios mimicking situations that breed-

ers face in plant breeding were examined, encompassing the

two prediction populations and the water condition of the tri-

als, similar to that applied in genomic prediction for multi-

environments.

The training dataset was the set of genotypes assessed in

the field, whose phenotypic records were used to calibrate

the models. These genotypes were called tested individuals.

The validation dataset was the set of genotypes not assessed

in the field and lacking phenotypic records. These genotypes

were called untested individuals. A similar division was also

applied to the environments. Thus, we had the environment

where the genotypes were assessed, called the tested envi-

ronment, and the environment where the genotypes were not

assessed, called the untested environment. The irrigated trial

was used as the tested environment where the genotypes were

evaluated, while the drought trial was the untested environ-

ment for predicting the genotypes. There were four scenarios

for prediction: 1) using the training set in the irrigated trial for

tested genotypes in the tested environment (CV1); 2) using

the validation set in the irrigated trial for untested geno-

types in the tested environment (CV2); 3) using the training

set in the drought trial for tested genotypes in the untested

environment (CV3), and 4) using the validation set in the

drought trial for untested genotypes in the untested environ-

ment (CV4). CV1 was used as a benchmark, tested genotypes

in a tested environment; CV2 resembles incomplete field trial

within a tested environment; CV3 refers to cases where tested

genotypes are predicted in new environments; CV4 refers to

cases where untested genotypes are predicted in new environ-

ments. Figure 3 shows a visual representation of the prediction

pipeline.

We explored eight machine learning regression methods

commonly used in phenomic prediction research with the

caret::train function. The method argument was set as “glm-

net” for Ridge, lasso regression, and elastic net; “knn” for

k-nearest neighbor (KNN); “pls” for partial least squares; “rf”

for random forest; “svmLinear” for linear kernel support vec-

tor machine (SVM); and “svmRadial” for radial kernel SVM.

For tuning parameters, we set alpha as 0 for Ridge, 1 for

lasso, and a searched value between 0 and 1 for elastic net by

10 equal increments. We defined lambda as a searched value

between 0.0001 and 1 in 10 equal increments for ridge, lasso,

and elastic net. To tune the parameters for PLS and KNN, we

set tuneLength as 10 for the number of principal components

and 100 for the number of k, respectively. For RF, we defined

ntree (number of trees) as 1000 and mtry (number of vari-

ables tested in each split) as a searched value between 1 and

50. For the SVM linear, we defined tuneGrid as a search value

between 1 and 5, and for the SVM radial, we set tuneLength

to 10.

The variable importance scores for each regression model

were obtained using the caret::varImp function. The acronym

VI_DAP represents a vegetation index (VI) calculated on spe-

cific flight dates (DAP). Once the model was trained, we used

the caret::predict function with the corresponding dataset

based on the prediction scenario. Each set of predictions was

compared to the BLUPs of the ground phenotypic traits to cal-

culate prediction accuracy, genotype rankings, and the root

mean square error (RMSE) of prediction. We specifically

chose the top 10 most important predictors from the model

with the highest prediction accuracy scores in the CV2, CV3,
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F I G U R E 2 Pipeline of imaging phenotyping process used in this work. BLUPs, best linear unbiased predictions; GCP, groud control points;

RGB, red–green–blue.

and CV4 scenarios to identify the most influential vegetation

indices and flight dates for the traits. The results of predic-

tion efficiency, correlations involving the vegetation indices,

and key parameters from both phenotyping methods were pre-

sented in graphical visualizations using the ggplot2 R package

(Wickham, 2016).
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F I G U R E 3 The main steps for prediction include how the genotypes are split in our training and validation datasets, how the model is trained

with the available phenotypes from the environments under study, and further, the structure of the prediction scenarios, once we have a model

already trained.

F I G U R E 4 Explained percentage variation by each component in Equation (3) for the ground phenotyping traits in the irrigated (A) and

drought (B) trials. The left y axis represents the percentage of variation explained by the components, while the right y axis displays the heritability

and R2 values. The traits included are anthesis silking interval (ASI), days to anthesis (DTA), days to silking (DTS), ear diameter (ED), ear height

(EH), ear index (EI), ear length (EL), grain yield (GY), 100-grain weight (HGW), and plant height (PH).

