
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:13682  | https://doi.org/10.1038/s41598-024-63619-2

www.nature.com/scientificreports

Transcriptional response 
to an alternative diet on liver, 
muscle, and rumen of beef cattle
Anna Carolina Fernandes 1,2, Antonio Reverter 2, Kate Keogh 2,3, Pâmela Almeida Alexandre 2, 
Juliana Afonso 4, Julio Cesar Pascale Palhares 4, Tainã Figueiredo Cardoso 4, 
Jessica Moraes Malheiros 4,5, Jennifer Jessica Bruscadin 6, Priscila Silva Neubern de Oliveira 4, 
Gerson Barreto Mourão 1, Luciana Correia de Almeida Regitano 4 & Luiz Lehmann Coutinho 1*

Feed cost represents a major economic determinant within cattle production, amounting to an 
estimated 75% of the total variable costs. Consequently, comprehensive approaches such as 
optimizing feed utilization through alternative feed sources, alongside the selection of feed-efficient 
animals, are of great significance. Here, we investigate the effect of two diets, traditional corn-
grain fed and alternative by-product based, on 14 phenotypes related to feed, methane emission 
and production efficiency and on multi-tissue transcriptomics data from liver, muscle, and rumen 
wall, derived from 52 Nellore bulls, 26 on each diet. To this end, diets were contrasted at the level of 
phenotype, gene expression, and gene-phenotype network connectivity. As regards the phenotypic 
level, at a P value < 0.05, significant differences were found in favour of the alternative diet for average 
daily weight gain at finishing, dry matter intake at finishing, methane emission, carcass yield and 
subcutaneous fat thickness at the rib-eye muscle area. In terms of the transcriptional level of the 
14,776 genes expressed across the examined tissues, we found 487, 484, and 499 genes differentially 
expressed due to diet in liver, muscle, and rumen, respectively (P value < 0.01). To explore differentially 
connected phenotypes across both diet-based networks, we focused on the phenotypes with the 
largest change in average number of connections within diets and tissues, namely methane emission 
and carcass yield, highlighting, in particular, gene expression changes involving SREBF2, and revealing 
the largest differential connectivity in rumen and muscle, respectively. Similarly, from examination of 
differentially connected genes across diets, the top-ranked most differentially connected regulators 
within each tissue were MEOX1, PTTG1, and BASP1 in liver, muscle, and rumen, respectively. Changes 
in gene co-expression patterns suggest activation or suppression of specific biological processes 
and pathways in response to dietary interventions, consequently impacting the phenotype. The 
identification of genes that respond differently to diets and their associated phenotypic effects serves 
as a crucial stepping stone for further investigations, aiming to build upon our discoveries. Ultimately, 
such advancements hold the promise of improving animal welfare, productivity, and sustainability in 
livestock farming.
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ADG_F  Average daily weight gain estimate relative to the finishing feedlot phase
ADG_G  Average daily weight gain estimate relative to the growing feedlot phase
ADG_GF  Average daily weight gain estimate relative to the growing + finishing feedlot phases
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ANOVA  Analysis of variance
BP  Biological process
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BW1  Body weight taken at the beginning of the experiment
BW2  Body weight taken at the mid-point of the experiment
BW3  Body weight taken at the end of the experiment
COFs  Cofactors
CPM  Log2 counts per million
CY  Carcass yield
DCGs  Differentially connected genes
DEDCs  Differentially expressed and differentially connected genes
DEGs  Differentially expressed genes
DMI_F  Dry matter intake estimate relative to the finishing feedlot phase
DMI_G  Dry matter intake estimate relative to the growing feedlot phase
DMI_GF  Dry matter intake estimate relative to the growing + finishing feedlot phases
EMBRAPA  Brazilian Agricultural Research Corporation
FCR  Feed conversion ratio
FDR  False discovery rate
FT_REA  Fat thickness at the rib-eye muscle area
GO  Gene ontology
GS  Genomic selection
GWAS  Genome-wide association study
HCW  Hot carcass weight
LD  Longissimus dorsi Muscle
LSMean  Least-squared means
ME  Methane emission
PCIT  Partial correlation and information theory
PROC GLM  General linear model procedure
R2  Percentage of variation
REA  Rib-eye muscle area
RFI  Residual feed intake
RIF  Regulatory impact factor
RIN  RNA integrity number
SD  Standard deviation
SE  Standard errors
SNP  Single nucleotide polymorphism
TFs  Transcription factors
TMM  Trimmed mean of M-values
TRAD  Traditional diet

The feed cost is a critical economic factor in cattle production, accounting for approximately 75% of the total 
variable costs involved in beef production  systems1. The dominant position of cost of feed in the economic 
landscape of cattle production underscores the importance of managing feed resources effectively. As feed costs 
directly impact profitability, fluctuations in feed prices or inefficiencies in feed utilization can significantly influ-
ence beef production sustainability. Thus, multifaceted comprehensive strategies including, but not limited to, 
incorporation of alternative feeds, coupled with optimization of feed utilization through genetic improvement 
for feed efficiency and leveraging genomic tools, emerge as crucial approaches to mitigate the financial burden 
imposed by feed expenses, with added benefits of minimizing the environmental footprint and enhancing the 
sustainability of the production system.

The incorporation of cost-effective feed alternatives to traditional grain-based diets is a promising avenue to 
tackle the high inputs of feed cost in cattle  production2,3. For instance, crop residues and industrial by-products 
can contribute to reducing dependence on expensive grains, as well as the environmental footprint of cattle farm-
ing operations, leading to reduced pressure on natural resources and lowered greenhouse gas emissions, such as 
methane, therefore enhancing overall efficiency and sustainability of livestock production.

Methane is a potent greenhouse gas, estimated to have 28 times greater warming potential than carbon 
 dioxide4. Approximately 2–12% of the total energy consumed by ruminants is released as emitted methane dur-
ing  digestion5, which represents a natural loss of energy that could have otherwise been harnessed to enhance 
animal productivity. In that sense, reducing enteric methane emissions from cattle holds potential to not only 
align with global efforts to combat climate change and promote more eco-friendly livestock management but 
also improve animal performance. Consequently, adopting alternative diets can assist in a more resilient and 
ecologically responsible livestock industry, supporting long-term economic viability and environmental conser-
vation, as well as fortify long-term agricultural sustainability, contributing to a more environmentally friendly 
and ethical approach to meat production. It can also decrease the competition for grains (e.g. corn and soybean) 
with human  nutrition6.

Furthermore, the implementation of breeding selection programs to identify and subsequently breed geneti-
cally superior individuals able to efficiently use alternative feeds with optimal feed conversion rates is a key 
approach. Feed-efficient animals consume less food to produce the same amount of  meat7, and emit less methane 
per unit of  output8,9, thereby leading to increased system productivity and profitability, and reduced resource 
usage and environmental footprint. Moreover, utilizing high-throughput genomic technologies, such as genome-
wide association studies (GWAS) and genomic selection (GS), enables the identification of genetic markers 
associated with feed, methane emission and production efficiency  traits10–14. These markers are powerful tools 
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for predicting genetic  potential15, allowing for more informed breeding decisions, ultimately expediting genetic 
progress, and enabling faster dissemination of superior genetic traits across cattle populations.

