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RESUMO 

O objetivo deste estudo foi estimar os componentes de (co)variâncias e parâmetros 

genéticos de novas características indicadoras de lucratividade e suas associações com 

características de carcaça, fertilidade, crescimento e eficiência alimentar em bovinos 

Nelore. Adicionalmente, objetivou-se realizar análises de seleção genômica para avaliar 

diferentes modelos de predição, e conduzir um estudo de associação genômica ampla 

ponderada de passo único e análises de enriquecimento para características relacionadas 

à lucratividade. As características analisadas foram lucratividade acumulada (APF), lucro 

por arroba (PFT), peso ajustado aos 450 dias de idade (P450), circunferência escrotal 

ajustada aos 365 dias de idade (PE365), idade ao primeiro parto (IPP), probabilidade de 

parto precoce (3P), idade à puberdade nos machos (IPM), produtividade acumulada da 

vaca (PAC), área de olho de lombo (AOL), espessura de gordura subcutânea (EGS), 

consumo alimentar residual (CAR), consumo de matéria seca (CMS) e frame score 

(FRAME). Foram utilizados dados fenotípicos de 3614 de animais fenotipados para APF 

e PFT. Os componentes de (co)variância e parâmetros genéticos foram estimados sob 

inferência bayesiana em modelo animal multicaracterística. Os animais foram 

genotipados com o painel SNP Clarifide® Nelore 3.0. Um modelo animal 

unicaracterístico foi aplicado para estimar os parâmetros genéticos e realizar o GWAS 

ponderado linear de etapa única (WssGWAS) para identificar regiões genômicas 

associadas a APF e PFT. Janelas genômicas de 10-SNP que explicaram mais de 0,5% da 

variância genética aditiva foram selecionadas para investigar potenciais regiões e genes 

candidatos. Nove modelos foram implementados para predizer os valores genéticos 

genômicos (GEBV) utilizando as abordagens de melhor preditor linear não viesado passo 

único (ssGBLUP) e melhor preditor genômico ponderado linear e não linear de passo 

único (WssGBLUP). A capacidade de predizer o desempenho futuro foi calculada como 

a correlação entre o GEBV e os fenótipos ajustados. A APF e PFT apresentaram 

estimativas de herdabilidade de moderada a baixa, 0.18 e 0.02, respectivamente. APF e 

PFT tiveram correlação genética moderada a alta com crescimento (0,51 a 0,64), 

eficiência alimentar (-0.23 a 0.72), carcaça (-0.68 a 0.43) e frame (0.44 a 0.77), e 

moderada a baixa com reprodução (-0.47 a 0.20). As correlações residuais entre APF e 

PFT foram baixas com crescimento, reprodução, carcaça, eficiência alimentar e frame, 

variando de -0.05 a 0.18, exceto para as correlações entre APF com P450 e DMI (0.21 e 

0.21, respectivamente). Na análise de GWAS, foram identificados um total de 83 genes 

em 21 janelas para APF e 268 genes em 52 janelas associados ao PFT. Maiores ganhos 

na habilidade preditiva para APF e PFT foram obtidos ao utilizar o modelo 

multicaracterística e o modelo bicaracterístico quando adicionadas características 

correlacionadas, com valores de acurácia variando de 0.556 a 0.665. Para predição da 

fração fenótipo, os modelos unicaracterísticos WssGBLUP linear obtiveram as maiores 

estimativas de predição, com valores variando de 0.65 a 0.94. Os resultados do GWAS 

contribuem para um maior entendimento dos mecanismos biológicos e genéticos, 

identificando os genes e vias metabólicas envolvidas na regulação da lucratividade e do 

lucro por arroba. Vários genes relacionados à fertilidade, eficiência alimentar, 

características de carcaça, desenvolvimento e metabolismo muscular e de tecido adiposo 

e metabolismo de lipídios e carboidratos foram identificados, juntamente com genes 

associados ao comportamento animal. Os resultados sugerem que a precisão da predição 

de características com baixa herdabilidade, como APF e PFT, aumentou 



xx 
 

consideravelmente quando foram combinadas com características de alta correlação 

genética em uma predição multicaracterística. Essas duas novas características podem ser 

incluídas como uma ferramenta complementar de seleção e manejo para identificar 

animais com maior retorno econômico em termos genéticos, oferecendo insights aos 

produtores sobre o retorno econômico esperado da seleção dos animais mais produtivos.  

Palavras chaves: Bos indicus, Lucratividade acumulada, Parâmetros genéticos, Predição 

genômica, WssGWAS 
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ABSTRACT 

This study aimed to estimate the components of (co)variance and genetic parameters of 

new profitability-indicating traits and their associations with carcass, fertility, growth, and 

feed efficiency in Nelore cattle. Additionally, we aimed to perform genomic selection 

analyses to evaluate different prediction models and conduct a single-step nonlinear 

weighted genome-wide association study and enrichment analyses for profitability-

related traits. The traits analyzed were accumulated profitability (APF), profit per 

kilogram of liveweight gain (PFT), weight at 450 days of age (W450), scrotal 

circumference at 365 days of age (SC365), age at first calving (AFC), probability of 

precocious calving at 30 months of age (PPC30), age at puberty in males (APM), 

accumulated cow productivity (ACP), rib eye area (REA), rump fat thickness (RFT), 

residual feed intake (RFI), dry-matter intake (DMI), and frame score (FRAME). 

Phenotypic data from 3614 animals phenotyped for APF and PFT were used. The 

(co)variance components and genetic parameters were estimated under Bayesian 

inference in a multi-trait animal model. The animals were genotyped with the Clarifide® 

Nelore 3.0 SNP panel. A single-trait animal model was applied to estimate genetic 

parameters and perform single-step linear weighted GWAS (WssGWAS) to identify 

genomic regions associated with APF and PFT. 10-SNP genomic windows that explained 

more than 0.5% of the additive genetic variance were selected to investigate potential 

candidate regions and genes. Seven models were implemented to predict genomic 

breeding values (GEBV) using the best linear unbiased genomic prediction (ssGBLUP) 

and single-step linear and nonlinear weighted best genomic prediction (WssGBLUP) 

approaches. The ability to predict future performance was calculated as the correlation 

between GEBV and fitted phenotypes. APF and PFT showed moderate to low heritability, 

0.18 and 0.02, respectively. APF and PFT had moderate to high genetic correlation with 

growth (0.65 to 0.64), feed efficiency (-0.23 to 0.72), carcass (-0.68 to 0.43), and frame 

(0.44 to 0.77), and moderate to low with reproduction (-0.47 to 0.20). Residual 

correlations of profitability-related traits were low with growth, reproduction, carcass, 

feed efficiency, and frame, ranging from -0.05 to 0.18, except for the correlations between 

APF with w450 and DMI (0.21 and 0.21, respectively). In the GWAS analysis, a total of 

83 genes in 21 windows for APF and 268 genes in 52 windows associated with PFT were 

identified. Greater gains in predictive ability for APF and PFT were obtained when using 

the multi-trait model and the two-trait model when genetically correlated traits were 

added, with accuracy values ranging from 0.556 to 0.665. The linear single-trait 

WssGBLUP models obtained the highest prediction estimates for phenotype prediction, 

with values ranging from 0.65 to 0.94. GWAS results contribute to a greater 

understanding of biological and genetic mechanisms, identifying the genes and metabolic 

pathways involved in regulating accumulated profitability and profit per kilogram of 

liveweight gain. Several genes related to fertility, feed efficiency, carcass traits, muscle 

and adipose tissue development and metabolism, and lipid and carbohydrate metabolism 

have been identified, along with genes associated with animal behavior. The results 

suggest that the prediction accuracy of traits with low heritability, such as APF and PFT, 

increased when they were combined with traits with high genetic correlation in a multi-

trait prediction. These two new traits can be included as a complementary selection and 

management tool to identify animals with greater economic returns in genetic terms, 
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offering insights to producers on the expected economic returns from selecting the most 

productive animals. 

Keywords: Accumulated profitability, Bos indicus, Genetic parameters, Genomic 

prediction, WssGWAS 
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CHAPTER 1 – INITIAL CONSIDERATIONS 

1. INTRODUCTION  

The estimates of global population growth are consistently highlighted as one of 

the main challenges global food production faces. With the population steadily 

increasing, the demand for food also grows exponentially, which means there is a need to 

produce more animals with limited natural resources. It is estimated that by 2050, to meet 

the increasing demands for animal products worldwide, producers will need to increase 

their production by 70%1. Traditional production practices may no longer suffice2 , and 

systems that allow for greater productivity per unit area will need to be explored. This 

implies the utilization of tools that can maximize the outcomes of meat production 

systems. In this context, finding sustainable and technological solutions to ensure food 

security while preserving natural resources for future generations is essential. 

The efficiency of production systems is crucial for enhancing productivity, 

ensuring greater availability of animal protein for more people, supporting sustainable 

initiatives3 and promoting good management practices to ensure animal welfare. 

Additionally, this can be achieved through animal selection by identifying animals with 

higher genetic potential for the trait of interest4. Sustainable genetic improvement can 

only be attained through accurate and frequent phenotypic records, along with the 

appropriate utilization of this information4. Therefore, genetic improvement will be one 

of the technologies applied in this scenario5 to intensify animal protein production 

sustainably. 

Simultaneously, precision livestock farming could provide tools to enhance the 

phenotyping of existing traits6 and expand possibilities for phenotyping traits that were 

previously unavailable, thus opening up new selection opportunities7. The integration of 

new phenotypes alongside the automatic collection of traits is a powerful tool to optimize 

herd management and breeding programs8, enabling decision-making tailored to the 

specific needs of each meat production segment9. 

In this context, this research proposes the study of two new phenotypes obtained 

in confinement through precision livestock farming technologies: accumulated 

profitability (APF) and profit per kilogram of liveweight gain (PFT). Especially in the 

last phase of the production cycle, feedlot operators face a series of challenges during 

finishing or fattening, including market volatility, fluctuations in feed prices, competition 

with other animal protein sources, and primarily, underperformance due to low genetic 
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potential regarding performance traits. All these factors still contribute to making this 

phase less profitable than expected10. 

The sustainability of beef industries requires high production and farm efficiency 

indicators11. The sustainability of beef industries requires high production and farm 

efficiency indicators. Within this perspective, these two new phenotypes can contribute 

as complementary tools for feedlot operators and commercial herd producers, aiming to 

optimize production efficiency. Using this tool to identify animals with greater genetic 

potential for economic return can directly impact decision-making, herd management, 

finishing time, and consequently increase the profit margin of operations. Additionally, it 

will facilitate the quick turnover of animals in the production area, resulting in greater 

environmental sustainability and increased meat production per area.  

The quantitative genetic study of these emerging traits constitutes the first step, as 

knowledge of genetic parameters will support the design of selection programs. 

Therefore, it is important to explore the variance components and heritability of these 

new traits to understand the proportion of their total phenotypic variation due to genetic 

variation. Additionally, knowledge of genetic associations with other traits is necessary 

to successfully incorporate a new trait into selection objectives12. 

Genomics will also be important in integrating these new phenotypes into 

selection programs. Emerging traits now being evaluated commonly exhibit low 

heritability, require significant financial resources13, or are difficult to phenotyping. 

However, even in a small reference population, genomics will enable the selection of 

these new traits14.  

The progress of genomic technologies has enabled the genotyping of hundreds of 

thousands of DNA markers distributed throughout the genoma15. The effects of thousands 

of DNA markers are estimated simultaneously by associating phenotypic information in 

a reference population and are used to estimate genetic values of animals under selection. 

Different methods have been extensively studied and compared to identify the most 

appropriate approach for genomic prediction for various traits16.  

In addition to genomic selection, genome-wide association studies (GWAS) have 

been conducted to identify candidate genes related to interest traits17. The identification 

of these genes and understanding their function in phenotype expression are important 

resources that can contribute to the implementation of genomic selection18.  GWAS 

studies the existence of linkage disequilibrium (LD) between SNPs and causal variants 

19. In general, GWAS aims to detect SNPs related to the traits under study and explore 
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regions where these SNPs are located to investigate genes and further study biological 

functions, with the goal of better understanding the genetic influence on trait expression20.  

In this sense, it is essential to estimate variance components and genetic 

parameters to understand the association with other traditional traits already used in 

breeding programs. Conducting GWAS and GS studies to deepen knowledge about 

potential genomic regions or genes, physiological processes that influence these new 

traits,21 and including them in genomic evaluation through more accurate genomic value 

predictions22 for precision selection. 

Therefore, this study aimed to estimate the variance components and genetic 

parameters of profitability-indicating traits and investigate their associations with growth, 

fertility, carcass, and feed efficiency traits in Nelore cattle. Weighted genomic association 

studies will be conducted to identify genomic regions associated with profitability traits 

and candidate genes involved in biological processes related to the expression of these 

phenotypes. Additionally, this study aimed to compare the accuracy of genomic 

predictions using single-step GBLUP (ssGBLUP) and weighted ssGBLUP (WssGBLUP) 

methods under single and multi-trait models. 

 

1.1 OBJECTIVES 

1.1.1 General Objective  

This study aims to estimate the variance components and genetic parameters, conduct 

wide genomic selection studies, and compare different genomic prediction methods for 

accumulated profitability and profit per kilogram of liveweight gain. 

 

1.1.2 Specific objectives 

• Estimate the (co)variance components and genetic parameters (heritability, 

genetic, and residual correlations) for accumulated profitability and profit per kilogram 

of liveweight gain through Bayesian inference using multi-trait analysis. 