3 RESULTS

3.1 Variances explained, heritability,
temporal repeatability, and the sensitivity of
the indices to drought

The two trials tested in this study showed similar results for

R2 values (total variance explained by the model) and the her-

itability achieved for the traits (Figure 4). The only exception

was observed for EI in the irrigated trial, where there was the

least difference in R2 and heritability. For the other traits, the

differences between both trials were small. In irrigated condi-

tions, the heritability ranged from 0.22 (EI) to 0.86 (ED), and

the R2 ranged from 0.10 (EI) to 0.70 (DTA), while in drought

conditions, these values were between 0.54 (EI) and 0.88

(DTA) for heritability, and 0.30 (EI) and 0.77 (DTA) for R2.

The genotype component, on average, explained almost the

same variation in irrigated (42%) and drought (44%) condi-

tions. Despite the similarities between both trials concerning

the variances explained by each component and the calculated

ratios (R2 and heritability), they yielded differently. On aver-

age, the irrigated trial yielded 9857 kg/ha, and the drought

trial yielded 5624 kg/ha. The graph of grain yield density in

each trial can be viewed in Figure S1.

The flight component in the nested design, for both sen-

sors and trials, explained the most significant percentage of

variation for all vegetation indices (Figure 5). Over the crop

cycle and in both irrigated and drought conditions, there
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8 of 16 PEREIRA ET AL.

F I G U R E 5 Explained percentage variation by each component in the nested design by Equation (1) for each vegetation index for the RGB

sensor, irrigated (A) and drought (B) trial, and multispectral sensor, irrigated (C) and drought (D) trial. The left y axis corresponds to the explained

percentage variation of the components, while the right y axis shows the temporal repeatability and R2 values.

was a significant variation in the temporal breeding values

of the vegetation indices (Figure S2). Correlations within

each phenomic dataset, for both irrigated and drought con-

ditions, showed a wide range of variation, from −1 to 1, and

larger blocks of strongly correlated vegetation indices were

not observed (general mean value of 0.08), especially in the

RGB dataset (Figure S3).

The flight component accounted for up to 95% of the

variation in RGB phenomic data for the G_R index while

explaining the lowest percentage for R_B (33% and 37% for

drought and irrigated conditions, respectively). The multi-

spectral phenomic data that were most influenced by the flight

component were the PSRI index (91% for irrigated condi-

tions) and the RESAVI index (92% for drought conditions),

while the least affected were the single band red (81% for

irrigated conditions) and the NGI index (73% for drought

conditions).

The temporal repeatability of the RGB phenomic data

was mostly concentrated in the range of 0.25–0.50 (with

an average of 0.32) and generally higher than the temporal

repeatability of the multispectral data (with an average of

0.16), especially in the irrigated trial. The R2 value for the

imaging phenotyping data was higher (with an average of

0.86) than the R2 observed for the ground phenotyping traits

(with an average of 0.50). There was a slight difference in the

average R2 values between multispectral and RGB phenomic

data, with values of 0.90 and 0.83, respectively.

Table S4 shows the changes in vegetation indices between

the drought and irrigated trials during the vegetative stage.

In the drought trial, the RGB vegetation indices R_B, BI,

RCC, and single band blue experienced significant reduc-

tions of over 100%. Conversely, VARI, normalized green–red

difference index (NGRDI), NDI, COM2, and G_B showed

substantial increases in the drought trial. MDD and MNDI

had the biggest decreases among the multispectral vegetation

indices, while NREI and NREI2 saw the greatest increases.

The multispectral indices showed more absolute value and

range variation than the RGB indices.

3.2 Prediction of phenotypic traits using
high-resolution UAS imaging and temporal
data

We focused our analysis on the most commonly used traits:

DTA, DTS, GY, and PH. The predictions for the remaining

six traits can be found in the Supporting Information. The

phenomic predictions using RGB data (Figure 6) performed

better than those using multispectral data (Figure S4). The

predictions for DTS were very similar using both sensors

(0.61 for RGB and 0.62 for multispectral). However, the mul-

tispectral predictions reduced the accuracy by 12%, 47%, and

39% on average for DTA, GY, and PH, respectively. There-

fore, all results henceforth will be based on RGB predictions.
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PEREIRA ET AL. 9 of 16

F I G U R E 6 Red–green–blue (RGB) phenomic prediction accuracy (y axis) obtained by each model in four cross-validation scenarios of

prediction (x axis) for the traits days to anthesis (DTA), days to silking (DTS), grain yield (GY), and plant height (PH). CV1 and CV2 indicate the

prediction of tested and untested genotypes in the observed environment (irrigated), respectively. CV3 and CV4 indicate the prediction of tested and

untested genotypes in the unobserved environment (drought), respectively. The models are elastic net (EN), k-nearest neighbor (KNN), least absolute

shrinkage operator (LASSO), partial least squares (PLS), random forest (RF), ridge regression (Ridge), support vector machine (SVM), and support

vector machine with radial kernel (SVMR).