While lagging behind humans and model organisms, there is a growing number of studies in livestock spe-
cies regarding the impact of dietary components on gene expression  patterns16, ultimately leading to phenotype 
modulation. However, it is still unclear whether these differences can be attributed to the coordinated function 
of genes and pathways regulation. The genetic architecture behind complex traits involves a variety of genes 
that are sensitive to environmental  changes17, and, in turn, determining the mechanisms responsible for these 
changes is equally challenging.

In the present study, our objective was to investigate the effect of two competing diets on economically rele-
vant phenotypes related to feed, methane emission and production efficiency and on multi-tissue transcriptomics 
data from three major metabolic tissues—liver, muscle, and rumen wall—derived from Nellore bulls. The applica-
tion of gene co-expression network analyses may shed light on a comprehensive and systems-level view of dietary 
responses at the molecular level, uncovering regulatory networks and biological pathways impacting production 
traits through differential gene  regulation18–20. By gaining greater insight into the intricate relationships between 
genes and their coordinated responses to dietary inputs, this knowledge can contribute to advancing our under-
standing of the molecular mechanisms that are central to phenotype determination in livestock, and eventually 
assist in the development of precision nutrition strategies to optimize livestock performance and sustainability.

Methods
Overview
An overview of the methodological workflow for the current study, from group formation and tissue sampling 
up to gene co-expression analysis and differential connectivity is shown in Fig. 1, and specific details of each 
component are given in the forthcoming paragraphs.

Animal resource, tissue, and phenotype collection
All experimental procedures were conducted in accordance with animal welfare and humane slaughter guide-
lines and were approved by the EMBRAPA Livestock Science Ethics Committee on Animal Experimentation, 
São Carlos, São Paulo, Brazil (Protocol No. 09/2016). All methods were performed in accordance with relevant 
guidelines and regulations. Methods are reported in the manuscript following the recommendations in the 
ARRIVE guidelines.

We used a population of 52 Nellore bulls (Bos taurus indicus) born in 2014, derived from an experimental 
herd of the Brazilian Agricultural Research Corporation (EMBRAPA), and sired by 28 unrelated commercial 
bulls, contributing an average of 1.85 progenies, and ranging from 1 to 5 progenies. Between December 2014 and 
July 2016, the animals were raised in grazing pastures. From July to November 2016 (121 days), the experiment 
was conducted at the feedlot facility belonging to EMBRAPA Southeast Livestock, located in São Carlos (São 
Paulo, Brazil), with cattle divided into two subgroups by initial body weight (light or heavy), with light and heavy 
animals evenly allocated within each group. The experimental feedlot was composed of four pens, equipped with 
automated feeding systems (Model 6000,  GrowSafe® Systems Ltd., Airdrie, Alberta, Canada), capable of register-
ing live weight and daily food consumption for each individual animal.

The study included two dietary treatments (Table 1), as follows: a high-grain traditional diet (TRAD) based 
on corn grains and soybean meal (n = 26 bulls) and a by-product alternative diet (ALT) based on corn germ 
oil meal, citrus pulp and peanut shell meal (n = 26). In both treatments, all animals received urea, mineral 

Figure 1.  Bioinformatic workflow of the multi-tissue RNA-seq-based gene co-expression networks. DEGs 
differentially expressed genes, TRAD traditional diet, ALT alternative diet.
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supplements, active dry yeast, virginiamycin, and monensin. The total mixture composed of corn silage and 
concentrates was provided twice a day (9 a.m. and 4 p.m.) and adjusted daily to ensure that the animals had 
ad libitum access to food.

After a dietary adaptation period of 10 days, body weight (BW, kg) of all animals was recorded at three-time 
points, each following a 16-h fasting period: feedlot entry (July), intermediate feedlot stage (September) and 
feedlot exit (November). Individual dry matter intake (DMI, kg/day) and average daily gain (ADG, kg/day) were 
measured at both feedlot phases: growing (backgrounding) and finishing (fattening). DMI was obtained by the 
difference between the weight of the diet provided and refusal, and ADG was estimated by the difference between 
the end and entry weight divided by the number of days in feedlot. Methane emission (ME, g/day) was measured 
during the finishing phase of feedlot, using the GreenFeed system (Clock Inc., Rapid City, SD, United States), 
which consists of an automated head-chamber device that uses sensors to estimate daily methane emission from 
individual cattle by measuring gas concentrations and airflow over 3–7 min, multiple times a day, during several 
days (further details in Huhtanen et al.21 and Hristov et al.22). In brief, the GreenFeed system was gradually intro-
duced to the animals without required immediate interaction with it, allowing them to investigate and become 
accustomed to its presence over time. Then, we used a positive reinforcement technique to encourage them to 
approach and interact with it, rewarding them with treats when they engaged with the system or showed interest 
in it. The equipment was programmed to provide feed pellets to attract five daily visits per animal.

At the end of the experimental period, all animals were transported for slaughter at a commercial slaughter-
house located in Bariri (São Paulo, Brazil), under Federal Inspection Service supervision and Brazilian Minis-
try of Agriculture, Livestock and Food Supply legislation (Normative Instruction 03/2000). The animals were 
slaughtered at an average age of 23.5 months, using the pneumatic pistol stunning technique and cutting of the 
jugular vein, followed by removal of the hide, head, feet, and evisceration.

At slaughter, samples from liver, Longissimus dorsi (LD) muscle, and rumen wall from all 52 animals were 
collected. The liver and muscle biopsies were harvested from the median portion of the left liver lobe and between 
the 12th and 13th ribs, respectively. As for the rumen samples, a 2–3  cm2 piece of bulk tissue was collected from 
the rumen wall, including all rumen wall layers (the stratified epithelium, surrounded by a muscular layer and 
the submucosa). To standardize the collection position across samples, we used the esophagus opening and 
reticulum as references. The sampling site in the lateral rumen wall was defined at approximately 5 cm below 
the esophagus and immediately after the border of the reticulum. All samples were immediately snap frozen in 
liquid nitrogen to preserve RNA integrity, and stored at a − 80 °C freezer until total RNA extraction. For all tis-
sues, care was provided to ensure that samples were consistently taken from the same location from each animal.

The carcasses were weighed to obtain the hot carcass weight (HCW, kg) before being transferred to cold 
rooms. From this value, as well as the slaughter live body weight, the carcass yield (CY, %) was calculated. Then, 
the carcasses were split longitudinally with a band saw to obtain the left and right halves. After cooling at 4 °C 
for a 24-h period, a cross-sectional cut was made on the left half side of the carcasses, exposing the LD muscle 
between the 12th and 13th ribs, to measure the rib-eye muscle area (REA,  cm2) using a checkered grid. Measure 
of the subcutaneous fat thickness at the REA (FT_REA, mm), using a digital caliper ruler, was performed over 
the same cross-section, at a point three-fourths of the length of the LD muscle from the split chine bone.