• Conduct wide genomic wide association studies for profitability related traits 

using the WssGWAS approach. 

• Compare the predictive ability of ssGBLUP and WssGLUP methods (linear and 

non-linear) in single-, two-, three-, and multitrait models related-traits accumulated. 
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2. LITERATURE REVIEW 

2.1 Profitability  

Typically, global indices of genetic merit have been used to predict total profit and 

associate weighted genetic values with their respective economic values23. However, a 

new approach involves calculating and using the animal's profitability as a phenotype23. 

This direct animal profit prediction approach has been predominantly applied in dairy 

cattle. About two decades ago, several studies calculated the profit phenotype in dairy 

cattle. These calculations involved cost information, revenues, reproductive indicators, 

and milk production indicators, among others. Additionally, some of these studies 

incorporated the slaughter weight of the dairy cow into the profit prediction equation. 

These studies showed that profitability for cattle could be calculated and used to 

directly estimate the genetic value of the animal based on the profit phenotype. Despite 

the different methodologies employed in these studies regarding the variables used for 

the phenotype calculation, this trait exhibited genetic variability. The heritabilities 

reported in these studies ranged from 0,09 to 0,2524 25 26 27.  
Recently, Canadian DHI organizations, for example, calculated the accumulated 

profit per cow until the cow was slaughtered; variables such as milk and component 

prices, maintenance and feeding costs, and heifer rearing costs were considered28. In beef 

cattle, few studies have been conducted in this direction. Dunner et al. (2020) developed 

the Beef Female’s Profit Potential (BFPP), which represents the expected profitability 

over the cow's lifetime. For this, data from both the cow and its progeny were considered. 

However, this tool was developed as an aid for culling decisions of cows for slaughter, 

based on reproductive indicators and their respective economic weights9. 

Although meat production has experienced rapid growth in the past five decades, 

fueled by the development of various techniques, economic indicators show that the 

fattening sector still generates returns below expectations10, or operates with narrow 

margins of financial return. The cost and management of production inputs are routinely 

cited as important variables impacting financial gains; however, factors affecting the 

profitability of cattle fattening operations are numerous and often interconnected10 . 

Emerging measurement technologies, such as electronic sensors and automatic 

scales, have the potential to improve the development of decision-support technological 

solutions, aiming to achieve meat industries with greater sustainability, productivity, 

profitability, and high standards of animal welfare11. In this context, these technologies, 

such as artificial intelligence algorithms, can be employed to measure various 
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confinement metrics in more detail and in real-time, such as performance and 

consumption, costs, and market data. These integrated data can be used to calculate the 

direct profit phenotype of animals more accurately, becoming a strategic genetic tool in 

identifying those with the highest potential for economic return. Genetic evaluation 

focusing on profit, as an individual trait, can provide producers with information about 

economic gains based on their genetic choices, serving as complementary tools to 

selection indices24.  

 

2.2 Precision Livestock  

Digital tools have influenced a large part of society over the past twenty years, 

with rapid growth in internet access, computing autonomy, and automation in the use of 

smartphone applications. This change has been termed Industry 4.0 or the Fourth 

Industrial Revolution29. Despite this revolution having gained a plurality of names31, it 

has currently been termed Agriculture 4.0 to integrate into a fourth agricultural revolution 

driven by developing technologies grounded in information and communication and the 

large volume of data collected32 both in agriculture and animal production33.  In animal 

production, various terms have been used, such as precision livestock farming, smart 

farming, and smart animal agriculture. And they all refer to the same goal: to increase 

food production sustainably while preserving animal welfare and reducing environmental 

impact. This is achieved through the collection of information via sensors, storage, and 

processing of this data, as well as predictive analysis using artificial intelligence tools34 

35 35. 

Precision livestock farming tools are gradually becoming more common in 

contemporary livestock farming. According to Wathes et al.36 these tools are based on 

process engineering for the automation of livestock farming, enabling farmers to monitor 

many animals, their health, and environment, identifying individual disturbances in a 

timely manner and even anticipating them37. The use of technologies can assist in the 

development of production systems such as selection and management techniques, where 

there is still potential to be explored in associating precision livestock farming metrics, 

resulting in the generation of refined and biologically relevant phenotypes. Precision 

livestock farming can still be classified as first-generation livestock farming, similar to 

what currently exists37. And high-throughput phenotyping, or phenomics is the second 

generation, which faces a bottleneck for its advancement, which is evolving from 

monitoring a single phenomenon to monitoring associated phenomena, and thus 
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progressing to precision phenotyping, which refers to the speed and quantity at which 

digital sensor devices can transmit information37 . 

 

2.3 Phenomics 

Current developments in precision livestock farming tools, such as sensors for 

data collection, automation and robotics, cloud computing, big data analysis, machine 

learning, nanotechnology, genomics, and gene editing38 will provide solutions for 

advancing phenomics programs, encompassing phenotyping, data acquisition, and 

computation39. The purpose of these applications is not necessarily to replace existing 

phenotypes with new ones but to detect new associated sources of information that allow 

for large-scale data collection10 and to obtain measurements with greater reliability37. 

The phenotype represents the most complex expression of biological organization 

at the individual level, encompassing a wide diversity of observable traits in organisms40. 

Phenotypes can be measured continuously or categorically. When these phenotypic data 

are measured and recorded, this technique is called phenotyping36. Phenomics, therefore, 

is based on obtaining high-dimensional phenotypes in real-time, aiming at improving 

animal performance through precise increments and reproducible traits, whether 

traditional or incorporating new economically important traits, which have become 

available in precision livestock farming and were otherwise inaccessible41.  

This new perspective requires the use of new technologies and the management 

of a large amount of information, thus, phenotyping becomes essential in beef cattle 

farming and other areas of animal production, given the demands of the new society and 

the challenges in research that will need to be addressed to ensure sustainable livestock 

farming42. The first phenotyping platforms were developed in crop production, where 

numerous individuals were constantly involved in genetic improvement programs, the 

image analysis devices, for example, are commonly used in plant breeding programs43.  

Phenotyping programs make measuring traits faster and more economical, 

rendering phenotypic information more precise across all biological stages and 

preventing, where possible, the vulnerability associated with traditional methods of 

collecting phenotypic data44. Unlike studies focusing on human genetics and crops, 

animal phenomics has received less attention9, thus limiting the use of new tools that 

assess a greater number of phenotypes demanded by society, such as animal welfare, 

disease incidence, or efficient resource utilization45.  
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However, current studies show that phenomics in animal production is also 

becoming common in the scientific community, as demonstrated by Koltes et al.46, Baes, 

et al.47, Rexroad, et al48 e Cole, et al49. The use of big data techniques is an important tool 

for the analysis and interpretation of data generated by phenomics. The utilization of big 

data can aid in the analysis and interpretation of large volumes of information generated 

by phenomics, enabling the identification of patterns and trends in data that would be very 

difficult or impossible to analyze manually. 

The development of these new sensors, technologies, and methodologies to 

automate the collection of phenotypes related to disease resistance, animal welfare, 

fertility, feed efficiency, and animal product quality will contribute to the definition of 

management techniques and result in the improvement of genetic improvement programs 

and, consequently, the optimization of the production cycle48. In summary, phenomics 

offers many promising possibilities for enhancing production in beef cattle farming, but 

still faces significant challenges. As technology evolves and costs decrease, it is likely 

that more producers will adopt phenomics to improve production efficiency, 

sustainability, and animal welfare. 

The precision of measurement and the reproducibility of traits or phenotyping are 

essential for the progress of phenomics programs in livestock farming, as they will enable 

detailed phenotypic information currently inaccessible41. Furthermore, they will ensure 

advancements in performance and productivity of the production system through 

genetics, genomics, and other 'omic' sciences, better animal handling management, and 

optimization of natural resources, such as pastures50. 

 

2.3.1 Perspectives of phenomics use in beef genetic breeding 

Selection programs have been essential for increasing gains in the genetic 

evolution of productive traits in livestock farming, as well as the use of genomic selection, 

which has significantly accelerated genetic gain in some populations in recent decades51. 

This growth has been assisted by the maximization of production systems, the use of 

numerous precision tools in routine management activities, and high-performance 

phenotyping52.  

The success of quantitative trait selection largely depends on available and reliable 

phenotypic information43. However, phenotyping systems have been established for 

many years as a key factor in genetic evaluation, precision of statistical models, and 

predictions through molecular markers43, especially in recent years with the progress 
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achieved in genomics44. The understanding that phenotyping can be a limiting factor for 

genetic gain53 in selection programs has motivated many researchers in the field of animal 

production to develop new approaches54, such as genome sequencing9, adaptation to 

challenging environments55 and the development of innovative and economically 

accessible tools for phenotyping56. 

Phenomics is constantly justified as providing us with the ability to delineate 

causal associations between genotypes and environmental factors and phenotypes40. 

Phenotypic variation is shaped through a complex interplay between genotype and 

environment, and this genotype-phenotype map is intangible in the absence of detailed 

phenotypic information that enables these interactions to be elucidated40. Phenomics 

should be understood as an interdisciplinary field to facilitate the advancement and use 

of high-performance and high-dimensional phenotyping40. At present, one of the 

indispensable goals is to determine increasingly detailed functional relationships between 

animal genotypes and phenotypes and develop precision livestock farming with greater 

long-term sustainability42.  

Phenomics integrated with high-performance phenotyping directly contributes to 

three relevant components of genetic improvement through a selection program53: 

enhancing selection accuracy, aiding in the efficient identification of genetic variation, 

and increasing the robustness of decision support software39. According to Miller et al.57 

the possibilities of driving genetic evolution include increasing selection accuracy, 

reducing generation interval, and intensifying selection. These opportunities also enhance 

the ability to measure certain traits, such as opportunities for changes, like new traits. 

Phenotyping in animal production aims to transform traits that are difficult to measure 

into easily measurable ones. The benefits of this approach lie in its high capacity to 

generate a large volume of phenotypic data of the quality required for strategically precise 

prediction, thus overcoming the major limitation to progress through genomics42. 

In quantitative genetics, an essential concept is genetic gain. Genetic gain can be 

determined by the increase in performance achieved per unit through selection58. When 

placed in this scenario, to enhance genetic gain, phenotyping can assist in improving 

selection intensity, selection accuracy, and even characterizing new genetic changes. 

Obtaining estimates with greater reliability and precise genetic value is an essential goal 

for producers, and for this purpose, phenotyping is a crucial point59. 

 The selection rate determines selection intensity, the portion of the selected 

population from the total population58. Increasing the volume and optimizing the costs of 
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phenotyping can lead to an increase in selection intensity. Increasing the volume and 

optimizing the costs of phenotyping can lead to an increase in selection intensity59 of 

higher genetic merit. Therefore, high-performance methodologies are indispensable when 

implementing phenotyping to efficiently pursue larger population sizes53. 

The large volume of phenotypic data currently accessible through the deployment 

of high-throughput phenotyping systems related to enhancing the accuracy of measured 

traits results in better estimates of heritability and productivity indices40. Another 

important aspect is that high-throughput phenotyping in animal production comes under 

two perspectives: new traits can be determined and measured, which could not be 

recorded previously, and traditional traits can be monitored almost constantly without 

interfering with a significant volume of animals under normal production conditions. 

The selection of superior phenotypes, standardization of methods, development of 

techniques for high-throughput data collection, systematic recording of environmental 

variables, and the incorporation of informatics are some challenges in advancing an 

animal phenomics program. Precision livestock farming aims to implement uninterrupted 

and automatic real-time monitoring systems to enhance management and productivity 

throughout the production cycle. This perspective requires the use of new technological 

tools and the management of large volumes of information. 

In beef cattle production, several traits are of great economic relevance. First and 

foremost, fertility traits stand out, followed by weight gain, meat quality, and feed 

efficiency. Different technologies and sensors have already been adopted or can monitor 

these important individual traits60. There are several challenges to the widespread use of 

phenotyping techniques in beef cattle, however, simultaneously, current technologies are 

becoming more available, and producers are increasingly encouraged to use these tools61. 

Thus, integrating phenomics in animal production concerning genetic improvement and 

precision livestock farming approaches will result in accelerated progress in these two 

areas and optimization of resource utilization62. 

Phenomics, along with phenotyping, is therefore an indispensable tool for 

precision livestock farming, as it allows for a more accurate understanding of genotype-

environment interaction and, consequently, the selection of animals with high genetic 

potential. Through phenotyping, precise information about economically important traits 

can be obtained, enabling the rapid identification of the best animals for reproduction, 

and thus improving the efficiency of livestock production. Thus, phenotyping is a key 
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component for advancing precision livestock farming and for the sustainable production 

of high-quality food63.  

 

2.4 Genomic studies applied to animal breeding 

The genetic advancement through selection and mating is based on predicting the 

ability of parents to produce offspring with higher performance64. This method is known 

as genetic evaluation or prediction64. Genetic evaluation in plants and animals has been 

based, for the last 100 years, on the use of phenotypes related to desirable traits, along 

with pedigree information. Genetic evaluations, for the most part, did not take into 

account the physical basis of heredity, i.e., DNA, and used a simplified conception of 

genetic information transmission from parents to progeny, in which each parent 

contributes, on average, half of their genetic constitution64. In this conception, selection 

is based on the total predicted effect of the genes an individual carries or their estimated 

genetic values (EBVs)65.  