The prediction accuracy for the other traits can be found in

Table S5.

The KNN model consistently underperformed compared

to other machine learning models when predicting the tested

genotypes under irrigated conditions (CV1) for all traits. The

other models performed similarly in this prediction scenario,

except for PLS, which showed some deviation in predicting

PH. However, the KNN model stood out when predicting

untested genotypes for the trait DTA under drought conditions

(CV4). For predicting tested genotypes under drought con-

ditions (CV3) for the same trait, the KNN model performed

similarly to Ridge, SVM, PLS, and RF and achieved the high-

est score. Ridge was the best predictor for untested genotypes

for DTA in irrigated condition (CV2).

The best prediction performance for DTS was found using

the Ridge model, both in irrigated and drought conditions. For

GY, the RF model stood out for predicting drought conditions

(CV3 and CV4), while it did not perform well in irrigated

conditions (CV2). In this condition, the Ridge model was the

best but very similar to the SVM, support vector machine

with radial kernel (SVMR), and EN models. For the trait PH,

the PLS model showed the highest predictions. In drought

conditions, its performance was close to the RF model, and

in irrigated conditions, for untested genotypes (CV2), it was

close to the SVMR and Ridge models. As expected, there was

a general trend of reduction in prediction accuracy from CV1

to CV4, mainly for GY and PH traits. Similarly, the RMSE

of prediction increased from CV1 to CV4 for all traits and

models (Figures S5–S8 for the traits DTA, DTS, GY, and PH,

respectively).

The genotypes were ranked based on a similar trend as the

visualized prediction performance regarding machine learn-

ing models, prediction scenarios, and traits. Consequently, the

best models for prediction accuracy were typically the best for

ranking (Figure 7).

3.3 Variable importance of temporal
predictors

In the following results, the variables of importance included

the vegetation index (VI) and the flight date (DAP) (the

acronym VI_DAP). PH had the weakest correlation with the

vegetation indices, with no negative correlation (Figure 8A).

The strongest correlations were found for the predictors

EXGR_95 (0.67), G_R_95 (0.60), BCC_26 (0.50), and

RCC_119 (0.50). GY was mainly positively correlated with

the predictors, as only three showed a negative correlation

(CIVE_99, BCC_40, and BGI_40). The strongest correla-

tions were found for G_B_99 (0.72), R_B_99 (0.66), RCC_95

(0.61), and CIVE_99 (−0.73). These correlations cover the

phenological stage of grain filling in our trials. It’s important

to note that among the common predictors between GY and

flowering traits (DTA and DTS), the direction of correlation
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10 of 16 PEREIRA ET AL.

F I G U R E 7 Red–green–blue (RGB) phenomic Spearman rank correlations (y axis) obtained by each model in four cross-validation scenarios

of prediction (x axis) for the traits days to anthesis (DTA), days to silking (DTS), grain yield (GY), and plant height (PH). CV1 and CV2 indicate the

prediction of tested and untested genotypes in the observed environment (irrigated), respectively. CV3 and CV4 indicate the prediction of tested and

untested genotypes in the unobserved environments (drought), respectively. The models are elastic net (EN), k-nearest neighbor (KNN), least

absolute shrinkage operator (LASSO), partial least squares (PLS), random forest (RF), ridge regression (Ridge), support vector machine (SVM), and

support vector machine with radial kernel (SVMR).

(positive or negative) was always inverted. DTA and DTS had

more negative correlations with the predictors. The strongest

correlations for DTS were found with BCC_40 (0.60),

BGI_40 (0.58), RCC_95 (−0.71), and RCC_99 (−0.65). For

DTA, the strongest correlations were found with VARI_91

(0.59), G_R_95 (0.52), RCC_99 (−0.77), and RCC_109

(−0.71). Among the common predictors between DTS and

DTA, there was no discrepancy in the direction of correlation.