Statistical analysis of phenotypes
A total of 14 phenotypes were collected: three estimates of average daily weight gain relative to growing (ADG_G), 
finishing (ADG_F) and growing + finishing (ADG_GF) feedlot phases; three body weight measurements taken 
at the beginning (BW1), mid-point (BW2) and end of the experiment (BW3); three dry matter intake estimates 
relative to growing (DMI_G), finishing (DMI_F) and growing + finishing (DMI_GF) feedlot phases; methane 

Table 1.  Description of diets: ingredients and nutritional composition of the traditional and alternative diets. 
a CONFINATTO N235 2: mineral supplements + active dry yeast + virginiamycin + monensin.

Traditional diet Alternative diet

Ingredients, % of DM

 Corn silage 46.6 Corn silage 30.0

 Corn grains 41.6 Corn germ oil meal 35.9

 Soybean meal 6.0 Citrus pulp 24.0

 Protected fat 2.5 Peanut shell meal 7.5

 CONFINATTO N235  2a 2.0 CONFINATTO N235 2 2.1

 Urea 1.3 Urea 0.5

Predicted nutrient composition, DM basis

 Intake, kg DM/day 11.40 Intake kg, DM/day 10.70

 Total digestible nutrients (TDN), % 74.86 Total digestible nutrients (TDN), % 73.19

 Crude protein (CP), % 13.91 Crude protein (CP), % 14.81

 Fat, % 5.40 Fat, % 6.62

 Calcium, % 0.66 Calcium, % 0.94

 Phosphorus, % 0.31 Phosphorus, % 0.53
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emission (ME), hot carcass weight (HCW), carcass yield (CY), rib-eye muscle area (REA) and subcutaneous fat 
thickness at the rib-eye muscle area (FT_REA).

The statistical analyses were aimed at testing the effect of diet on phenotypic variation. These were per-
formed using the General Linear Model procedure of the SAS statistical software (PROC GLM; SAS Institute 
Inc., Cary, NC, USA). In the analysis of variance (ANOVA) model, age, diet treatment, and interaction between 
weight group × pen (nested within diet) were used as independent variables. Diet least-squared means (LSM) 
and standard errors (SE) were estimated, and differences declared statistically significant if t-test P value < 0.05.

RNA extraction, cDNA library preparation, and transcriptome sequencing
Total RNA was extracted from the liver, muscle and rumen wall tissue samples using the TRIzol reagent (Thermo 
Fisher Scientific, Waltham, MA, USA), according to the manufacturer’s instructions. The NanoDrop 2000 Spec-
trophotometer (NanoDrop Technologies, Wilmington, DE, USA) and  Qubit® 2.0 Fluorometer were employed to 
quantify the total RNA concentration and quality, while the RNA integrity was evaluated by using the Agilent 
Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA). All samples presented an RNA integrity number (RIN) greater 
than or equal to 7 and were subjected to cDNA synthesis.

For cDNA library preparation, 2 μg of total RNA from each tissue sample were used, according to the proto-
col described in the Illumina Stranded mRNA Prep Ligation reference guide (Illumina, San Diego, CA, USA). 
The average library size was estimated using the Agilent Bioanalyzer 2100, and libraries were quantified using a 
KAPA qPCR Library Quantification Kit (KAPA Biosystems, Foster City, CA, USA).

The sequencing was carried out on the Illumina NextSeq2000 platform (Illumina, San Diego, CA, USA), 
generating paired-end reads (100 bp) at a depth of 40–50 M reads per sample, following standard protocols. 
All the sequencing analyses were performed at the ESALQ-USP Functional Genomics Center at the Animal 
Biotechnology Laboratory of ESALQ-USP, Piracicaba, São Paulo, Brazil.

RNA-seq data analysis, differentially expressed genes (DEGs) and false discovery rate (FDR)
The RNA-seq reads were quality-checked, trimmed, and aligned to the ARS-UCD1.2 bovine reference  genome23 
using the Nextflow v22.10.124 RNA-seq pipeline, nf-core/rnaseq v3.10.125. In brief, raw read quality control 
was assessed using FastQC v0.12.0 (http:// www. bioin forma tics. babra ham. ac. uk/ proje cts/ fastqc/), adapters and 
any low-quality reads were removed with Trim Galore! v0.6.7 (https:// github. com/ Felix Krueg er/ TrimG alore)26, 
trimmed FastQ files were mapped to the bovine reference genome (ARS-UCD1.2) using STAR v2.7.10a27 and 
quantification (raw counts per gene) was performed using RSEM v1.3.128. All tool versions and full details of 
the pipeline are available at https:// nf- co. re/ rnaseq.

The gene expression normalization was performed across all samples and within the three tissues together 
using edgeR v.3.36.029 in R v.4.1.330. The raw read counts were transformed to log2 counts per million (CPM), 
lowly expressed genes (CPM < 1 in 50% of the samples) were filtered out, and libraries were normalized by the 
trimmed mean of M-values (TMM)  approach29. After normalization, the genes which presented at least 1 CPM 
in at least half of the samples were retained for differential expression, subsequently performed within tissue 
between two diets by Student’s t test with P value < 0.01 considered statistically significant.

Following Bolormaa et al.31 in the context of genome-wide association studies and with equivalent original 
derivations from  Storey32, False Discovery Rate (FDR) was calculated as:

where P is the P value tested, NDE is the number of differentially expressed genes that were significant at the P 
value tested, and T is the total number of genes tested (T = 14,776).

Identification of key transcription factors (TFs) and cofactors (COFs)
To detect candidate TFs and COFs differentially regulating gene expression in the TRAD and ALT diets in each 
tissue, we employed the Regulatory Impact Factor (RIF) metrics, namely RIF1 and  RIF233. These algorithms 
operate under the assumption that key regulators within a network alter their behaviour in distinct biological 
conditions (i.e., diet treatment in our case), thereby contributing to differential gene expression. The RIF1 score 
identifies regulators that exhibit differential connectivity with the target genes, while RIF2 assesses TFs or COFs 
with potential to serve as predictors of target gene abundance. To identify such regulators, a list of known bovine 
TFs and COFs, obtained from the Animal Transcription Factor Database 4.034, was compared to the list of DEGs 
for each diet in each tissue. To assign a significance level, each score was transformed into a Z-score, and values 
located ± 1.96 standard deviation from the mean, corresponding to P value < 0.05, were considered significant.

Functional enrichment and visualization
The resultant list of DEGs, TFs and COFs were subjected to functional overrepresentation analysis to determine 
over or under-represented biological processes underpinning relevant functions using PANTHER v.17.0 (http:// 
www. panth erdb. org/)35, considering a FDR ≤ 0.05 as threshold. Additionally, a hierarchical clustering analysis 
was performed using PermutMatrix v.1.9.4 (http:// www. atgc- montp ellier. fr/ permu tmatr ix/)36. The row-by-row 
normalization was performed on the data using the Z-score transformation. Euclidean distance method was 
used for data aggregation. Venn diagrams were obtained using the VennDiagram v.1.7.337 package in R v.4.1.330.