Recently, a paradigm shift in technology has paved the way towards a systems 

biology approach and its related disciplines66, to unravel the previously adopted 'black 

box' by quantitative geneticists, which considers that each quantitative trait results from 

the interaction of an infinite number of genes, each with an infinitesimally small effect 

(infinitesimal genetic model outlined by Fisher)66. This new paradigmatic approach 

focuses on the investigation of actual genomic regions and their effects or associations 

with performance, as opposed to contemporary methods that rely on the statistical 

analysis of extensive sets of phenotypic data.  

Most economically important traits in classical genetics are quantitative or 

complex68, where the phenotype is influenced by an infinite number of genes, each with 

an extremely small effect, resulting in a small proportion of variance explained by each 

gene65, in addition to non-genetic environmental factors. This leads to the involvement of 

multiple genes, whose effects are often small and, therefore, difficult to estimate 

accurately65. 

In the early years of the last decade, simultaneous developments in molecular 

genetics and bioinformatics paved the way for the establishment of genomic selection as 

a new approach to enhance genetic gain in animal breeding69. Since the late 1960s, there 

have been studies on the application of genomic data to improve selection in animal 

breeding71, and it became feasible with the identification of genes or genetic markers 

linked to loci of quantitative traits69. Especially for traits that were challenging to improve 
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in traditional breeding programs due to low heritabilities or costly phenotypic data 

collection, marker-assisted selection (MAS) emerged as a promising strategy to enhance 

selection response69.  

According to Hayes et al.72, the revolution of genomic selection was driven by 

two significant advancements. Firstly, the recent sequencing of the bovine genome 

allowed the discovery of thousands of DNA markers known as SNPs (Single Nucleotide 

Polymorphisms). Simultaneously with this discovery, there was a reduction in the cost of 

genotyping these markers across the entire bovine genome. The second advancement was 

proof that it was feasible to make very precise selections based on predicted breeding 

values from dense marker data using an approach called genomic selection73. 

With the emergence of genomic panels containing single nucleotide 

polymorphisms (SNPs), these markers have been extensively employed to detect and 

locate loci of complex traits in various species74. Additionally, they have proven effective 

and relevant in identifying causal mutations associated with economically relevant traits 

in livestock75. The introduction of SNP panels has enabled the conduct of various studies, 

such as association studies, prediction studies, and population studies, which have been 

implemented in different species. Markers associated with economically important traits 

can play a significant role in genetic advancement, especially when their information is 

incorporated into models to estimate genomic breeding values for such traits. 

Among the tools employed for genomic evaluation, genomic selection (GS) and 

genome-wide association study (GWAS) stand out as the primary methods for predicting 

genomic breeding values (GEBV) and identifying and associating molecular markers 

with the phenotype of interest. Both methodologies complement each other. Additionally, 

both GS and GWAS have enabled researchers to explore and quantify the genetic and 

phenotypic variations of quantitative traits. 

For all sectors of the livestock industry, genomics is expected to increase 

efficiency and productivity throughout the production cycle. Regarding consumers and 

the processing industry, genomics is expected to enhance the safety and quality of animal-

derived products. Furthermore, it is anticipated to provide new insights into growth, 

nutrition, health, and animal welfare, enabling a deeper understanding of the molecular 

mechanisms underlying the traits of interest. Thus, genomics offers new perspectives for 

more precise selection, cost reduction, shortened generation intervals, and exploration of 

new sources of genetic variability76. 
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2.4.1 Genomic Selection  

According to Meuwissen and Goddard (2016), three developments have been 

responsible for the widespread current adoption of DNA information: 1) the GS 

approach73, 2) the discovery of numerous SNP markers, and 3) the emergence of 

genotyping technologies through SNP chips, which made the genotyping of all these 

SNPs economically feasible77.  

Genomic selection was first introduced by Meuwissen et al.73 based on the 

principle that information from many markers can be used to estimate genetic values, 

even without precise knowledge about the exact location of genes in the genome. By 

selecting thousands of SNPs to represent the entire genome, it is assumed that there is 

always an SNP near a specific gene or DNA segment of interest78. The linkage 

disequilibrium between one (or several) SNP and a causal mutation is crucial, allowing 

for explaining a significant portion of the observed variation in the trait under analysis78.   

To comprehend how GS can accelerate the speed of genetic progress, it is 

essential to understand some of the fundamental principles of animal breeding79. The 

optimal design of any selection program involves the integration of various disciplines, 

including genetics, statistics, computer science, physiology, molecular biology, logistics, 

economics, and social sciences80. The breeder's equation provides a framework through 

which the impact of each of these areas and their technologies and decisions regarding 

their applications can be evaluated81. This equation models the expected variation in a 

trait in response to selection, and its description can be expressed according to Falconer82 

as:   

∆𝐺 =  
 𝑖 𝑟𝜎𝐴 

𝐿
 

Where: ∆𝐺 is the expected genetic gain , 𝑖 is the selection intensity (the proportion 

of animals in a population that are selected to become parents of the next generation), 𝑟 

is the selection accuracy (correlation between the estimated breeding value (EBV) and 

the true breeding value), 𝜎𝐴  is the additive genetic standard deviation of the trait of 

interest (genetic variation in the population available for selection), and 𝐿 is the 

generation interval (average age of parents when their offspring are born). 

Genomic selection directly addresses the four factors that affect the rate of genetic 

progress in animal and plant breeding80. Firstly, the reproductive process is accelerated, 

as breeders can renew individuals more quickly if selection is guided by the estimated 

genomic estimated breeding values (GEBV), which typically proves to be more effective 
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than phenotype-based selection80. Secondly, the selection intensity is expanded, as 

breeders can choose more individuals based on genotypes rather than phenotypes: the 

cost of genotyping is commonly lower than that of phenotyping, thus enabling the 

evaluation of a larger number of candidates for selection80.  

And thirdly, GEBV can offer higher precision than the breeding value estimated 

solely based on phenotype and pedigree80. Lastly, genomic selection tools can also 

optimize the incorporation of new genetic material more efficiently83, through the 

utilization of the three factors described above, in crossings and pre-breeding programs, 

as well as the utilization of the ideal contribution theory driven by genomic information80.  

In practical terms, genomic selection involves making selection decisions based on the 

estimated genetic values of an individual72. These GEBVs are obtained by summing the 

effects of dense genetic markers, or haplotypes formed by these markers, spanning the 

entire genome, making it possible to potentially capture all loci of quantitative traits 

(QTLs) contributing to the variation of a particular trait72. 

The implementation of genomic selection accelerates genetic progress while 

reducing the costs associated with progeny testing73 84 while simultaneously enhancing 

the gains from other reproductive technologies such as artificial insemination, sexed 

semen, bovine semen, or in vitro embryo fertilization, which also contribute to selection 

intensity8586.  This approach allows breeders to pre-select animals that have inherited 

chromosomal segments of higher genetic value73 84, thus optimizing the efficiency of the 

breeding program. The effects of achieving these accuracies for newborn animals are 

significant. Findings from simulation studies indicate that the accuracy of GEBV for a 

calf can be as high as the accuracy of an EBV after progeny testing84. The generation 

interval was approximately five years because young animals exhibit higher average 

merit and now also have high reliability87  

 

2.4.2 Implementation and methods of genomic prediction 

According to Hayes e Goddard, 201088, genomic selection aims to utilize 

genotypic, phenotypic, and pedigree information to predict genomic GEBVs within a 

specific population73. In the implementation of genomic selection, three steps are carried 

out: estimation and validation of the prediction model, prediction of the genetic values of 

selection candidates, and selection of genotypes based on the predictions73 89. For this, 

three populations must be defined for this: estimation population (training or reference), 

validation, and selection population73. 
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The training population with known phenotypic and genotypic information is 

employed to develop a prediction model of DNA marker effects simultaneously68 67. 

These models integrate phenotypic information to establish predictive equations of 

genomic values68 67. Such equations are constructed through regressions between 

phenotypes and genotypes, allowing the estimation of the effect of allele substitution at 

each marker6867. This equation, constituted by the combination of SNP genotypes and the 

estimated marker effects, is then used to predict the GEBVs of animals from the validation 

population, which possess genotypic information but not necessarily phenotypic data24,25.  

Once validated, this equation can be used to predict the GEBVs of animals 

considered for selection24,25. Thus, the summation of the effects of all SNPs is adopted as 

a predictor of the genetic merit of animals under evaluation73 24 25. Therefore, different 

efficient methods for processing genomic data have been developed to increase the 

reliability of estimated genetic values and to estimate thousands of marker effects 

simultaneously89. 

According to Gianola et al.,90 these methods encompass a multiple regression on 

marker genotypes, best linear unbiased prediction (BLUP) including effects of a single-

marker locus, ridge regression, Bayesian procedures, and semiparametric specifications90. 

Bayesian methods, Bayes A, Bayes B, and Lasso, and the GBLUP method are widely 

employed to predict genetic merit, with the main distinction among them being the 

assumed distribution of SNP effects90. The GBLUP method assumes that the trait under 

study has a polygenic structure and takes into account the contribution of all genotyped 

markers when constructing the genomic relationship matrix (G). This is in contrast to the 

Bayesian approach, which assumes that the genetic variability of a trait is influenced by 

a small number of markers91 92.  

Recently, the GBLUP method has been enhanced into the single-step GBLUP 

method, which allows for the inclusion of pedigree and genomic relationships in a single 

relationship matrix89, and has become one of the main approaches for genomic evaluation 

currently93. In this methodology, when phenotype and genotype data are simultaneously 

available, ssGBLUP emerges as a practical alternative94. These pieces of information are 

pooled together to generate an overall relationship matrix (H)96 which can then be used 

for BLUP of genetic values. This matrix was proposed by Misztal et al.97 who suggested 

that a numerator relationship matrix (A) can be adapted to a matrix (H) that encompasses 

both pedigree-based relationships and differences between pedigree and genomic 

relationships (𝐴∆) 𝐻 = 𝐴 +  𝐴∆ 97. 
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However, ssGBLUP assumes that variances are identical for all SNPs, which may 

not be the most appropriate assumption from a biological perspective73 89 92. As a result, 

another approach based on the structure of ssGBLUP, called weighted ssGBLUP 

(WssGBLUP), was proposed by Zhang et al. WssGBLUP is an expanded method of 

ssGBLUP that considers weights for SNP variations used in constructing the genomic 

relationship matrix98. WssGBLUP can assign more weight to SNPs in high LD with a 

causal mutation or associated with QTLs with a comparatively significant effect. These 

weights are estimated based on the variance explained by each SNP, as demonstrated by 

Wang et al99. 

The success of genomic selection is influenced by the accuracy of GEBVs, which 

are greatly affected by the prediction methods employed, the size of the reference 

population, the heritability of the traits in question, and the magnitude of linkage 

disequilibrium between SNPs and QTLs72, including the size of the training population, 

the effective population size65, the genetic relationship between the target population and 

the training population, marker density, statistical modeling employed, heritability, and 

genetic structure of the trait65. 

Thus, the selection of the most appropriate method for each trait in each 

population depends on the specificities of each scenario and can directly influence the 

accuracy of genomic predictions, with this choice being conditioned by the distribution 

of QTL effects, which are not known100. Therefore, the primary purpose of these methods 

is to enhance the prediction capacity of GEBVs by employing computationally efficient 

tools that can be easily incorporated into commercial selection programs22. 

 

2.4.3 Genome-Wide Association Study 

The discovery of QTLs is a significant advancement for the identification and 

understanding of genetic variants linked to economically important phenotypes, and in 

this regard, genome-wide association study (GWAS) has been extensively employed as a 

strategy to identify QTLs and genomic regions associated with phenotypes21. This 

approach has been used to map traits such as meat quality and quantity, sensory panel 

evaluation, ease of calving, milk production, fat and protein percentage, fertility traits, 

egg production, etc101. 

In general, due to differences in the genetic architecture of breeds and the 

polygenic nature of complex traits, different genes and regions are associated with the 

same trait in different breeds of the same species. When conducted carefully, GWAS has 



16 
 

proven to be an efficient method for detecting genes associated with various phenotypes 

and elucidating the underlying mechanisms of these traits101 as well as subsequent studies 

of biological functions aimed at increasing the understanding of the genetic component 

of phenotype expression20. These studies have being conducted using SNPs from panels 

of different densities, aiming to identify QTLs to elucidate biological functions and 

genetic structure. 

The advancements in the development of dense panels of SNP markers have 

enabled the analysis of numerous SNPs collectively, allowing genomic analyses of 

genetic architecture, inbreeding, estimation of diversity and genetic divergence within 

and between populations, and detection of regions under selection102 103. These markers 

are then important for understanding the genetic architecture of traits of interest and are 

subsequently applied in genomic selection104 This way, a better understanding of the 

genetic bases of the evaluated breeds can be obtained with greater accuracy, and young 

animals with high genetic value can be identified early on105. 

GWAS investigate linkage disequilibrium (LD) between SNPs and causal 

variants106, assuming that at least one SNP is in LD with genes or genomic regions 

associated with the phenotype and is in sufficient frequency to be identified107. Thus, the 

identification of genome regions where these SNPs are present is sought, detecting genes 

and/or QTL associated with the phenotypic expression of the trait under study1918. With 

the identification of genes or genomic regions of interest, this information can be useful 

for breeding programs through genomic selection, directing attention to important 

genomic regions108. 