The investigation of the most important vegetation indices

for prediction (excluding CV1 in all CV scenarios) revealed

that the index GCC was common among all the traits

(Figure 8B). Among GY, DTS, and DTA, we found two

important indexes in common, RCC and NGRDI. No other

index was commonly important in predicting any combination

of three traits. The indices commonly important for predict-

ing GY and PH were EXGR and G_R, and for GY and DTA,

these indices were the red band and VARI. The indices BGI,

BCC, and EXG2 were common between PH and DTA. We

found five, zero, three, and six indices as uniquely important

when predicting GY, DTS, PH, and DTA, respectively. The

most important indices for prediction, as represented by the

Venn diagram, can be seen in Table S6.

The analysis of the most critical flight dates for prediction

(in all CV scenarios, except CV1) revealed that there was no

common date for all four traits (Figure 8C). However, 113

DAP was identified as an important flight date for predicting

GY, DTA, and PH. Flight dates 91, 119, 131, and 139 were

equally important in predicting GY, DTA, and DTS. 95 DAP

stood out for the prediction of DTS and PH, while 99 DAP

was highlighted for the prediction of GY and DTS. Among

the flowering traits, DTA and DTS, the dates 26, 49, and

109 DAP were commonly important. We also identified three,

zero, one, and one flight dates that were important only to pre-

dict GY, DTS, PH, and DTA separately. The most important

flight dates for prediction, as shown in the Venn diagram, can

be found in Table S6.

4 DISCUSSION

Using UASs for field-based phenotyping marks a signifi-

cant advancement in agricultural research. By harnessing

the speed and precision of UAS technology, researchers

can efficiently and accurately conduct trial evaluations. This

approach allows for rapidly assessing various crop traits, revo-

lutionizing how agricultural data are measured and analyzed.

As plant response to water stress involves physiological and

morphological changes over time, a robust evaluation method

for assessing drought tolerance should incorporate temporal

data responses. However, it’s important to note that many

studies exploring the application of UAS phenotyping in plant

breeding have typically conducted evaluations at only limited

and sporadic time points throughout the growth cycle (Aguate

et al., 2017; Jackson et al., 2023; Winn et al., 2023). Our
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PEREIRA ET AL. 11 of 16

F I G U R E 8 The most important predictors, vegetation indices and flight dates, and their correlations. (A) Significant correlations among the

most important temporal predictors and the traits for the prediction in drought condition (only CV3 and CV4 scenarios). The size and color of the

circles indicate the strength of the correlation, where blue and red mean positive and negative significant correlations, respectively. (B) Venn diagram

for the most important vegetation indices for prediction (all scenarios, except CV1). (C) Venn diagram for the most important flight dates (days after

planting [DAP]) for prediction (all scenarios, except CV1). The variables importance (top 10 most important) came from the models with the highest

scores for prediction in each scenario, that is, ridge (CV2), random forest (CV3), and KNN (CV4) for DTA; ridge (CV2, CV3, and CV4) for DTS;

ridge (CV2) and random forest (CV3 and CV4) for GY; and partial least squares (CV2, CV3, and CV4) for PH. DTA, DTS, GY, and PH mean days

to anthesis, days to silking, grain yield, and plant height, respectively.

findings reveal that the variation of the vegetation indices cap-

tured by the flight time in the nested design had been typically

ignored (Figure 5).

The optimal frequency of flights for agricultural monitor-

ing remains uncertain and should be determined based on

the specific crop and trait being studied. For example, Vol-

pato et al. (2021) observed that conducting flights every 2

weeks was less effective in predicting soybean (Glycine max
L.) maturity compared to flights conducted weekly. Similarly,

Wu et al. (2019) emphasized the importance of conducting

flights during the senescence period in maize to accurately

characterize senescence progression, especially for predicting

yield. Supporting the need for multiple data points, particu-

larly in stress response studies, Figure S2 demonstrates the

variation in vegetation indexes throughout the crop cycle.

The reliability of a vegetation index in capturing geno-

typic differences and environmental influences determines its

practical usefulness. While some studies have reported high

repeatability values for vegetation indices under both optimal

and stressed conditions, our research found somewhat lower

repeatability values in comparison (Adak et al., 2021; Adak,

Kang, et al., 2023; Adak, Murray, et al., 2023). Nonethe-

less, certain vegetation indices showed repeatability levels

that closely matched the heritability of the trait measured

using traditional ground evaluation methods. This is particu-

larly promising, especially for assessing end-of-life traits like

grain yield. The ability of these vegetation indices to provide

consistent and reliable measurements, capture the variation

along the flights, change according to the environment, and

provide a faster way to get phenotypes holds potential for early

and repeated assessments throughout the crop cycle. Thus

enriching the available dataset for decision-making and deep-

ening our understanding of the biological basis of crop stress

responses.