FDR =

P

(

1−
NDE

T

)

(

NDE

T

)

(1− P)

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/FelixKrueger/TrimGalore
https://nf-co.re/rnaseq
http://www.pantherdb.org/
http://www.pantherdb.org/
http://www.atgc-montpellier.fr/permutmatrix/
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Gene networks
For the gene co-expression networks inference, all the genes identified as DEGs, key TFs or COFs, and the 14 
phenotypes, considering all animals and tissues together, were used as nodes, and the significant connections 
between them were identified by using the Partial Correlation and Information Theory (PCIT)  algorithm38. This 
approach aims to determine the significance of the correlation between a pair of nodes after accounting for all 
other nodes within the network. Initially, to identify changes in the gene network topology between diets, we 
built diet-specific networks across all tissues. Secondly, significantly correlated pairs were selected when at least 
one phenotype was present. In addition, we also identified significant connections unique or shared across the 
competing diets, creating a network with the shared connections. The resultant networks were imported into 
Cytoscape v3.10.039 for visualization.

Differential connectivity
Finally, considering each diet-specific network, we focused on exploring differentially connected phenotypes 
across both networks, to identify changes in behaviour depending on the biological condition (diet), moving 
from highly connected to lowly connected and vice-versa. The two networks, one considering each diet, were 
contrasted by focusing on the phenotypes with the largest change in the average number of connections within 
diets and tissues. The resultant sub-networks from each diet-specific network were extracted and visualized 
using  Cytoscape39.

Results
Phenotypic data
In this study, we analyzed 14 traits: ADG_G, ADG_F, ADG_GF, BW1, BW2, BW3, DMI_G, DMI_F, DMI_GF, 
ME, HCW, CY, REA and FT_REA. Summary statistics for all phenotypes are outlined in Table 2.

On average, the ANOVA model for the analysis of the phenotypes accounted for 30% of the variance, ranging 
from 5.32% for DMI_G to 62.14% for BW1 (Table 3). Also presented in Table 3 is the effect of diet on each pheno-
type. At a nominal P value < 0.05 there were no statistically significant differences for nine of the 14 phenotypes: 
ADG_G, ADG_GF, BW1, BW2, BW3, DMI_G, DMI_GF, HCW and REA. However, significant differences were 
found for ADG_F, DMI_F, ME, CY, and FT_REA. These include an effect of the alternative diet resulting in a 
12.9% higher growth at finishing, 22.1% higher dry matter intake at finishing, 10.9% lower methane emission, 
1.7% higher carcass yield, and 31.5% higher subcutaneous fat thickness at the rib-eye muscle area.

RNA-seq data analysis
We obtained 7.02 billion clean reads from 153 RNA-seq samples including 52 from liver, 50 from muscle, and 51 
from rumen tissue. An average of 48.6, 51.1 and 37.2 million reads were obtained from each tissue, respectively. 
After quality control, 90.4%, 90.8%, and 83.5% of unique reads, on average, from liver, muscle, and rumen, 

Table 2.  Descriptive statistics from phenotypic values for traits analysed in the current study (N = 52 cattle). 
a ADG_G: average daily weight gain estimate relative to the growing phase in kg/day; ADG_F: average 
daily weight gain estimate relative to the finishing phase in kg/day; ADG_GF: average daily weight gain 
estimate relative to the growing + finishing phases in kg/day: BW1: body weight taken at the beginning of 
the experiment in kg; BW2: body weight taken at the mid-point of the experiment in kg; BW3: body weight 
taken at the end of the experiment in kg; DMI_G: dry matter intake estimate relative to the growing phase in 
kg/d; DMI_F: dry matter intake estimate relative to the finishing phase in kg/day; DMI_GF: dry matter intake 
estimate relative to the growing + finishing phases in kg/day; ME: methane emission in grams/d; HCW: hot 
carcass weight in kg; CY: carcass yield in %; REA: rib-eye muscle area in  cm2; FT_REA: fat thickness at the rib-
eye muscle area in mm. b Standard deviation of the population.

Phenotypesa Mean SDb Minimum Maximum

ADG_G, kg/day 1.74 0.33 0.86 2.43

ADG_F, kg/day 1.49 0.41 0.40 2.26

ADG_GF, kg/day 1.61 0.25 0.92 2.15

BW1, kg 325.75 34.60 255.00 391.00

BW2, kg 452.18 41.24 364.00 524.00

BW3, kg 478.18 39.74 370.50 555.00

DMI_G, kg/day 7.20 1.99 2.62 11.96

DMI_F, kg/day 8.89 1.89 5.80 14.88

DMI_GF, kg/day 8.04 1.69 5.11 13.12

ME, g/day 170.06 27.67 88.52 223.58

HCW, kg 263.69 23.52 205.50 311.50

CY, % 55.14 1.50 52.11 58.79

REA,  cm2 69.48 7.99 52.25 86.50

FT_REA, mm 4.15 1.50 2.00 9.00
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respectively, were mapped to the reference genome (Table 4). The full table with alignment statistics per sample 
and tissue is reported in Supplementary Files S1, S2 and S3 for liver, muscle, and rumen, respectively.

Differential expression analysis
Under the expression threshold of CPM ≥ 1 in at least 50% of samples (multi-tissue normalization approach, see 
“Methods”), 14,776 genes (53.5%) out of 27,607 reported on the Ensembl annotation file, were expressed in liver, 
muscle, and rumen tissues. Table 5 shows the number of DEGs that would have been captured at various P value 
thresholds and the corresponding FDR. As expected, the number of DEGs and FDR decreases with increasing 
significance (i.e. decreasing P value thresholds). At the nominal P value of < 0.01 the FDR was ~ 30% for each 
of the tissues. While this FDR value could be considered high, similar FDR has been reported in the context of 
GWAS (see for instance Table 2 in Reverter et al.40) and this threshold gave us a sizable number of genes of ~ 500 
from each tissue, the relevance of which will be revealed in the forthcoming network-based analyses.

Table 3.  Percentage of variation  (R2), least-square means, and P-value for the test of differences between diets. 
a For definition of phenotype abbreviation, see footnote on Table 2. b LSMean least-squared means, SE standard 
error.