 

2.5 A brief overview of integrating phenomics and genomics to improve precision 

selection 

The integration of phenomics and genomics is already underway and is 

progressing due to the acquisition of large-scale data through high-throughput 

phenotyping (HTP) and next-generation sequencing techniques109. The rapid 

development of phenomic technologies and methodologies is already reshaping the 

landscape of breeding programs, as evidenced by the continuous flow of genomic data110. 

These high-throughput phenotyping methodologies are not just complementary to 

genomic selection, but they also reinforce it, leading to the revolutionary concept of 

'phenomic selection' and GS + HTP methodologies. These innovative approaches, 
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coupled with advanced prediction models, are poised to revolutionize breeding 

programs111 112. 

These new strategies that concurrently use available genomic and phenomic 

information are being presented/studied in selection programs and demonstrate great 

potential to enhance prediction accuracy and/or increase yield for selection (through 

prediction) in the early stages of the breeding program113 114 115. This new modeling 

perspective is highly favorable for accelerating genetic gain, as they can increase 

predictions of selection for new generations, expand the size of the population that can be 

effectively evaluated, and offer complementary data that will contribute to improvements 

in genomic predictions, resulting in more efficient models and precise selection110.   

Another critical point is that new traits are emerging through these PL 

technologies applied to phenomics, and most of them now evaluated generally have low 

heritability or require considerable investments in the early stages to obtain phenotypes13. 

However, they can be measured in a small reference population.116. Examples include 

new traits such as methane emission reduction117, energy balance118, and progesterone 

profiles as indicators of fertility119. Genetics plays an important role, as a strategy for 

effective selection of these new traits may lie in cost-effective ways to increase DGV 

prediction, such as incorporating a trait that correlates with a multi-trait genomic selection 

approach116 that has large reference populations in the study population14.  

Advances in genetic improvement have been largely promoted by the use of 

genomics, which has enabled the integration between genomics and phenomics in GWAS 

studies and contributed to the prediction of the phenotype from the genotype in genomic 

selection120. In this sense, GWAS will also provide important insights into new traits, 

including their genetic architecture, biological processes, potential regions, and candidate 

genes associated with these traits. This complementary information will help breeding 

programs select new traits, providing a greater understanding of their genetic basis and 

assisting in the precise selection of animals with desirable traits.  Therefore, the use of 

cutting-edge technologies, such as genomics, combined with phenotyping, will further 

facilitate the selection of animals with high productive performance and greater efficiency 

in the use of resources63.  
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CHAPTER 2: GENETIC PARAMETERS FOR NOVEL FEEDLOT 

PROFITABILITY-RELATED TRAITS IN NELORE CATTLE  

Abstract: This study aimed to estimate (co)variance components and genetic parameters 

for accumulated profitability (APF) and profit per kilogram of liveweight gain  (PFT), as 

well as their relationships with adjusted weight at 450 days of age (W450), scrotal 

circumference adjusted at 365 days of age (SC365), age at first calving (AFC), probability 

of precocious calving at 30 months of age (PPC30), age at puberty in males (APM), 

accumulated cow productivity (ACP), rib eye area (REA), rump fat thickness (RFT), 

residual feed intake (RFI), dry-matter intake (DMI), and frame score (FRAME). Data of 

profitability from 3,614 Nelore (Bos indicus) animals were used. The (co)variance 

components and genetic parameters were estimated using Bayesian inference in multiple-

trait animal model. The posterior means of heritability estimates for APF and PFT were 

0.18 and 0.02, respectively. APF and PFT exhibited moderate to high genetic correlations 

with growth traits (0.64 to 0.65), carcass (0.43 to 0.44), feed efficiency (0.72), and frame 

(0.44 to 0.77), except for the correlation with RFT (-0.10 to -0.68), RFI (-0.23 to 0.28), 

and between PFT and DMI (0.26). APF and PFT showed moderate to low genetic 

correlations (-0.48 to -0.01) with female reproductive traits and low correlations (-0.03 to 

-0.21) with male reproductive traits. These results offer important information to improve 

productive and economic performance when considering the inclusion of APF and PFT 

complementary tools in the selection criteria. Such traits can be strategic tools for 

producers by identifying animals with more significant genetic potential for profitability 

supporting decision-making in genetic planning and herd management.  

 

Keywords: Genetic parameters, Livestock precision, Phenotyping, Profit phenotype, 

Zebu cattle 

 
 

 

 
 

 
 

 

 
 

 



27 
 

1. Introduction  

The beef production sector faces ongoing challenges across various aspects of the 

production chain, encompassing management, global trade, animal health and welfare 

concerns, consumer preferences (Tonsor & Schroeder, 2006), pressures resulting from 

population growth, limited availability of productive lands for cattle rearing (Greenwood, 

2021), and environmental sustainability. As resources become scarcer and environmental 

concerns grow, the search for increased productivity and efficiency in beef production 

through genetic improvement and precision livestock farming has become increasingly 

relevant (Reynolds et al., 2011; Scollan et al., 2011). In this context, innovations in genetic 

breeding are important to address and attempt to resolve these issues, aiming to contribute 

towards more sustainable, efficient, and profitable beef production. 

Models of extensive production of red protein commonly include the raising of 

cows and their progeny on pasture, while the rearing and finishing phase of the steers 

occur on pasture based intensive or in feedlot conditions (Greenwood et al., 2021). The 

finishing phase of cattle in the feedlot is a strategy that primarily aims to intensify the 

production of kilograms of meat per unit area (Pacheco et a., 2014). However, feedlot 

operators have faced ongoing difficulties such as price fluctuations, feed costs, and 

fluctuations in market demand. Achieving satisfactory profit margins in feedlot 

operations presents a challenge, as margins are typically narrow and require economies 

of scale to ensure an adequate economic return. Therefore, it becomes relevant to identify 

and select individuals capable of achieving superior performance in productivity and 

profitability during the rearing and finishing phases, as well as reducing feedlot period 

length. 

 In this context, Precision Livestock Farming (PLF) enables a strategic approach 

to optimize the management of large herds, resulting in improved profitability, efficiency, 

and reduction of environmental impacts related to livestock systems (Kaur et al., 2023). 

Additionally, PLF technological solutions can enhance production system efficiency, 

enabling opportunities to select animals more efficiently through automated phenotyping 

(Brito et al., 2021). Advances in precision livestock farming have fostered the use of high-

throughput phenotyping, facilitating enhanced monitoring in animal improvement, 

research, and genetic applications (Silva et al., 2021). These phenotypes obtained through 

PLF can be utilized as indicators or even introduce new traits for the genetic progress of 

herds (Silva et al., 2021). 
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Given the complexity of challenges breeders face in feedlot finishing systems, 

carefully selecting the most suitable animals becomes fundamental importance. Thus, 

including new traits or phenotypes associated with productivity and profitability has 

become a promising strategy in breeding programs, complementing conventional traits in 

beef cattle. It is important to emphasize that these new traits are as important for genetic 

improvement programs as those linked to (re)production (Knap et al., 2020). In this 

scenario, this study proposes the investigation of two novel phenotypes: accumulated 

profitability and profit per kilogram of liveweight gain in feedlot.  

The availability of genetic Information and the integration of these traits as a 

complementary tool in the selection process enables breeders to evaluate the feedlot 

profitability potential of animals from the initial stages of development. This enables early 

identification of individuals with superior genetic merit for feedlot profitability, allowing 

producers to adjust their management strategies within their operations. This tool avoids 

investing resources in animals with lower economic potential, optimizes management 

practices, and reduces production-related risks, including the environmental impact of 

meat production. 

It is important to highlight that beef cattle genetic breeding programs often do not 

consider traits directly related to performance in feedlots. Furthermore, few studies relate 

the feedlot traditionally evaluated in selection programs with those measured directly in 

confinement environments. This study is initially justified by the need to understand how 

the traditional traits established in breeding programs correlate with the economic 

performance of animals in feedlots environments. Understanding the genetic relationships 

between the novel profitability phenotypes in feedlot and the criteria traditionally used in 

breeding programs, such as traits related to carcass, growth, fertility, and feed efficiency, 

is of paramount importance.  

This study would identify the most relevant traits to improve the feedlot 

profitability, thus facilitating the implementation of the most appropriate strategies and 

selection criteria for each production system. Furthermore, this approach favors a more 

balanced and holistic selection, optimizing the efficiency of breeding programs. The need 

for higher efficiency in productivity motivates the implementation of strategies and the 

use of new precision livestock technologies applicable to genetic improvement. Thus, the 

objectives of this study were to estimate the (co)variance components and genetic 

parameters for novel feedlot profitability-related traits and their genetic and residual 

correlations with growth, reproduction, carcass, and feed efficiency traits in Nelore cattle. 
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2. Materials and methods  

This study was exempt from evaluation by the Animal Ethics Committee (CEUA), 

as established by Law No. 11,794 of 08/10/2008 and Normative Resolution No. 51 of 

05/19/2021 from the National Council for Animal Experimentation Control (CONCEA) 

because the data were obtained from an existing database. 

 

2.1 Dataset 

The dataset used in this study, related to growth, reproduction, carcass, and feed 

efficiency, originates from 27 herds participating in the Nelore Brazil Improvement 

Program, coordinated by the National Association of Breeders and Researchers (ANCP, 

Ribeirão Preto, São Paulo, Brazil) located in four Brazilian geographical regions 

(Midwest, Southeast, Northeast, and North). Data regarding accumulated profitability and 

Profit per kilogram of liveweight gain were provided by the company @tech (Piracicaba, 

São Paulo, Brazil). The @tech is a startup that develops technological solutions in 

software and research, employing artificial intelligence in beef cattle, broiler poultry, and 

cultivated fish chains to support producers in decision-making.  For further information 

about the company, please refer to the website https://techagr.com/beeftrader. The 

relationship matrix contained 116,815 animals, including 4,248 sires and 49,106 dams.  

The animals constituted the database had an average inbreeding coefficient of 1.11% and 

a proportion of 1.75% of inbred individuals in the total population. 

2,127 animals were genotyped with the low-density panel (Clarifide® Nelore 3.0) 

containing more than 70,000 markers. The genotype quality control (QC) excluded 

animals and SNPs from the dataset with call rates <0.90. Additionally, SNPs with a minor 

allele frequency (MAF) <0.05, Mendelian conflicts >1%, monomorphic SNPs with 

redundant positions, SNPs deviating from Hardy-Weinberg equilibrium expectations, and 

those located on non-autosomal chromosomes were also excluded. After QC, 2,127 

genotyped animals and 35,658 SNPs remained in the database for analysis.  

 

2.2 Traits analyzed 

Growth: A growth trait considered in this study was adjusted weight at 450 days of age 

(W450, kg). The calculation of standardized weight was conducted through linear 
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regression, considering the average daily gain assessed between days 405 and 495 of age 

for the variable P450 (Negreiros et al., 2022). 

 

Carcass: The carcass traits considered were ribeye area (REA, cm2) and rump fat 

thickness (RFT, mm). To obtain carcass phenotypes, ultrasound images were taken of the 

Longissimus dorsi muscle among the 12th and 13th ribs (REA) and in the rump region, 

between the ilium and ischium at the intersection of the Gluteus medius and Biceps 

femoris muscles (RFT), using the ALOKA 500V equipment with a 3.5 MHz linear probe. 

 

Fertility: The age at first calving (AFC, months), probability of early calving (PPC30, 

%), accumulative cow productivity (ACP, kg weaned calf/cow/year), age at puberty for 

males (APM), and scrotal circumference at 365 days of age (SC365) were considered in 

this study. All heifers that underwent the sexual precocity program were exposed to 

reproduction during the weaning year as part of the early calving probability (PPC30) 

determination process. Those females that confirmed pregnancy and gave birth to a live 

calf by 30 months of age received a score of 2 (success), while the others that failed 

received a score of 1 (failure).  

The age at first calving (AFC) was defined as the age, in months, of the heifer at 

her first calving. Annual cow productivity (ACP) was calculated based on the average 

weight of weaned calves over time, considering sexual precocity, maternal ability, and the 

cow’s reproductive regularity. The animals underwent testicular ultrasonography and 

andrological clinical examination to determine the males’ puberty age. According to the 

assessment, the animals were categorized as super-early (pubertal at ≤ 14 months of age), 

early (puberty between 14 and 17 months of age), or traditional (puberty >17 months of 

age) (Silva et al., 2020). Scrotal circumference at 365 days of age was adjusted according 

to age. 

 

Feed Efficiency: The feed efficiency traits were obtained through Intergado® and 

GrowSafe electronic systems. Feed efficiency tests followed the guidelines established 

by Mendes et al., (2020), for assessing individual feed intake in beef cattle using both 

electronic systems. Animals were kept in collective or individual pens and subjected to a 

21-day adaptation period followed by a valid 70-day testing phase. Throughout this 

period, each animal’s average weight was recorded via manual weighing every 14 days 

or through automated weighing platforms (Intergado®). 
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To obtain residual feed intake (RFI, kg of dry matter/day), the average daily gain 

(ADG) (kg/day) and metabolic live weight (MW0,75) were calculated. Daily dry matter 

intake (DMI, kg/day) was derived from the mean of all valid individual daily intake values 

electronically recorded by the Intergado and GrowSafe systems during the test period. 

ADG was estimated using the linear regression coefficient of weight concerning the days 

in the test for the animals (DIT) using the lm function in the R program with the following 

equation (Koch et al., 1963): 

 

𝑦𝑖 = 𝛼 +  𝛽 ∗ 𝐷𝐼𝑇𝑖 + 𝜀𝑖 

 

Where: 𝑦𝑖  represents the weight of the animal; 𝛼 is the intercept of the regression equation 

representing the initial weight; 𝛽 is the linear regression coefficient representing ADG; 

𝐷𝐼𝑇𝑖  represents the day in the test for the nth observation; e 𝜀𝑖 is the error associated with 

each observation. 