It is crucial to consider different vegetation indices, as

the most appropriate one will depend on the specific trait,
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12 of 16 PEREIRA ET AL.

prediction model, and environmental factors involved (Adak,

Murray, et al., 2023; Aguate et al., 2017; DeSalvio et al.,

2022; Dodig et al., 2019). Additionally, the data collection

process is the same, and the vegetation indices contain distinct

information, as depicted in Figure S3. This figure illustrates

that the vegetation indices exhibit a low to moderate correla-

tion between them and within the same index over time. The

issue of multicollinearity does not seem to be a concern in

phenomic surveys (Adak, Kang, et al., 2023).

In-field assessment of water stress can be pretty challeng-

ing. Having a tool that can quickly and accurately identify

stress early would be advantageous. A vegetation index that

can reliably indicate the water status of plants has the poten-

tial to be directly used in regular trial evaluations, as it

allows fast data collection and enables near-real-time inter-

vention. Our study has shown that RGB and multispectral

vegetation indices hold promise for easily monitoring plant

water status. This is because noticeable differences in drought

conditions compared to irrigated conditions were observed

for both indices, indicating their dynamic and responsive

nature to stress (Dodig et al., 2019, 2021; Winterhalter et al.,

2011). Such valuable information can help determine the right

management practices for effective genotype screening.

4.1 Predicting phenotypes with machine
learning at high spatial and temporal resolution

The RGB sensor performed better than the multispectral sen-

sor in prediction accuracies. The results of Adak, Murray et al.

(2023) corroborate this finding for the same traits and CV sce-

narios studied here. The multispectral predictions reported by

these authors were 32%, 16%, 1%, and 26% lower than the

RGB predictions for DTA, DTS, GY, and PH, respectively.

The lower resolution and fewer flights for the multispectral

predictions could have impaired their performance since all

the remaining factors were the same for both sensors. As a

result, a cost-effective and straightforward sensor is sufficient

for predicting essential traits in maize. This discovery shows

promise for academic institutions, public initiatives, and low-

resource programs. Therefore, it may not be advisable at this

stage to invest in additional spectral bands at a higher sensor

cost for prediction purposes.

As in genomic selection, phenomic prediction is influenced

by both the trait being studied and the model used (Adak, Mur-

ray, et al., 2023; DeSalvio et al., 2022; Zhu et al., 2021, 2022).

While no single model consistently stood out for general use,

certain models did show exceptional prediction accuracy for

specific scenarios and traits. We can highlight the models

ridge, RF, and KNN for DTA; ridge for DTS; ridge and RF

for GY; and PLS for PH.

In this work, we found that the Ridge and RF models con-

sistently showed the highest stability for prediction across

all traits in most scenarios. In particular, Ridge proved to be

the best model for predicting the grain yield (GY) of maize

hybrids in the CV2 scenario, with our study achieving a higher

prediction accuracy (0.70) compared to Adak et al. (2021)

(0.60). However, our study’s best models for flowering traits

(ridge and KNN) differed from those they identified (lasso and

elastic net). Additionally, our prediction accuracy for grain

yield in the CV3 scenario using the RF model (0.62) was sim-

ilar to the results reported by Adak, Murray et al. (2023) with

the ridge model (0.59). However, in the CV4 scenario, our

results (0.40) were lower than those using the same models

(0.57). For the trait PH, our prediction accuracies were gen-

erally lower than those reported by these authors (0.57, 0.40,

and 0.35 for CV2, CV3, and CV4, respectively). This trend

was also observed for flowering traits.

The accuracy of our predictions for DTA, DTS, and PH

in the CV3 scenario was higher than that reported by Adak,

Kang et al. (2023). Their study, which utilized a population

of maize recombinant inbred lines (RILs) and phenomic data

from RGB or multispectral sensors, did not use a nested model

as we did. However, in the CV4 scenario, their predictions

were similar to ours. Chatterjee et al. (2023) obtained predic-

tion accuracy for the GY of maize hybrids comparable to ours.