Phenotypesa R2, %

LSMean ±  SEb

P valueTraditional diet Alternative diet

ADG_G, kg/day 11.23 1.78 ± 0.06 1.71 ± 0.06 0.4747

ADG_F, kg/day 51.87 1.40 ± 0.06 1.59 ± 0.06 0.0255

ADG_GF, kg/day 27.09 1.56 ± 0.04 1.65 ± 0.04 0.1226

BW1, kg 62.14 328.96 ± 4.36 322.54 ± 4.36 0.3038

BW2, kg 46.07 451.71 ± 6.20 452.66 ± 6.20 0.9142

BW3, kg 27.65 476.94 ± 6.91 479.43 ± 6.91 0.7999

DMI_G, kg/day 5.32 7.65 ± 0.40 6.75 ± 0.40 0.1149

DMI_F, kg/day 36.45 8.00 ± 0.31 9.77 ± 0.31 0.0002

DMI_GF, kg/day 8.74 7.84 ± 0.33 8.24 ± 0.33 0.3940

ME, g/day 31.09 178.86 ± 4.70 161.26 ± 4.70 0.0110

HCW, kg 28.23 260.62 ± 4.07 266.77 ± 4.07 0.2918

CY, % 27.01 54.67 ± 0.26 55.61 ± 0.26 0.0145

REA,  cm2 25.71 68.29 ± 1.41 70.67 ± 1.41 0.2369

FT_REA, mm 17.39 3.59 ± 0.28 4.72 ± 0.28 0.0063

Table 4.  Summary of RNA-sequencing throughput and mapping rates per tissue. a M Total seqs: average total 
sequences in the bam file (millions). b Mapped: average % of mapped reads. c M Reads Mapped: average reads 
mapped in the bam file (millions). d GC: average % GC content. e Error rate: average mismatches/base mapped.

Tissue M Total  seqsa %  Mappedb M Reads  mappedc %  GCd Error  ratee

Liver 48.6 90.4 43.9 48 0.37

Muscle 51.1 90.8 46.4 52 0.33

Rumen 37.2 83.5 31.8 49 0.35

Table 5.  Number of significant differentially expressed genes and FDR at decreasing P value thresholds for 
each tissue. a NDE number of significant differentially expressed genes. b FDR false discovery rate.

P value

Liver Muscle Rumen

NDE
a FDRb, % NDE FDR, % NDE FDR, %

 < 0.05 1252 56.9 1261 56.4 1151 62.3

 < 0.01 487 29.6 484 29.8 499 28.9

 < 0.005 349 20.8 350 20.7 385 18.8

 < 0.001 190 7.7 180 8.1 211 6.9

 < 0.0005 146 5.0 139 5.3 181 4.0

 < 0.0001 85 1.7 81 1.8 125 1.2

 < 0.00005 68 1.1 72 1.0 106 0.7

 < 0.00001 45 0.3 48 0.3 78 0.2
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Therefore, we retained a total of 487, 484, and 499 genes for liver, muscle, and rumen, respectively, identified 
as DEGs (P value < 0.01) (Fig. 2). The full list of DEGs at a P value < 0.01 for each tissue is presented in Supple-
mentary Files S4, S5 and S6 for liver, muscle, and rumen, respectively.

From the 487 DEGs in liver, 194 genes were up-regulated (log2FoldChange ranging from + 0.36 to + 1.41) 
and 293 genes were down-regulated (log2FoldChange ranging from − 1.10 to − 0.39). The genes with the most 
altered expression were ENSBTAG00000047136 (log2FoldChange =  + 1.41; q-value = 7.63 ×  10–19) and MYO7B 
(log2FoldChange = − 1.10; q-value = 1.18 ×  10–11). The ENSBTAG00000047136 gene has been previously found 
within a genomic region on the bovine chromosome 14, associated with carcass-related metrics in dairy and beef 
 sires41. MYO7B was identified within imprinted lead SNPs of QTL regions for carcass conformation in  cattle42.

Regarding muscle, within the 484 DEGs, 234 were up-regulated (log2FoldChange ranging from + 0.34 
to + 1.29) and 250 were down-regulated (log2FoldChange ranging from − 1.96 to − 0.34). The genes with the 
most altered expression were SLC16A6 (log2FoldChange =  + 1.29; q-value = 1.18 ×  10–18) and SPP1 (log2Fold-
Change = − 1.96; q-value = 5.86 ×  10–41). SLC16A6 is a common DEG reported to harbour QTLs related to carcass 
and meat quality  traits43, whereas SPP1 is a candidate gene influencing carcass  traits44.

Finally for rumen, among the 499 DEGs, 397 were up-regulated (log2FoldChange ranging from + 0.48 
to + 2.06) and 102 were down-regulated (log2FoldChange ranging from − 1.18 to − 0.49). The genes with the most 
altered expression were ENSBTAG00000048135 (log2FoldChange =  + 2.06; q-value = 1.70 ×  10–23) and ALOX15B 

Figure 2.  MA-Plots for expression (left panels) and connectivity (right panels) comparing the difference (Log 
Fold Change, y-axis) against the mean (Mean of Log Normalized Counts, x-axis) for liver (A,D), muscle (B,E) 
and rumen (C,F). Highlighted in red (blue) are the differentially over-expressed (under-expressed) or over-
connected (under-connected) genes. Location of relevant genes and phenotypes is also given with top-ten up or 
down in black font.
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(log2FoldChange = − 1.18; q-value = 7.93 ×  10–9). ENSBTAG00000048135, an unannotated gene with unknown 
function in cattle, is a homologue of human IGHG  gene45, known to influence the innate immune function of 
IgG molecules and B-cells46. The ALOX15B gene has been previously identified as a down-regulated DEG within 
the inflammatory response function in feedlot-crossbred  cattle47.

Of the genes designated as differentially expressed within this study, 11 were commonly reported as differen-
tially expressed across the three tissues. Within the shared genes, 3 were known-genes—BOLA, PCK1, PRSS2—
whereas 8 were unannotated—ENSBTAG00000005146, ENSBTAG00000037743, ENSBTAG00000040409, 
ENSBTAG00000048353, ENSBTAG00000051836, ENSBTAG00000051845, ENSBTAG00000052465 and ENS-
BTAG00000053570 (Fig. 3). The bovine leukocyte antigen (BOLA) system is the major histocompatibility 
complex (MHC) of cattle. The MHC genes, mapped to the bovine chromosome 23, play key roles in immune 
susceptibility and resistance to  pathogens48. PCK1 is a key enzyme for gluconeogenesis in  bovine49 and in gene 
PRSS2, a substitution effect of the T allele of single nucleotide polymorphism (SNP) rs41256901 in protease 
was significantly associated with feed conversion ratio (FCR) and residual feed intake (RFI), and suggestively 
associated with DMI in beef  cattle50.

Key regulators
Regulatory impact factors, RIF1 and RIF2, were used to identify candidate TFs and COFs modulating the expres-
sion of DEGs. Based on those metrics, we identified 176, 185, and 214 TFs and (or) COFs for liver, muscle, and 
rumen tissues (Fig. 3), respectively (P value ≤ 0.05). Shared TFs and COFs were identified between liver and 
muscle (n = 13), muscle and rumen (n = 23), rumen and liver (n = 21) and liver, muscle, and rumen (n = 1, cofac-
tor BTK). BTK is a key regulator of the B-cell receptor (BCR) signaling  pathway51. This pathway plays a crucial 
role in regulating B-cell survival, proliferation, and maturation, and also regulates several downstream signaling 
pathways, including the MAPK and AKT  pathways52. The full list of key regulators for each tissue is presented 
in Supplementary Files S7, S8 and S9 for liver, muscle, and rumen, respectively.