Considering live weight, the metabolic weight (MW0,75), was calculated using the 

formula below (Koch et al., 1963): 

𝑃𝑉0,75 = [𝛼 +  𝛽 ∗ (
𝐷𝐸𝑇𝑗

2
)]

0,75

 

Em que: 𝛼 represents the live weight at the beginning of the feed efficiency test; 𝛽 stands 

for average daily weight gain, and 𝐷𝐸𝑇𝑗  represents the days in test. 

Residual feed intake (RFI) was calculated as the difference between predicted and 

observed dry matter intake, using a regression equation based on live weight (MW0,75), 

and average daily weight gain (ADG), following the methodology proposed by Koch et 

al., in 1963.  

Y = β0 + β1 (ADG) + β2 (MW0,75) + ε 

Where: Y individual feed intake; β0 intercept; β1 partial regression coefficient of daily 

dry matter intake on average daily weight gain; β2 partial regression coefficient of dry 

matter intake on live weight; and ε: residual error of the regression, i.e., residual feed 

intake. 

 

Body composition: the calculation for the frame score was performed based on the 

equation developed by Guimarães et al. (2020), using the method of multiple linear 

regression prediction applying different equations for males (1) and females (2): 
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FRAME MALES = −20.35 + 0.1305 × REA + 0.2633×BFT – 0.5901 × RFT + 0.1139 × 

HH+0.0056 × AGE (1) 

FRAME FEMALES = −11.87 + 0.1316 × REA – 0.2457×BFT – 0.6218 × RFT + 0.1139 

× HH+0.0009507 × AGE (2) 

 

Where: REA, BFT, RFT, HH and AGE are ribeye area (cm2), subcutaneous backfat 

thickness (cm), rump fat thickness (cm), hip height (cm) and age (days) at ultrasound 

measurement, respectively. 

 

Novel phenotypes: The new phenotypes analyzed were accumulated feedlot profitability 

(APF) and feedlot profit per kilogram of liveweight gain (PFT). @Tech's algorithms are 

designed to make full use of this data, ideally collected within a standardized 80-day trial 

period for running in the BeefTrader Decision Support System generating the phenotypes 

used by the Livestock Profit Tool (LPT) profitability. For trials that do not meet this 80-

day standard, our system employs Artificial Intelligence and advanced growth modeling 

techniques to set the standard. This approach considers historical data to produce 

estimates that align with the 80-day prediction requirements of the LPT, ensuring robust 

and reliable analytics across varying trial durations. 

The BeefTrader algorithm uses animal traits as input variables (gender, breed, 

body condition score, initial weight, initial date, among other exogenous factors that 

impact on growth dynamics), daily weights individually collected through a weighing 

sensor (daily basis), and information on the nutritional composition of the diets. The 

records for obtaining the new phenotypes were collected from animals participating in 

feed efficiency trials, following the same guidelines as Mendes et al., (2020), as 

mentioned in the section on feed efficiency traits. Based on this information, adjusted for 

local conditions, weight prediction is carried out in two steps: based on the biology of 

each animal and with the nutritional data and animal daily weight profile (observed or 

predicted), it is possible to estimate an optimal growth function for the animals (Step 1); 

from there, a dynamically adjusted linear or non-linear regression is performed using the 

least squares method on the weights to fit the predicted growth curve (Step 2). From the 

predicted growth curve, it is possible to find other variables required by the model, 

including animal performance in terms of growth and composition of gain, as well as 

economic and environmental factors. The profitability is the central trait used by LPT, as 
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commented, thus the next topics the @Tech intention is to present the equations related 

to this core phenotype. 

 

Accumulated kilograms* 

                                                  (𝑠𝑏𝑤 ∗ 𝑐𝑑𝑓/100) / 15 

 

Where: 

𝑠𝑏𝑤: Shrunk Body Weight (kg) - 96% of the Body Weight 

𝑐𝑑𝑓:  Carcass Dressing (%) 

 

kilograms ∗ Gain 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑎𝑖𝑛 = 𝑎𝑐𝑢𝑚 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠 [2] − 𝑎𝑐𝑢𝑚 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠 [1] 

 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑎𝑖𝑛 = 𝑎𝑐𝑢𝑚 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠 [𝑑] − 𝑎𝑐𝑢𝑚 𝑎𝑟𝑟𝑜𝑏𝑎 [1] + 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑎𝑖𝑛 

 

Where: 

Acum 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠 = accumulated 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠 (15𝑘𝑔) on a specific day 

d = Day 
gain initial = gain to be considered on the first day since it is unknown. This value 

becomes a constant. 
Note: The correct procedure for the first day would be to calculate based on the corral 

weight and remove the constant from the subsequent days. 
 

Daily Cost 

𝐷𝑀𝐼 ∗ 𝑑𝑖𝑒𝑡 𝑝𝑟𝑖𝑐𝑒 (𝑘𝑔) + 𝑓𝑒𝑒𝑑𝑙𝑜𝑡 𝑑𝑎𝑖𝑙𝑦 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑  

Where: 
dmi = Dry Matter intake (kg) 

diet_price_kg = diet cost ($/kg) 
feedlot_daily_overhead = non-feed cost ($) 

 

Daily Revenue 

𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠  𝑝𝑟𝑖𝑐𝑒 ∗ 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠  𝑔𝑎𝑖𝑛 

Where, 

kilograms price = price of the arroba ($/𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠) 

Gain kilograms = arroba* gain (𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠 /day) 

 
 

Daily Profit 
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𝑟𝑒𝑣𝑒𝑛𝑢𝑒 𝑑𝑎𝑖𝑙𝑦 − 𝑐𝑜𝑠𝑡 𝑑𝑎𝑖𝑙𝑦 

Where, 
Revenue daily = daily revenue ($)  

Cost daily = daily cost ($) 

 

Total Revenue, Cost and Profit 

∑ 𝑑𝑎𝑖𝑙𝑦 𝑟𝑒𝑣𝑒𝑛𝑢𝑒

𝑡𝑖𝑚𝑒

 

 

∑ 𝑑𝑎𝑖𝑙𝑦 𝑐𝑜𝑠𝑡

𝑡𝑖𝑚𝑒

 

 

∑ 𝑑𝑎𝑖𝑙𝑦 𝑝𝑟𝑜𝑓𝑖𝑡

𝑡𝑖𝑚𝑒

 

Where, 
revenue_daily= see section 4 

cost_daily = see section 3 

profit_ddaily  = see section 5 
 

Cost and Profit per kilograms ∗ 

total cos𝑡/𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠  𝑔𝑎𝑖𝑛𝑡 

𝑡𝑜𝑡𝑎𝑙  𝑝𝑟𝑜𝑓𝑖𝑡/𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠  𝑔𝑎𝑖𝑛 𝑡  

Where, 

Total profit = see section 6 
Total cost = see section 6 

𝑎𝑟𝑟𝑜𝑏𝑎 𝑔𝑎𝑖𝑛 𝑡  = 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠 gain over time, see section 2 

* To assess the profit obtained by meat producers, it is common to use the unit of 

measurement 'arroba' in Brazil. In this study, the 'arroba' unit is defined as equivalent to 

15 kilograms, following the standard practice in the national livestock industry. 

Therefore, for the purposes of this study, the term 'arroba' in this equation will be used to 

represent the profit obtained per each 15 kilograms of meat produced. 

 

 

Standardization of Costs and Arroba Pricing  

i. Food cost: 

Even considering the effect of the batch (animals evaluated by farm) in the analyses, all 

common foods between batches, especially among farms, had their prices standardized to 
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set up the food cost (for example, for corn silage, the price was always the same for the 

different batches). Based on the cost of natural matter and the percentage of dry matter 

(DM), from the measurement of each animal's daily individual intake, the food cost for 

everyone was imputed over the 80-day evaluation period. It is important to note that after 

a seven-day adaptation period, there were 80 days of data collection on weight, DM intake 

(DMI), and food and non-food costs (operational cost), all individual, to obtain the 

measure of accumulated profit and profitability per arroba gained by the evaluated animal. 

 

ii. Non-food cost (operational cost): 

The non-feed cost was also set at the same value for all evaluated batches with the aim of 

standardizing this cost source in the process, and it's a source that doesn't affect the 

animals' performance. 

 

iii. Price paid per  kilograms (arroba*): 

The arroba price for all batches was standardized to the prices at the time of data 

collection, with the aim of ensuring that the revenue per arroba was equal for all animals. 

The prices followed those indicated by Center for Advanced Studies in Applied 

Economics (CEPEA, https://www.cepea.esalq.usp.br/br/indicador/boi-gordo.aspx)* - 

University of São Paulo (USP). 

 

2.3 Data structuring 

The contemporary groups (CG) for profitability, growth, fertility, carcass, and feed 

efficiency traits were formed by farm, management lot, sex, year, and birth season (dry 

season: April-September and rainy season: October-March). For the profitability and feed 

efficiency traits, the identification of the feed efficiency test was also considered to form 

the CG. Animals belonging to the CG with fewer than four individuals, as well as those 

without identification of sire and dam or those lacking phenotypic records within ±3.5 

standard deviations from the mean of the CG, were excluded from the analyses. The 

number of records and the descriptive statistics for the studied traits are presented in Table 

1. 
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Table 1. Descriptive statistics and number of animals with phenotypic records (N) and 

contemporary groups for growth, reproduction, carcass, feed efficiency, and profitability-

related traits in Nelore cattle. 

TRAIT (unit) N MEAN SD MIN MAX CV MODA MEDIAN NCG 

APF ($) 3.614 151.84 66.45 -17.98 420.06 43.76 81.45 155.50 226 

PFT ($/kg) 3.614 36.21 9.75 -13.33 51.23 26.93 19.38 39.82 226 

W450 (kg) 55.952 289.97 62.70 119.00 592.00 21.62 254.00 278.00 2181 

DMI (kg/day) 9.910 8.06 1.87 3.18 18.74 23.21 7.15 7.82 219 

RFI (kg of DM/day) 9.910 0.00 0.67 -4.93 4.69 - -0.15 0.00 219 

REA (cm2) 36.170 57.20 12.70 20.45 116.35 22.21 60.00 56.19 1496 

RFT (mm) 361.15 4.28 2.70 0.13 24.39 63.24 2.54 3.56 1496 

FRAME 10.567 5.36 2.16 -6.34 15.58 40.38 2.76 5.23 425 

PPC30 (%) 7.116 1.48 0.50 1.00(30,12%) 2.00 (69,8%) 33.60 1.00 1.00 126 

AFC (month) 27.457 35.26 7.17 21.00 49.00 20.33 36.00 36.00 463 

ACP (kg/cow/year) 14.983 140.86 33.34 45.00 331.00 23.67 143.00 137.00 286 

SC365 (cm) 19.300 21.46 2.97 12.90 34.70 13.84 20.00 21.10 2303 

APM (months) 3.422 16.62 3.89 8.73 22.00 23.45 22.00 15.00 32 

APF, accumulated profitability in dollars; PFT, profit per kilogram of liveweight gain in dollars; W450, 

weight at 450 days of age; DMI, dry-matter intake; RFI, residual feed intake; REA, rib eye area; RFT, rump 

fat thickness; FRAME, frame score; PPC30, probability of precocious calving at 30 months of age; AFC, 

age first calving; ACP, accumulated cow productivity; SC365, scrotal circumference at 365 days of age; 

APM, age at puberty in males.  

 

 

 

2.4 Variance components and genetics parameters estimation 

The (co)variance components and genetic parameters were estimated using a 

multiple-trait animal model through Bayesian inference. This approach employed the 

Gibbs sampling algorithm implemented in the GIBBSF90+ software (Misztal et al., 2014) 

for both linear and categorical traits. Two groups of mult-trait models were constructed, 

as follows: 1) Model 1 (n = 8) considered the traits APF, PFT, and W450, DMI, RFI, 

REA, RFT and FRAME; 2) Model 2 (n = 7), the traits APF, PFT, and reproductive traits 

PPC30, AFC, ACP APM and SC365 were considered. The general animal model used 

was: 

 

𝑦 = 𝑋𝛽 + 𝑍𝑎 + 𝑒 

where 𝑦 is the vector of observations; 𝛽 is the vector of fixed effects; 𝑎 is the vector of 

direct additive genetic effects, and 𝑒 is the vector of random residual effects associated 

with the observations. 𝑋 and 𝑍 are incidence matrices relating b and 𝑎 to 𝑦. The 
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assumptions made in the model were: 𝐸[𝑦] = 𝑋𝛽;  𝑉𝑎𝑟(𝑎)𝐴⨂𝐺 𝑒 𝑉𝑎𝑟(𝑒) = 𝐼⨂𝑅 , where 

G is the direct genetic (co)variance effects; A is the relationship matrix; I is the identity 

matrix; NR is the number of animals with records; R is the residual (co)variance matrix, 

and ⨂ is the direct product of matrices. The general structure of the variance and 

covariance matrices of the random effects in the models was: 

 

[
𝑎
𝑒

] ~𝑁 (0, 𝑉); 𝑉 = [
𝐺⨂𝐻        0  
  0          𝑅⨂𝐼

] 

 

Where 𝐺 is the (co)variance matrix of the direct additive genetic effects, 𝐻 is a 

combined matrix from A (pedigree relationship matrix) and G (genomic relationship 

matrix); 𝑅 is the residual (co)variance matrix, 𝐼 is the identity matrix, and ⨂ is the direct 

product of the matrices. 