They also noted that the temporal vegetation indices were bet-

ter predictors than temporal canopy height measurements or

cumulative vegetation indices over the growing cycle. Our

prediction accuracy for GY (ranging from 0.40 to 0.70 across

CV scenarios) matched the results reported by Wu et al.

(2019) (0.40–0.69). That study also considered several flights

throughout the growth cycle, with a similar number of geno-

types under evaluation (25). Still, it included more years (3)

and employed PLS regression on principal components.

Our findings showed that temporal phenomic prediction

can be a valuable tool for plant breeding, even in small-

scale programs, with high spatial and temporal resolution.

Our achieved predictions are comparable to those reported

in the literature despite our smaller experimental scale. It is

expected that better results can be achieved in larger popula-

tions through more robust model training. Therefore, temporal

phenomic prediction can be widely applied in commercial

breeding programs, enhancing the efficiency and accuracy of

plant breeding efforts.

4.2 Variable importance for prediction and
correlations

In drought conditions, certain combinations of vegetation

indices and flight dates showed strong correlations with the

traits in spot assessments (Figure 8A). These indices can guide

further studies and deserve attention. Previous works indicate

that they can be used independently to infer the respective

trait (Adak et al., 2021; Adak, Murray, et al., 2023; Aguate
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et al., 2017). Furthermore, they can help identify the optimal

time to assess specific plant health conditions, as each veg-

etation index dynamically reflects a particular physiological

status (Dodig et al., 2019, 2021; Winterhalter et al., 2011).

Another important aspect to consider is the consistency in

the correlation between vegetation indices and traits and the

correlations among the traits themselves. In our investigation,

grain yield (GY) was negatively correlated with flowering

traits (DTA and DTS). The exact negative correlation was

observed for the most significant vegetation indices associated

with these traits. Therefore, besides providing valuable infor-

mation about environmental conditions and plant response,

vegetation indices also elucidate the relationships among the

studied traits.

Several indices, including NGRDI, RCC, and VARI, stood

out in our study and have also been highlighted in other works

on predicting phenotypes in maize. We recommend that these

indices be incorporated into routine evaluations in maize tri-

als. Adak et al. (2021) also identified NGRDI and VARI as

among the most important indices for predicting GY in maize.

Similarly, Adak, Murray et al. (2023) found the RCC index

to be a key predictor for the traits evaluated here. Chatter-

jee et al. (2023), in their investigation of prediction models

in maize and exploration of different ways to incorporate

vegetation indices, consistently found NGRDI to be the best

predictor of GY in models considering vegetation indices at

the temporal level, similar to our approach. Furthermore, RCC

was identified as the most important index for predicting rust

and senescence in maize hybrids, and it strongly correlated

with GY, as shown in the work by DeSalvio et al. (2022).

Apart from their predictive importance, the RGB indices

NGRDI, RCC, and VARI were particularly suited for indi-

cating drought response, as they varied markedly between the

trials.

The vegetative stage encompassed several significant flight

dates for predicting key traits, which is consistent with find-

ings in other studies on maize grown in stressful conditions

(Adak et al., 2021; Aguate et al., 2017; Chatterjee et al., 2023).

This suggests that end-of-life traits, typically assessed only

once using traditional methods, can benefit from UAS pheno-

typing (Adak et al., 2021; Adak, Murray, et al., 2023). UAS

phenotyping allows for more efficient monitoring and study

of these traits during selection, providing a cost-effective and

quicker alternative to manual measurements.

The results presented in this work showed that phenomic

prediction has proven to be a promising approach. We were

able to predict important traits satisfactorily, indicating the

potential for routine application of UAS phenotyping in field

evaluations, which could save both time and labor. It is cru-

cial that a phenotyping tool intended for use in transgenic

trials for repeated evaluations, such as UAS phenotyping,

remain cost effective, as regulatory requirements already

significantly increase the burden on this type of research

(Gómez-Galera et al., 2012; Yassitepe et al., 2021). Another

advantage is the substantial amount of information gathered

through repeated evaluations over the crop cycle, leading to

more reliable results, especially under abiotic stress condi-

tions. Among the range of omics tools available for prediction,

phenomics stands out as the simplest, most flexible, and most

accessible method for measuring secondary-related traits. We

have demonstrated its utility using inexpensive equipment and

simple and freely available tools shared with the community,

which can help promote phenomic predictions among low-

resource programs and institutions. This, in turn, can enhance

the design and allocation of genotypes within trial networks.
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in this work to perform phenomic prediction for all the eight
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