Functional enrichment analysis
Based on the resultant list of DEGs, TFs and COFs identified across all tissues, and used as input for the con-
struction of the gene co-expression networks, with the genes expressed in at least one tissue (14,776 genes) as a 
background list, a total of 464 gene ontology (GO) terms in the biological process (BP) category were significantly 
enriched (P-value < 0.05) (Supplementary File S10). In broad terms and across tissues, we observed enriched 
BPs such as immune function (FDR = 2.65 ×  10–20), energy production (FDR = 1.36 ×  10–3) and lipid metabolism 
(FDR = 2.56 ×  10–3) (Fig. 4). Meanwhile the enriched tissue-specific BPs were indeed related to the tissues where 
they were preferentially expressed, that is regulation of primary metabolic process (FDR = 7.38 ×  10–8) in liver; 
skeletal muscle tissue development (FDR = 5.02 ×  10–3) in muscle and, regulation of inflammatory response 
(FDR = 3.28 ×  10–3) in rumen.

Furthermore, we performed functional overrepresentation analysis including only shared or unique genes 
identified across tissues. First, based on 235 shared genes among at least two out of the three tissues, a total of 205 
BP GO terms were significantly enriched (Supplementary File S11). Similarly, based on tissue-specific genes, 60, 
103 and 613 BP GO terms were significantly enriched in liver, muscle, and rumen, respectively (Supplementary 
File S12). As expected, the enriched BPs identified using shared and unique gene lists were comprised within the 
enriched BPs identified when analyzing all tissues together. Additionally, we constructed a hierarchical cluster 
heatmap pointing out the location of genes that became relevant after the differential expression and connectiv-
ity subsequent analyses (Fig. 5).

Figure 3.  Venn diagram of differentially expressed genes (left) and key transcription factors and cofactors 
(right) identified across liver, muscle, and rumen tissue samples for the contrast between TRAD and ALT diets.
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Figure 4.  Pie charts representing the three key biological processes significantly enriched based on the list of 
differentially expressed genes and key regulators identified across all tissues, input for construction of the gene 
co-expression networks.

Figure 5.  Heatmap of the hierarchical cluster analysis of differentially expressed genes, transcription 
factors and cofactors and the 14 phenotypes across the three tissues (liver, muscle and rumen) and two diets 
(Alt. = alternative diet; Trad. = traditional diet). Low and high expression are represented by green and red, 
respectively.
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Gene co-expression networks and differential connectivity
Based on the PCIT algorithm, to infer the diet-specific networks involving all tissues we prioritized unique 
informative genes considering the following criteria: (1) DEG between TRAD and ALT diets; and (2) key regula-
tors (TFs or COFs) based on RIF1 or RIF2 (Supplementary File S13). Thus, 1774 genes (DEGs and key regula-
tors) + 14 phenotypes were used to construct the TRAD and ALT gene co-expression networks with significantly 
correlated pairs of nodes selected when at least one of the nodes was a phenotype. Based on that, the TRAD net-
work contained 835 nodes and 1813 connections (implying a percentage of total possible connection or clustering 
coefficient of 0.52%), whereas the ALT network involved 525 nodes and 998 connections (clustering coefficient of 
0.72%) (Fig. 6, Supplementary Files S14 and S15). Most TRAD network connections (N = 733, ~ 40%) belonged 
to muscle compared to 33% and 27% for liver (N = 595) and rumen (N = 485), while half of the ALT network con-
nections (N = 499, 50%) belonged to liver compared to 31% and 19% for muscle (N = 309) and rumen (N = 190).

To explore differentially connected phenotypes across both networks, and under the assumption that gain or 
loss of connectivity in different biological situations would indicate changes in regulatory mechanisms, two sub-
networks, one for each diet, were contrasted by focusing on the phenotypes with the largest change in average 
number of connections within diets and tissues. Specifically, methane emission had the lowest change in number 
of connections within the networks, while carcass yield had the highest change in connectivity between the two 
networks (Fig. 6, Table 6). In particular, among all connections, we highlight SREBF2, master regulator of sterol 
and fatty acid synthesis, which showed significant connections to ME and CY in the ALT network, however was 
only connected to CY (not to ME) and in liver (not in muscle) in the TRAD network.

A closer examination of the number of connections for each phenotype in the six networks (Table 6) revealed 
that for CY the tissue with the largest change of connectivity between the ALT and the TRAD networks was 
muscle. Similarly, for ME the tissue with the largest change of connectivity between the ALT and the TRAD 
networks was rumen. This finding is of striking relevance because CY is highly influenced by muscularity while 
ME finds its origin in the rumen fermentation.

We also identified which significant connections were shared across the competing diets, creating a network 
with the connections present in both networks (Fig. 7, Supplementary File S16). The significant effect of diet on 
ME was further validated by the fact that no gene connections with ME were simultaneously observed in both 
the TRAD and ALT networks. In other words, the gene connections to ME were diet-specific. The attributes 
table we used to assist in the visualization and interpretation of the gene co-expression networks is presented in 
full in Supplementary File S17.

We determined which genes were differentially connected (DCGs) across diets, representing genes whose 
correlated expression pattern differed between both conditions. Note that all DCGs were also simultaneously 
DEGs, and genes with the highest change in the number of connections are likely to be key  regulators53. We 
identified 162 DCGs between the TRAD and ALT networks (Supplementary File S18). The top 10 most DCGs 
were SEMA7A, BASP1, NAAA , HNMT, TSPAN32, XAF1, RASGEF1A, CDCA5, ENSBTAG00000055140 and 
AQP9. Interestingly, all displayed maximum expression in rumen. Supplementary File S19 displays the CA-Plots 
comparing the number of connections of a gene against its average expression value, considering each tissue 
and diet comparison.

Lastly, we focused on the 17 TFs and COFs contained among the list of 162 genes that were differentially 
expressed and differentially connected (DEDC) (Table 7), highlighted as well in the hierarchical cluster heatmap 
(Fig. 5). The top 5 most differentially connected TFs or COFs across all tissues were BASP1, ELF5, STAT4, PRRX1 
and RXRG; all of them also displaying maximum expression in rumen. Within each tissue, the top ranked most 
differentially connected TF or COF were MEOX1 (from 25 connections in the TRAD network to 100 in ALT), 
PTTG1 (from 150 connections in the TRAD network to 18 in ALT) and BASP1 (from 57 connections in the 
TRAD network to 366 in ALT) in liver, muscle, and rumen, respectively.

Discussion
In terms of cost, feed accounts for a substantial proportion of production expenses in cattle  farming1. There-
fore, optimizing feeding strategies, such as feed formulation, considering nutrient composition, availability, and 
price, can be employed to improve efficiency, reduce costs, and enhance sustainability and profitability of cattle 
production. Exploring alternative feed ingredients, such as crop residues and industrial by-products, offers 
opportunity for cost savings, whilst also presenting potential means for reducing the environmental footprint 
associated with feed  production54.