As the multi-trait model comprised both categorical and linear traits, it was 

assumed that the initial distributions of the genetic and residual random effects followed 

a multivariate normal distribution, according to the Bayesian approach, as described 

below (adapted from Bonamy et al., 2019): 

 

𝑝 ([

𝛼1

⋮

𝛼𝑛

] |𝐺) ~ 𝑁 = ([
0

⋮

0

] , 𝐺 =  𝐺0 ⨂ 𝐻) , 𝑃 ([

𝑒1

⋮

𝑒𝑛

]  |𝑅) ~ 𝑁 ([
0

⋮

0

] , 𝑅 =  𝑅0 ⨂ 𝐼)   

 

Where: 𝐺0 is the genetic (co)variance matrix; 𝑅0 is the residual variance matrix; ⊗ direct 

product; H is a combined matrix from A (pedigree relationship matrix) and G (genomic 

relationship matrix); I is the identity matrix. The inverse of the H matrix (𝐻−1) was 

constructed according to Aguilar et al. (2010) as: 

 

𝐻−1 = 𝐴−1 + [
0 0
0 𝐺−1 − 𝐴22

−1] 

 

where 𝐺−1 is the inverse of the genomic relationship matrix and 𝐴22
−1 is the inverse of 

numerator relationship matrix (the block of A for genotyped animals). The genomic 

relationship matrix (G) is the submatrix of the direct additive genetic and was built as per 

VanRaden (2008), in which 𝐺 = 𝑍𝑍′/2 𝑝𝑘 𝑞𝑘 with 𝑝 and 𝑞 being the allele frequencies 

of marker 𝐾.  
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In the Gibbs Sampling implementation, 600,000 iterations were employed, with 

an initial burn-in of 100,000 iterations and a sampling interval of 100 iterations (thin). 

Convergence of the Monte Carlo Markov Chain (MCMC) was assessed using the Geweke 

Test (Geweke, 1992), available in the R package Bayesian Output Analysis Program 

(BOA) (Smith, 2007), as well as through visual evaluation using trace-plot graphs. 

 The estimated heritability coefficients were categorized following the guidelines 

established by Bourdon (1997), classifying them as low (below 0.20), moderate (ranging 

from 0.20 to 0.40), and high (above 0.40). For genetic and phenotypic correlations, the 

recommendation of Hill et al., (2013) was adhered to, considering them as low (less than 

0.30), moderate (ranging from 0.30 to 0.70), and high (greater than 0.70). 

 

3. Results and Discussion  

The variance components and heritability estimates for accumulated profitability, 

profit per kilogram of liveweight gain, growth, carcass, reproduction, and feed efficiency 

are presented in Table 2. The heritability estimate was moderate to low (0.18), suggesting 

that genetic gains can be expected through selection for APF. The estimated heritability 

for PFT was low (0.02). PFT is an economic measure that reflects the relationship 

between two variables: the economic component, composed of the financial return per 

produced arroba, and the biological components involving different traits, for example 

carcass weight and feed conversion. In other words, it is directly affected by a complex 

interaction between economic and biological variables. Thus, the variance components 

partition or the estimation of the additive genetic component fraction contributing to the 

phenotype is difficult for complex traits calculated as a relationship of other traits. 

Currently, there is no available knowledge regarding genetic parameter estimates 

for feedlot profitability-related traits in beef cattle. Nevertheless, with advancements in 

phenotyping technologies, we can identify and quantify new traits and potential 

environmental variables influencing phenotypic variation (Berry, 2023). This novel 

perspective underscores the importance of considering new traits, in addition to 

conventional ones, in the selection process, demonstrating the ongoing evolution of 

research and industry efforts toward improved economic indicators and sustainability. 
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Table 2. Posterior mean and high probability density (HPDa) for direct additive genetic 

(𝜎𝑎
2), residual (𝜎𝑒

2) variances and heritability (SD, standard deviation) for growth, carcass, 

feed efficiency, reproductive and feedlot profitability related traits in Nelore cattle. 

Trait 𝜎𝑎
2 𝜎𝑒

2 h2 ± SD HPD 

APF 6321.23 28687.29 0.18 0.04 0.095 to 0.255 

PFT 10.42 448.46 0.02 0.00 0.020 to 0.026 

W450 292.87 539.77 0.35 0.01 0.326 to 0.375 

DMI 0.23 0.62 0.27 0.03 0.231 to 0.316 

RFI 0.07 0.41 0.15 0.02 0.113 to 0.185 

REA 11.81 26.02 0.31 0.01 0.287 to 0.339 

RFT 0.52 1.13 0.31 0.01 0.292 to 0.337 

FRAME 0.55 1.17 0.32 0.02 0.291 to 0.351 

PPC30 0.40 1.00 0.28 0.05 0.181 to 0.387 

AFC 2.36 20.77 0.10 0.01 0.078 to 0.125 

ACP 162.28 514.36 0.24 0.02 0.195 to 0.283 

SC365 1.15 1.96 0.36 0.02 0.322 to 0.413 

APM 5.79 7.51 0.43 0.05 0.326 to 0.535 
aCredibility intervals at 95%; APF, accumulated profitability; PFT, profit per kilogram of liveweight gain  

; W450, weight at 450 days of age; DMI, dry-matter intake; RFI, residual feed intake; REA, rib eye area; 

RFT, rump fat thickness; FRAME, frame score; PPC30, probability of precocious calving at 30 months of 

age; AFC, age first calving; ACP, accumulated cow productivity; SC365, scrotal circumference at 365 days 

of age; APM, age at puberty in males. 

 

The estimated heritability for W450 was moderate (0.35), like previous findings 

in Nelore breed animals, as reported by Bonamy et al., 2019, Negreiros et al., 2022, and 

Silva Neto et al., 2023, ranging between 0.26 and 0.37. The heritability estimates for 

SC365, and APM were moderate to high, being 0.36 and 0.43, respectively, and were like 

the findings reported by Silva Neto et al., 2020, which were 0.33 and 0.30, respectively. 

The PPC30 heritability estimate obtained in this study was moderate, 0.28, and like those 

reported by Bonamy et al., 2019, and Negreiros et al., 2022, in Nelore animals, whose 

values were 0.29 and 0.28, respectively. 

For AFC and ACP, the estimated heritability estimates were low to moderate (0.10 

and 0.24, respectively; Table 2), indicating a considerable environmental influence on 

these traits. Similar estimates for AFC and ACP were also reported in Nelore animals by 

Costa et al., 2020, Van Mellis et al., 2010, and Kluska et al., 2018, ranging from 0.08 to 

0.16, closely aligned with those described. 
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The heritability estimates for REA (0.31) and RFT (0.31) obtained in this study 

suggest that these traits are highly responsive to selection. These findings align with 

previous reports (Silva Neto et al., 2023; Londoño-Gil et al., 2022), which ranged from 

0.28 to 0.33. Concerning feed efficiency traits, the heritability estimate for RFI (0.15) was 

lower than that reported by Kava et al., 2023 and like that obtained by Gomes et al., 2023, 

both in Nelore cattle (0.55 and 0.37, respectively). For DMI, the heritability estimate was 

moderate (0.27), similar with literature estimates also for Nelore cattle ranging from 0.29 

to 0.45 (Kava et al., 2023; Gomes et al., 2023; Ceacero et al., 2016). 

The genetic correlations between APF, PFT and growth, reproduction, carcass, 

and feed efficiency -related traits are presented in Table 3. The estimated genetic 

correlations between APF and PFT with W450 were favorable and moderate to high, 0.65 

and 0.64, respectively. These results suggest that selecting animals with higher W450 

would also increase APF and PFT. Growth traits evaluated after weaning are often used 

in breeding programs as selection criteria (Pinheiro et al., 2012), since post-weaning 

growth traits are favorable genetic correlated with liveweight gain efficiency and final 

carcass weight at slaughter (Abreu Silva et al., 2018; Pinheiro et al., 2012).  

The genetic correlation between PFT and DMI was moderate (0.72) and low with 

PFT (0.26). These results suggest that selection for higher profitability would increase the 

DMI. DMI is closely associated with feed efficiency, body weight, and growth in cattle 

(Herd et al., 2014; Donoghue et al., 2016). Animals with higher dry matter intake typically 

exhibit higher average daily gain resulting in better feed conversion (Ceacero et al., 2016). 

The results of these studies pointed out that genetically more profitable animals have 

higher feed intake and better feed efficiency. 

The genetic correlation between APF and PFT with RFI were low, 0.28 and -0.23, 

respectively. These results suggest that selection to improve RFI would not influence 

feedlot profitability. It is important to highlight that RFI is closely related to the 

maintenance of energy in cattle (Herd & Bishop, 2000). It is an important measure to 

identify animals that differ in the efficiency of using energy for maintenance, as reported 

by Archer et al. 1999. More efficient animals, i.e., low RFI, are due to their higher 

metabolic efficiency, reducing the energy cost of maintenance (Tempelman & Liu, 2020), 

which reduces demand for food without compromising the growth or size of adult animals 

Koch et al., 1963. Furthermore, many studies have reported the low genetic association 

of RFI with output traits, such as reproduction (Bonamy et al., 2019), growth, and carcass 

(Ceacero et al., 2016). RFI is more related to metabolizable energy efficiency than to 
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direct results in the production system, such as weight, weight gain, and rib eye area, 

which directly influence the profitability potential of the animals, which corroborates the 

low genetic correlation between RFI, and profitability obtained in this study. 

Moderate and favorable genetic correlation estimates between APF and PFT with 

REA (0.43 and 0.44, respectively) were obtained, suggesting that selection to increase 

REA would likely result in higher feedlot profitability. The favorable genetic correlation 

between profitability and REA can be a relevant parameter for selection in production 

systems during the rearing and finishing phases, particularly within the beef industry. The 

REA is associated with the degree of muscling, edible mass, and yield of high-value meat 

cuts (Malheiros et al., 2020).  

When breeders select animals with a larger ribeye area, they tend to choose 

animals with higher APF and PFT. This suggests that animals with greater muscularity, 

reflected by the ribeye area, can produce a larger quantity of higher-quality meat. As a 

result, these animals are generally more valued in the industry and generate higher profits 

per animal. Therefore, by focusing on the selection of animals with a higher ribeye area, 

producers can expect an increase in the profitability of beef production, as these traits are 

positively correlated. 

The genetic correlations between APF and PFT with RFT were negative, low and 

moderate, -0.10 and -0.68, respectively, implying that selection for higher carcass fatness 

degree would not lead to more profitable animals in the feedlot. To obtain animals with 

greater APF, PFT, and finishing, these traits must be selected simultaneously in genetic 

improvement programs. Subcutaneous fat thickness is essential in determining meat 

product quality, as it shields the carcass from fiber shortening during the cooling process 

(Malheiros et al., 2015). 

The moderate to low genetic correlation (0.20 and 0.48, respectively) obtained 

between APF and PFT with female sexual precocity indicator trait (PPC30) indicates that 

selection to improve PPC30 would also improve feedlot profitability. The results suggest 

that including profitability in selection identifies females with economic potential and 

productivity, improving the herd's reproductive performance and increasing financial 

returns, especially in commercial herds.  
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Table 3. Posterior mean and high probability density (HPDa) for genetic correlations 

between traits related to feedlot profitability with growth, reproduction, carcass, and feed 

efficiency in Nelore cattle. 

Trait Mean ± SD HPD 

Genetic correlation with Accumulated Profitability 

W450 0.65 0.08 0.512 to 0.812 

DMI 0.72 0.09 0.546 to 0.866 

RFI 0.28 0.15 -0.005 to 0.544 

REA 0.43 0.09 0.263 to 0.620 

RFT - 0.10 0.07 -0.246 to 0.041 

FRAME 0.44 0.08 0.284 to 0.592 

PPC30 0.20 0.18 -0.141 to 0.538  

AFC -0.19 0.20 -0.811 to 0.188 

ACP -0.14 0.19 -0.498 to 0.216 

SC365 -0.05 0.12 -0.297 to 0.168 

APM -0.21 0.18 -0.547 to 0.229 

Genetic correlation with Profit per kilogram of liveweight gain   

W450 0.64 0.05 0.549 to 0.734 

DMI 0.26 0.08 0.116 to 0.405 

RFI -0.23 0.08 -0.373 to -0.067 

REA 0.44 0.07 -0.329 to 0.584 

RFT -0.68 0.04 -0.757 to -0.596 

FRAME 0.77 0.44 0.692 to 0.869 

PPC30 0.48 0.178 -0.112 to 0.792 

AFC -0.47 0.08 -0.621 to -0.304 

ACP -0.01 0.09 -0.208 to 0.178 

SC365 -0.06 0.08 -0.210 to 0.095 

APM -0.03 0.13 -0.294 to 0.219 
a Credibility interval at 95%; W450, weight at 450 days of age; DMI, dry-matter intake; RFI, residual feed 

intake; REA, rib eye area; RFT, rump fat thickness; FRAME, frame score; PPC30, probability of precocious 

calving at 30 months of age; AFC, age first calving; ACP, accumulated cow productivity; SC365, scrotal 

circumference at 365 days of age; APM, age at puberty in males. 