In this study, by integrating high-throughput RNA-seq data from liver, muscle and rumen—key tissues 
involved in metabolism, products synthesis, and nutrient digestion—with phenotypic information, we applied 
multi-tissue condition-specific co-expression network approaches, to identify changes in co-expression patterns 
of genes and phenotypes across competing diets, underlying diet-induced phenotypic variability. The incorpora-
tion of phenotypes as additional nodes in the network allowed us to uncover biologically relevant results, which 
are not evident by differential expression and co-expression analysis alone. In that regard, we reported significant 
differentially co-expressed genes and differentially connected phenotypes in young Nellore bulls. Furthermore, 
we revealed candidate TFs and COFs modulating the expression of DEGs across diets.

The transcriptional response to diet changes in metabolic tissues provides valuable insights into molecular 
mechanisms underpinning diet-induced variations in nutrient utilization, energy metabolism, and overall meta-
bolic  homeostasis55. The precise control of gene expression is orchestrated by diverse regulatory mechanisms, 
including TFs and  COFs56. TFs and COFs play a critical role in shaping distinct gene expression patterns in 
accordance with nutrient  availability57, acting as molecular switches that bind to specific DNA sequences and 
regulate the transcriptional activity of target genes, consequently influencing gene expression and ultimately 
leading to phenotype  modulation58.
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Figure 6.  Gene co-expression networks with the unique significant connections for TRAD (A) and ALT (B) 
diets. Upper panels correspond to the visualization of the entire networks while the lower panels correspond to 
sub-networks, focusing on the phenotypes with the lowest and largest average changes in connectivity within 
diets and tissues (ME and CY, highlighted in dotted and solid black boxes, respectively). For the visualization 
schema, colours represent tissue of maximum expression: liver (green), muscle (red) and rumen (blue), with 
phenotypes represented in light purple with black borders; shapes represent genes or phenotypes (rectangle), 
transcription factors (triangle) or cofactors (inverted triangle); and, the colour of the edges represent type of 
correlation: positive (dark grey) or negative (pink).
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In terms of the phenotype level, at a P value < 0.05, ANOVA showed significant differences in favour of the 
alternative diet, including higher growth at finishing, lower methane emission, and higher carcass yield. The 
increase in growth suggests that the alternative diet may provide better nutritional support for growth compared 
to the traditional high-grain diet during the finishing stage of production. This finding is crucial in terms of 
livestock production efficiency and overall economic viability. Moreover, the lower methane emission associated 
with the alternative diet indicates that its composition might lead to improved rumen fermentation processes 
or reduced methane production per unit of feed consumed, which is particularly relevant in the context of 

Figure 6.  (continued)



14

Vol:.(1234567890)

Scientific Reports |        (2024) 14:13682  | https://doi.org/10.1038/s41598-024-63619-2

www.nature.com/scientificreports/

environmental sustainability. This implies that the alternative diet may conduct to improved environmental 
outcomes compared to the traditional diet. Lastly, carcass yield is an important metric in meat production, 
reflecting the efficiency of converting feed into usable meat. The slight increase in carcass yield with the alter-
native diet advocates that it could promote better muscle development, leading to improved meat production 
efficiency, desirable from both economic and consumer perspectives. In summary, these findings demonstrate 
the potential benefits of the alternative diet over the traditional diet in terms of growth performance, feed effi-
ciency, environmental impact, and potentially upgraded meat quality. However, further research is necessary to 
comprehensively understand the underlying mechanisms driving these effects, assess long-term implications, 
and evaluate the economic feasibility of implementing the alternative diet on farm on a larger scale.

At the transcriptional level, to provide an overview of the gene expression relationship across the tissues 
studied, we prioritized informative genes from the DEG, TF and COF analysis. We identified a set of genes that 

Table 6.  Number of connections by phenotype in each network, sorted by highest to lowest (last column). 
a For definition of phenotype abbreviation, see footnote on Table 2.

Phenotypesa

Liver Muscle Rumen

TotalALT TRAD ALT TRAD ALT TRAD

CY 75 114 27 132 16 14 378

ADG_GF 76 74 31 99 22 29 331

DMI_F 26 80 25 116 35 31 313

DMI_GF 32 62 18 68 18 90 288

DMI_G 38 46 17 29 7 140 277

ADG_G 25 57 17 33 7 121 260

ADG_F 44 35 55 78 20 12 244

REA 77 31 31 31 36 21 227

BW2 38 55 45 54 15 12 219

HCW 63 26 34 26 21 13 183

FT_REA 15 34 20 66 5 26 166

BW3 43 21 28 31 15 13 151

BW1 29 21 29 32 12 18 141

ME 20 32 23 24 26 6 131

Figure 7.  Gene co-expression network with the shared significant connections present in both diets. The line 
type represents the type of connection: solid (same signal in both networks), dash (negative in ALT and positive 
in TRAD) and dots (positive in ALT and negative in TRAD).
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showed significant changes in expression levels across diet groups and tissues. The observed tissue-specific gene 
expression patterns suggested that each tissue responds uniquely to dietary factors, indicating the importance of 
considering multi-tissue transcriptomic analysis for a comprehensive understanding of the intricate relationship 
existent between diet and gene expression.

The functional enrichment analysis further elucidated the biological processes and pathways influenced by 
diet type. We identified enriched biological processes and pathways associated with specific diet-induced gene 
expression changes. These pathways included those involved in nutrient metabolism, energy utilization, immune 
response, and muscle development, among others. These pathways provide valuable insights into the underlying 
molecular mechanisms that mediate the observed phenotypic variations in beef cattle.

The gene co-expression analysis allowed us to identify diet-specific changes in gene co-expression patterns, 
one of the key findings from this study. We observed that certain genes showed altered co-expression relationships 
in response to different diets, indicating a rewiring of regulatory interactions in the presence of specific dietary 
factors. The incorporation of phenotypes in the gene network provided an enhanced ability to make inferences 
at the macro whole-of-body scale. Importantly, we observed significant correlations between diet-induced gene 
expression changes and phenotypic measures, with a focus on the phenotypes with the largest change in the 
average number of connections within diets and tissues, namely ME and CY. These changes in co-expression 
patterns suggest activation or suppression of specific biological processes and pathways in response to dietary 
interventions such as energy utilization and muscle development, ultimately impacting the phenotype.

As an adaptive response to changes in nutrient availability, the rewiring of key regulators is likely to influence 
the expression of target  genes57. This was supported by the differential connectivity results that showed TFs and 
COFs differentially coordinating gene transcription between diets. In particular, we highlight as a pivotal rev-
elation of our work, diet-induced gene expression changes involving SREBF2, a master transcription regulator 
for energy homeostasis and cholesterol  biosynthesis59. In beef cattle, an association of cholesterol metabolism 
with feed efficiency has been reported by Karisa et al.60, and lower blood cholesterol content was observed in 
feed-efficient animals in comparison to inefficient  counterparts61,62. In our study, SREBF2 showed significant 
connections to ME and CY in the alternative diet network. Surprisingly, in the traditional network, SREBF2 
was only connected to CY (not to ME) and in liver (not in muscle), further suggesting differential phenotype 
regulation, in response to diet, through disruption/activation of biological pathways, eventually contributing to 
phenotype determination.

We identified MEOX1, PTTG1, and BASP1 as the network nodes undergoing the most dramatic changes in 
connectivity, strongly suggesting key roles in mediating the effects of diet on gene expression and, consequently, 
phenotypic outcomes. MEOX1 was previously identified in mice as a positive regulator of smooth muscle cells 
 differentiation63, expressed during embryogenesis in the early developing  somite64. Overexpression of PTTG1 
might affect the differentiation process of  adipocytes65, and, through recruitment of cholesterol, BASP1 may 
be involved with chromatin  remodelling66, important for metabolic  programming67. Their precise mechanism 
remains unknown.

Even though our study offers compelling insights, it is important to acknowledge its limitations. By recog-
nizing such constraints, we can better contextualize and interpret the findings, ensuring a balanced perspective 
on the research outcomes. Firstly, the complexity of dietary factors and their interactions makes it challenging 
to attribute specific changes in co-expression patterns solely to a single dietary component. By nature, diet is 
a multifaceted entity comprising various nutrients and bioactive compounds, and their combined effects may 

Table 7.  DEDC TFs and COFs by diet and across tissues sorted by differential connectivity (Diff. Connec.)

Tissue Gene symbol Type

Expression Connections Diff. connec P value

TRAD ALT TRAD ALT |TRAD − ALT| DE DC

Rumen BASP1 COF 3.3903 4.0028 57 366 309 0.0016 0.0065

Rumen ELF5 TF 3.3236 3.9761 271 57 214 0.0008 0.0093

Rumen STAT4 TF 0.4694 1.0797 238 27 211 0.0017 0.0006

Rumen PRRX1 TF 0.5084 1.0135 21 204 183 0.0075 0.0011

Rumen RXRG TF − 0.5521 − 1.1625 176 30 146 0.0017 0.0041

Muscle PTTG1 COF 0.1741 − 0.1766 150 18 132 0.0081 0.0002

Muscle AURKB COF − 0.1184 − 0.5239 129 28 101 0.0027 0.0068

Muscle BASP1 COF 3.1808 2.8104 97 13 84 0.0055 0.0005

Liver MEOX1 TF − 2.2663 − 1.7681 25 100 75 0.0007 0.0055

Liver ZNF703 COF 0.673 1.0484 83 15 68 0.0075 0.0005

Liver ZNF791 TF − 0.1592 0.2076 5 70 65 0.0087 7.6 ×  10–7

Liver E2F7 TF − 2.5227 − 2.0553 85 26 59 0.0013 0.0098

Liver HOXB7 TF − 2.0412 − 1.498 14 72 58 0.0003 0.0013

Liver FOSB TF − 0.4205 0.0066 77 22 55 0.003 0.007

Rumen TRIM16 COF 3.0366 2.5413 10 65 55 0.0086 0.0071

Muscle CREB3L4 TF − 0.3016 − 0.7554 9 59 50 0.0009 0.0001

Liver ENSBTAG00000020685 TF − 0.7306 − 0.2895 13 55 42 0.0023 0.0043
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contribute to the observed changes in gene co-expression. Further studies with controlled diet compositions 
are necessary to dissect individual contributions of specific nutrients. In addition, the specific diets used in this 
study may not fully represent the wide range of dietary variations encountered in commercial beef production 
systems. Future research incorporating diverse diet compositions and feeding regimens are warranted to capture 
the complexity of dietary effects on beef cattle phenotypes.

Moreover, the focus on liver, muscle, and rumen transcriptomes represents only a fraction of the complex 
molecular interactions occurring in beef cattle. Future investigation should explore other relevant tissues and 
molecular factors, such as epigenetic modifications and non-coding RNA, to gain a more comprehensive under-
standing of the diet-phenotype relationship. Finally, our study focused on a specific animal model and may not 
capture the full spectrum of diet-induced gene co-expression changes and phenotypic variations across different 
species or populations. Future studies can build upon these limitations to further advance our understanding 
of the subject matter.

To end on a practical note, for various operational reasons, including supply-chain availability, it might not 
be feasible to switch all cattle to the alternative diet. In that case, priority should be given to cattle with higher 
than average ME phenotypes and, among these, those exhibiting (1) high expression for MYOM2 (in liver), 
SCMH1 (in muscle) and BLK (in rumen) as the expression of these genes was the most negatively correlated 
with ME in the alternative diet network; and (2) low expression for ZNF703 (in liver), TRIM59 (in muscle) and 
ENSBTAG00000050869 (in rumen) as the expression of these genes was the most positively correlated with ME 
in the alternative diet network.

Similarly, this prioritization could be based on CY so that the alternative diet should first be given to cattle 
with lower than average CY, and among these, those exhibiting (1) low expression for GSTT1 (in liver), ARH-
GAP36 (in muscle) and CD80 (in rumen) as the expression of these genes was the most negatively correlated 
with CY in the alternative diet network; and (2) high expression for SGK1 (in liver), DDIT4L (in muscle) and 
SUPT6H (in rumen) as the expression of these genes was the most positively correlated with CY in the alternative 
network. For reference, even though validation of specific genes as reliable markers for dietary responsiveness 
require extensive research and validation efforts, as well as development of molecular assays and field trials, 
ongoing progress in the molecular biology field hold promise to transform our understanding of personalized 
nutrition. By validating candidate genes associated with desirable traits, we can streamline breeding programs 
to produce animals that thrive on specific diets, optimized for an individual’s genetic profile.

Lastly, as a final recommendation on how the alternative diet could be used to maximize its benefits on 
the farm, in light of the observed phenotypic variation analysis, it would be prudent for producers to consider 
strategically incorporating the alternative diet during the finishing stage to capitalize on its most significant 
effects. This targeted approach aligns with optimizing production efficiency while minimizing costs associated 
with feed formulation.

Conclusions
In conclusion, the analysis of multi-tissue diet-specific gene co-expression networks enabled the identification 
of changes in gene co-expression patterns across diets, which in turn impacted phenotypic measures. Our study 
demonstrated that diet-specific gene co-expression networks can add important information into the regulatory 
mechanisms underpinning diet-induced phenotypic variability. The identification of diet-responsive differentially 
co-expressed genes and phenotypes offers a foundation for further investigations to expand upon our findings, 
ultimately conducting to the implementation of tailored precision nutrition approaches and improved beef 
production practices, leading to enhanced animal welfare, productivity, and sustainability in livestock farming. 
Taken together, we have comprehensively compared two competing diets at the macro (phenome) and at the 
micro (transcriptome) levels, showed the advantages of the by-product based alternative diet, and provided 
recommendations on how the transition to the alternative diet should be prioritized.

Data availability
The datasets used and/or analyzed during the current study were obtained under license from EMBRAPA and 
so cannot be publicly available. Data is however available from the corresponding author on reasonable request, 
and with authorization of EMBRAPA.
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