 
Similarly, the estimates of genetic correlation between APF and PFT with AFC 

were also favorable and low to moderate, -0.19 and -0.47, respectively. Therefore, the 

negative yet favorable correlations indicate that an earlier age at first calving may be 

associated with higher APF and PFT. Although sexual precocity and age at first calving 

are not directly associated with meat production in the finishing phase, they can indirectly 

impact the quantity of calves produced over time, contributing to the availability of 

animals ready for slaughter and, consequently, to the total meat production. On the other 

hand, genetic correlations estimates between ACP, SC365, APM, APF, and PFT were 
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close to zero, ranging from -0.01 to -0.21 (Table 3), indicating that selection to increase 

scrotal circumference, reduce male age at puberty age, or cow accumulated productivity 

would not increase or affect the feedlot profitability. 

The genetic correlation estimates between APF and PFT with FRAME (0.44 and 

0.77, respectively) pointed out a moderate to high and favorable association. Therefore, 

selecting for higher FRAME would increase the feedlot profitability. Animals with a 

balanced body structure, that is, medium-sized, tend to convert feed into weight gain more 

efficiently, with adequate fat deposition. This contributes to quicker readiness for 

slaughter. Breeders can use this information to select animals better suited to the specific 

conditions of the environment and management conditions in which they will be raised, 

which can lead to higher productivity and, consequently, increased profit per unit of 

weight. 

The residual correlations between APF, PFT and growth, reproductive, feed 

efficiency, and carcass traits are described in Table 4. In general, residual correlations for 

most traits with APF, and PFT were low and close to zero, suggesting a low association 

between traits relative to non-additive components (Falconer & Mackay, 1996). This 

suggests that shared environmental factors and non-additive genetic effects do not 

strongly influence the traits under study. However, except for the moderate residual 

correlation between profitability and W450 and DMI (0.21 and 0.21, respectively), it is 

indicated that variations similarly influence these traits in environmental conditions and 

favor these traits in the same direction. 
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Table 4. Posterior mean and high probability density (HPDa) for residuals correlations 

between feedlot profitability related traits with growth, reproduction, carcass, and feed 

efficiency in Nelore cattle. 

Trait Mean ± SD HPD 

Residual correlation with Accumulated Profitability 

W450 0.21 0.03 0.146 to 0.276 

DMI 0.21 0.03 0.150 to 0.262 

RFI -0.05 0.03 -0.098 to 0.011 

REA 0.12 0.03 0.063 to 0.170 

RFT 0.13 0.03 0.073 to 0.177 

FRAME 0.03 0.04 -0.0.53 to 0.107 

PPC30 0.02 0.10 -0.179 to 0.211  

AFC 0.02 0.07 -0.121 to 0.157 

ACP 0.17 0.33 -0.397 to 0.764 

SC365 0.18 0.05 0.083 to 0.282 

APM 0.07 0.08 -0.101 to 0.235 

Residual correlation with Profit per kilogram of liveweight gain    

W450 0.09 0.03 0.029 to 0.161 

DMI 0.06 0.02 0.014 to 0.104 

RFI 0.07 0.21 0.032 to 0.115 

REA 0.05 0.02 0.008 to 0.097 

RFT 0.07 0.03 0.029 to 0.112 

FRAME 0.01 0.03 -0.442 to 0.066 

PPC30 0.03 0.10 -0.160 to 0.224 

AFC           0.02 0.07 -0.126 to 0.159 

ACP 0.11 0.35 -0.480 to 0.733 

SC365 0.15 0.05 0.015 to 0.206 

APM 0.01 0.08 -0.135 to 0.164 
W450, weight at 450 days of age; DMI, dry-matter intake; RFI, residual feed intake; REA, rib eye area; 

RFT, rump fat thickness; FRAME, frame score; PPC30, probability of precocious calving at 30 months of 

age; AFC, age first calving; ACP, accumulated cow productivity; SC365, scrotal circumference at 365 days 

of age; APM, age at puberty in males. 

 

Based on the results, these two new novel traits (APF and PFT) can be used as 

support tools for efficiently managing feedlot operators' daily operations and as selection 

criteria for intensive beef cattle systems. Applying APF and PFT in commercial herds 

allow to classify the animals that would have a lower return than expected from those 

with higher genetic potential for profitability The animals with higher genetic potential 

for feedlot profitability are genetic associated with greater weight gain, carcass muscle 

deposition, and carcass yield. These animals, which require shorter feedlot duration 

length, can be identified early, and allocated differently from animals with lower returns, 
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enabling precise and more efficient management of resources. This approach contributes 

to optimizing business operations and promoting sustainability. For breeding herds, 

genetic evaluation focused on profit, as a trait, could be employed to provide producers 

with information about economic gains based on their genetic choices, being 

complementary tools to the selection index (Hassanvand - Javanmard et al.,2017).  

 

4. Conclusion 

This study shows that APF and PFT are heritable and can be improved through 

selection, although the response to selection for PFT is low. The results revealed that 

W450, REA, FRAME and DMI were the most informative traits associated with feedlot 

profitability, while W450, FRAME and REA were the most relevant for PFT, given the 

moderate to high and favorable genetic correlations. In practical terms, animal breeders 

can identify and select animals with higher P450, DMI, carcass and REA, resulting in 

higher feedlot accumulated profitability and profit per kilogram of live weight gain in the 

feedlot. 

Thus, this study suggests that these novel new traits can be included as 

complementary tools in selection criteria, as they provide additional tools to classify 

animals based on expected feedlot profit, which is essential for management decision-

making. Additionally, with recent advancements in high-throughput phenotyping tools, it 

is possible to significantly expand the collection of new phenotypes and incorporate them 

as support in the selection process, aiming to make livestock farming increasingly 

productive, efficient, and sustainable. 
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CHAPTER 3:  GENOME-WIDE ASSOCIATION ANALYSIS OF NOVEL 

FEEDLOT PROFITABILITY-RELATED TRAITS IN NELORE BEEF CATTLE 

Abstract: This study aimed to conduct a genome-wide association study (GWAS) to 

identify genomic regions associated with profitability traits in Nelore beef cattle. The 

dataset included 3,614 phenotypic records of accumulated profitability (APF) and profit 

per kilogram of liveweight gain (PFT) from animals born between 2020 and 2022, 

participating in the Nelore Brazilian breeding program from the National Association of 

Breeders and Researchers (ANCP). From this total, 2,127 animals were genotyped with 

the Clarifide® Nelore 3.0 SNP panel. After quality control, 2,127 genotyped animals and 

35,658 SNPs remained in the dataset for analysis. The weighted single-step approach for 

genome-wide association (WssGWAS) methodology was used to identify genomic 

regions associated with APF and PFT. A single-trait animal model was applied to predict 

genetic values, and SNP effect solutions were obtained from these values. Genomic 

windows of 10–SNP sliding windows that explained more than 0.5% of the additive 

genetic variance of each trait were selected to investigate potential candidate genes. A 

total of 83 genes within 21 windows and 268 genes within 52 windows associated with 

the APF and PFT were identified, respectively. Several genes related to fertility, feed 

efficiency, carcass traits, muscle and adipose tissue development and metabolism, and 

lipid and carbohydrate metabolism were identified, along with genes associated with 

animal behavior. The results revealed that identifying genomic regions and their 

respective candidate genes contributes substantially to a better understanding of the 

genetic mechanisms regarding these novel profitability-related phenotypes in Nelore beef 

cattle. 

Keywords: Accumulated profitability, Bos indicus, Profit per kilogram of liveweight 

gain, Single nucleotide polymorphism, WssGWAS 
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1. Introduction  

Sustainable agricultural practices and improving production efficiency go side by 

side (Mueller & Van Eenennaam, 2022). As improvements occur in sustainable 

production practices in this sector, results are automatically generated that serve as inputs 

for the production system, contributing to increased availability of resources, both in 

terms of quality and quantity. Efficiency is determined by attaining the highest achievable 

production capacity while minimizing waste and increasing production using the same or 

fewer resources (Mueller & Van Eenennaam, 2022). For example, over the past 50 years, 

the evolution of genetic improvement in livestock through selection and crossbreeding 

has brought about significant changes in animal performance (Simm, 1998; Haskell et al., 

2014). Economically important traits, such as milk production, feed efficiency, 

reproductive and carcass traits, disease resistance, and adaptation to local environmental 

conditions, have been improved in several livestock species (Pramod et al., 2023).  

The modern livestock industry consistently pursues innovative solutions and 

advanced strategies to tackle challenges in beef production. In this scenario, there is a 

demand for new traits/phenotypes to manage animal breeding and handling (Egger-

Danner et al., 2015). The emergence of new technologies in precision livestock farming 

has considerably expedited phenotyping programs, enabling the identification of 

previously unexplored phenotypes (Berckmans, 2017). These emerging phenotypes play 

a significant role in the genetic progress of beef herds, reshaping how we perceive 

efficiency and profitability in beef production. 

Despite the relatively slow evolution in generating and adopting new phenotypes 

within the selection process, several research studies and reviews have tackled emerging 

phenotypes such as those related to meat quality, fertility, and growth in beef cattle, 

aiming to enhance productivity sustainably (Greenwood et al., 2016; Ventura et al., 

2020). However, facing these novel technologies capable of capturing and measuring 

numerous variables that contribute to the desired phenotypes, it is highly fundamental to 

delve into understanding the genetic component in economic terms, transcending beyond 

the production phenotype.  

In this context, new traits or phenotypes that can be incorporated into selection 

program (Merkes et al., 2011) and commercial farms, especially those related to the 

genetic component of the animal that can predict individuals' genetic profitability 

potential, are needed. This includes novel phenotypes that indicate economic return, such 

as accumulated feedlot profitability (APF) and profit per kilogram of liveweight gain 
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(PFT) in feedlot, which are important in management and decision-making. Both feedlot 

APF and PFT traits are innovative and are obtained through advanced data analysis and 

processing techniques used in precision livestock technologies. 

Given the increase in the world population, the advancement of urbanization, and 

economic growth, along with changes in consumer preferences (Delgado et al., 2020), a 

significant impact on the demand for meat is expected. In view of this perspective and the 

need to maintain productivity in the face of high production costs, especially in feedlots, 

it is opportune to consider the inclusion of these two new profitability-related traits in 

addition to conventional ones. 

The advancement of molecular techniques, including the mapping and 

identification of quantitative trait loci (QTLs), has resulted in a considerable paradigm 

shift in the field of livestock farming (Pramod et al., 2023). Additionally, current 

innovations in high-throughput and high-dimensional genotyping and phenotyping 

technologies enable the identification of the causal networks within the 'black box' 

between genotype-phenotype through the principles of genome-wide association studies 

(GWAS) (Chen et al., 2013).  

The GWAS has been applied in cattle to identify regions or genetic variants 

associated with several traits of interest, mainly for polygenic and complex phenotypes 

(Schaid et al., 2018), enabling the understanding of underlying biological processes (Luo 

et al., 2022) and facilitating the definition of selection strategies aimed at increasing the 

frequency of favorable alleles (Carreño et al., 2019). The tool in question has proven 

particularly useful for selecting new traits that are difficult, costly, or time-consuming to 

measure (Calus et al., 2013; Oliveira Silva et al., 2017). In this sense, GWAS becomes an 

important tool for identifying genes or regions associated with these novel traits related 

to profitability. This study will thus provide opportunities to understand how biological 

processes are involved in these traits. 

Therefore, the main objectives of this study were to identify genomic regions 

associated with feedlot APF and PFT in Nelore beef cattle through weighted single-step 

genome-wide association study (WssGWAS) to identify potential candidate genes within 

QTL regions that explain more significant proportions of the additive genetic variance for 

each studied trait. Additionally, a functional gene enrichment analysis was conducted to 

enhance our understanding of the genetic interaction, biological processes, and metabolic 

pathways associated with APF and PFT in Nelore cattle. 
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2. Materials and methods  

This study was exempt from evaluation by the Animal Ethics Committee (CEUA), 

as established by Law No. 11,794 of 08/10/2008 and Normative Resolution No. 51 of 

05/19/2021 from the National Council for Animal Experimentation Control (CONCEA) 

as all the analyses were performed using pre-existing databases. 

 

2.1 Data source  

The dataset used in this study was provided by the National Association of 

Breeders and Researchers (ANCP, São Paulo, Brazil) in collaboration with @Tech 

(Piracicaba, São Paulo, Brazil). ANCP provided the pedigree information and genotypes, 

and novel profitability-related phenotypes were provided by @Tech. For further 

information about the company, please refer to the website https://techagr.com/beeftrader.  

The animals belonged to 27 different herds located in the Southeast, Northeast, and 

Midwest regions of Brazil. The data set contained pedigree information of 38,930 

animals, born from 1998 and 2016, comprising 2,691 sires and 19,884 dams. 

 

2.2 Phenotypic Data 

The new phenotypes analyzed were accumulated feedlot profitability (APF) and 

feedlot profit per kilogram of liveweight gain (PFT). @Tech's algorithms are designed to 

make full use of this data, ideally collected within a standardized 80-day trial period for 

running in the BeefTrader Decision Support System generating the phenotypes used by 

the Livestock Profit Tool (LPT) profitability. For trials that do not meet this 80-day 

standard, our system employs Artificial Intelligence and advanced growth modeling 

techniques to set the standard. This approach considers historical data to produce 

estimates that align with the 80-day prediction requirements of the LPT, ensuring robust 

and reliable analytics across varying trial durations. 

The BeefTrader algorithm uses animal traits as input variables (gender, breed, 

body condition score, initial weight, initial date, among other exogenous factors that 

impact on growth dynamics), daily weights individually collected through a weighing 

sensor (daily basis), and information on the nutritional composition of the diets. The 

records for obtaining the new phenotypes were collected from animals participating in 

feed efficiency trials, following the same guidelines as Mendes et al., 2020, as mentioned 

in the section on feed efficiency traits. Based on this information, adjusted for local 

conditions, weight prediction is carried out in two steps: based on the biology of each 
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animal and with the nutritional data and animal daily weight profile (observed or 

predicted), it is possible to estimate an optimal growth function for the animals (Step 1); 

from there, a dynamically adjusted linear or non-linear regression is performed using the 

least squares method on the weights to fit the predicted growth curve (Step 2). From the 

predicted growth curve, it is possible to find other variables required by the model, 

including animal performance in terms of growth and composition of gain, as well as 

economic and environmental factors. The profitability is the central trait used by LPT, as 

commented, thus the next topics the @Tech intention is to present the equations related 

to this core phenotype. 

 

Accumulated kilograms* 

                                                  (𝑠𝑏𝑤 ∗ 𝑐𝑑𝑓/100) / 15 

 

Where: 

𝑠𝑏𝑤: Shrunk Body Weight (kg) - 96% of the Body Weight 

𝑐𝑑𝑓:  Carcass Dressing (%) 

 

kilograms ∗ Gain 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑎𝑖𝑛 = 𝑎𝑐𝑢𝑚 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠 [2] − 𝑎𝑐𝑢𝑚 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠 [1] 

 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑎𝑖𝑛 = 𝑎𝑐𝑢𝑚 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠 [𝑑] − 𝑎𝑐𝑢𝑚 𝑎𝑟𝑟𝑜𝑏𝑎 [1] + 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑎𝑖𝑛 

 

Where: 

Acum 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠 = accumulated 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠 (15𝑘𝑔) on a specific day 
d = Day 

gain initial = gain to be considered on the first day since it is unknown. This value 

becomes a constant. 
Note: The correct procedure for the first day would be to calculate based on the corral 

weight and remove the constant from the subsequent days. 
 

Daily Cost 

𝐷𝑀𝐼 ∗ 𝑑𝑖𝑒𝑡 𝑝𝑟𝑖𝑐𝑒 (𝑘𝑔) + 𝑓𝑒𝑒𝑑𝑙𝑜𝑡 𝑑𝑎𝑖𝑙𝑦 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑  

Where: 

dmi = Dry Matter intake (kg) 

diet_price_kg = diet cost ($/kg) 
feedlot_daily_overhead = non-feed cost ($) 
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Daily Revenue 

𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠  𝑝𝑟𝑖𝑐𝑒 ∗ 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠  𝑔𝑎𝑖𝑛 

Where, 

arroba_price = price of the arroba ($/𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠) 

gain_arroba = arroba gain (𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠 /day) 

 
 

Daily Profit 

𝑟𝑒𝑣𝑒𝑛𝑢𝑒 𝑑𝑎𝑖𝑙𝑦 − 𝑐𝑜𝑠𝑡 𝑑𝑎𝑖𝑙𝑦 

Where, 
Revenue daily = daily revenue ($)  

Cost daily = daily cost ($) 

 

Total Revenue, Cost and Profit 

∑ 𝑑𝑎𝑖𝑙𝑦 𝑟𝑒𝑣𝑒𝑛𝑢𝑒

𝑡𝑖𝑚𝑒

 

 

∑ 𝑑𝑎𝑖𝑙𝑦 𝑐𝑜𝑠𝑡

𝑡𝑖𝑚𝑒

 

 

∑ 𝑑𝑎𝑖𝑙𝑦 𝑝𝑟𝑜𝑓𝑖𝑡

𝑡𝑖𝑚𝑒

 

Where, 
revenue_daily= see section 4 

cost_daily = see section 3 
profit_ddaily  = see section 5 
 

Cost and Profit per kilograms ∗ 

total cos𝑡/𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠  𝑔𝑎𝑖𝑛𝑡 

𝑡𝑜𝑡𝑎𝑙  𝑝𝑟𝑜𝑓𝑖𝑡/𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠  𝑔𝑎𝑖𝑛 𝑡  

Where, 

Total profit = see section 6 
Total cost = see section 6 

𝑎𝑟𝑟𝑜𝑏𝑎 𝑔𝑎𝑖𝑛 𝑡  = 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠 gain over time, see section 2 

 

Standardization of Costs and Arroba Pricing  

i. Food cost: 
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Even considering the effect of the batch (animals evaluated by farm) in the analyses, all 

common foods between batches, especially among farms, had their prices standardized to 

set up the food cost (for example, for corn silage, the price was always the same for the 

different batches). Based on the cost of natural natter and the percentage of dry matter 

(DM), from the measurement of each animal's daily individual intake, the food cost for 

everyone was imputed over the 80-day evaluation period. It is important to note that after 

a seven-day adaptation period, there were 80 days of data collection on weight, DM intake 

(DMI), and food and non-food costs (operational cost), all individual, to obtain the 

measure of accumulated profit and profitability per arroba gained by the evaluated animal. 

 

ii. Non-food cost (operational cost): 

The non-feed cost was also set at the same value for all evaluated batches with the aim of 

standardizing this cost source in the process, and it's a source that doesn't affect the 

animals' performance. 

 

iii. Price paid per kilograms (arroba*): 

The arroba price for all batches was standardized to the prices at the time of data 

collection, with the aim of ensuring that the revenue per arroba was equal for all animals. 

The prices followed those indicated by Center for Advanced Studies in Applied 

Economics (CEPEA, https://www.cepea.esalq.usp.br/br/indicador/boi-gordo.aspx)* - 

University of São Paulo (USP). 

 

* To assess the profit obtained by meat producers, it is common to use the unit of 

measurement 'arroba' in Brazil. In this study, the 'arroba' unit is defined as equivalent to 

15 kilograms, following the standard practice in the national livestock industry. 

Therefore, for the purposes of this study, the term 'arroba' in this equation will be used to 

represent the profit obtained per each 15 kilograms of meat produced. 

 

2.3 Data structuring  

The contemporary groups (CGs) were composed considering the farm, year, and 

season of birth (dry: March to August; rainy: September to February), management group 

and sex. The phenotypic quality control removed records that deviated 3.5 standard 

deviations from the overall mean of the CG and those with fewer than four records. 

https://www.cepea.esalq.usp.br/br/indicador/boi-gordo.aspx
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Descriptive statistics for the APF and PFT traits after quality control are summarized in 

Table 1. 

 

Table 1. Number of records and descriptive statistics for the studied traits in Nelore breed. 

TRAIT N MEAN SD MIN MAX CV (%) CG 

APF ($) 3614 151.84 66.45 -17.98 420.06 43.76 226 

PFT ($/kg) 3614 36.21 9.75 -13.33 51.23 26.93 226 

APF, accumulated profitability in dollars; PFT, profit per kilogram of liveweight gain in 

dollars; N, number animals with records; SD, standard deviation; MIN, minimum; MAX, 

maximum; CV, coefficient of variation; CG, number contemporary group. 
 

2.4 Genotyping and quality control 

A total of 2,127 animals were genotyped with the Clarifide® Nelore 3.0 low-

density SNP panel, containing more than 70,000 markers. The genotype quality control 

(QC) was performed by the PREGSF90 package (Aguilar et al., 2014), where animals 

and SNPs from the dataset with call rates < 0.90 were excluded. Additionally, SNPs with 

a minor allele frequency (MAF) < 0.05, Mendelian conflicts >1%, with redundant 

positions, SNPs deviating from Hardy-Weinberg equilibrium expectations, and those 

located on non-autosomal chromosomes were also excluded. After QC, 2,127 genotyped 

animals and 35,658 SNPs remained in the dataset for analysis.  

 

2.5 Genome-wide association study 

The genome-wide association analysis for APF and PFT was performed using the 

methodology proposed by Wang et al. (2012), known as the weighted single-step genome-

wide association study (WssGWAS). Briefly, the variance components were estimated 

using the restricted maximum likelihood method, using software BLUPF90+ through a 

single-trait model, and the genomic estimated breeding values (GEBVs) were estimated 

using the single-step genomic BLUP (ssGBLUP) approach (Aguilar et al., 2010). SNP 

effects were subsequently calculated using the postGSf90 software. A single-trait animal 

model was applied to estimate the variance components and perform the WssGWAS. In 

matrix notation, the model is described as: 

 

𝑦 = 𝑋𝑏 + 𝑍𝑎 + 𝑒 
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where Y is the vector of phenotypic observations; X the incidence matrix that relates the 

phenotypes to the fixed effects; b the vector of fixed effects of the CG and covariates 

(linear and quadratic effects of age of the animal); Z is an incidence matrix relating the 

animal to the phenotype, a is the vector of effects of the animals, and e is the vector of 

residual effects. The variances of a and e are given by: 

 

𝑉𝑎𝑟 [
𝑎
𝑒] =  [

𝐻𝜎𝑎
2 0

0 𝐼𝜎𝑒
2]  

 

where 𝜎𝑎
2σ is the additive genetic variance and 𝜎𝑒

2 is the residual variance. H is the matrix 

that combines the relationship matrix and genomic information matrix as described by 

Aguilar et al. (2010), and I is an identity matrix. The inverse of matrix H is: 

 

𝐻−1 =  𝐴−1 + [
0 0
0 𝐺−1−𝐴22

−1] 

 

where A denoted the numerator relationship matrix based on the pedigree for all 

individuals; A22 was the numerator relationship matrix for the genotyped animals; and 

the G matrix was a genomic relationship matrix that was constructed as described by 

Vanraden et al. (2009). 

 

Table 2. Additive genetic variance (σ𝑎
2); residual variance (σe

2), heritability (h2) and 

standard deviation (SD) estimates for accumulated profitability (APF) and profit per 

kilogram of liveweight gain (PFT) in Nelore breed. 

TRAIT 𝛔𝒂
𝟐 𝛔𝐞

𝟐 h2 ± SD 

APF 8548.70 27081 0.24 ± 0.04 

PFT  21.88 439.17 0.05 ± 0.02 

 

For the derivation of SNPs effects and weights, the animal effect was decomposed 

into genotyped (ag) and not genotyped animals (an), as described by Wang et al. (2012). 

The animal effect of the genotyped animals is a function of the SNP effects (Wang et al., 

2012):  

ag = Z𝑔u 
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where 𝐙𝒈 represents the relationship matrix of the genotypes of each locus, and u is a 

vector of the SNPs effects. The variance of animal effects was assumed as: 

var (𝑎𝑔) = var(Z𝑔u) = Z𝑔DZ𝑔´σu 
2 =  𝐺∗σ𝑎

2  

 

where D is a diagonal matrix of weights for variances of SNP variances (D = I for 

GBLUP), σu
2 is the variance of the additive genetic effect obtained from each SNP when 

the same variance is assumed for all SNPs, σ𝑎
2  is the additive genetic variance, and 𝐺∗ is 

the weighted genomic relationship matrix. 

 

The ratio of covariance of additive genetic (𝑎g) and SNPs (u) effects is: 

 

𝑣𝑎𝑟𝑢

𝑎𝑔 =  [
𝑍𝐷𝑍′ 𝑍𝐷′

𝐷𝑍′ 𝐷
] σ𝑢

2  

 

Sequentially: 

 

𝐺∗ =
𝑣𝑎𝑟(𝑎𝑔)

𝜎𝑎
2

=
𝑣𝑎𝑟(𝑍𝑢)

𝜎𝑎
2

= 𝑍𝐷𝑍′λ  

 

where λ is a normalizing constant described by VanRaden et al. (2009) as: 

 

λ =  
σu

2

σa
2

=  
1

∑ 2𝑝𝑖(1 − 𝑝𝑖)𝑚
𝑖=1

 

 

where m is the number of SNPs and pi is the frequency of the second allele in the i-th 

SNP. The SNP effects was described by Wang et al. (2012), as: 

 

𝑢̂ =  λD𝑍′𝐺∗−1𝑎̂𝑔 = 𝐷𝑍′[𝑍𝐷𝑍′]−1𝑎̂𝑔 

 

The estimated SNP effects can be used to calculate the variance of each individual 

SNP (Zhang et al., 2010), which can be used as different weighting for each SNP: 
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σu,i
2 = ui

22𝑝𝑖(1 − 𝑝𝑖) 

 

WssGWAS is an iterative process with several steps, considering t as the 

iteration number, the steps are (Wang et al., 2012): 

 

1. Let D = I in the first step. 

2. Calculate G = 𝐙𝒈𝐃𝐙𝒈´𝛌. 

3. Calculate GEBVs for the entire data set using the ssGBLUP. 

4. Convert GEBVs to SNP effects (û): û = 𝛌 DZ′ (𝐙𝒈D𝐙𝒈′ 𝛌)−1â𝐠 ,  

where â𝐠  is the GEBVs of animals which were also genotyped. 

5. Calculate weight for each SNP for linear model (Zhang et al., 2010): 

𝑑𝑖 = 𝑎̂𝑖
22𝑝𝑖(1 − 𝑝𝑖) 

6. Normalize SNP weights to remain the total genetic variance constant. 

7. Back to step 2. 

In this study, the procedure was executed in three iterations, following the 

approach employed by Wang et al. (2012), and the effects of the markers obtained in the 

third iteration were used to calculate proportions of genetic variances explained by 

subsets of consecutive SNPs. The results were presented as the proportion of the additive 

genetic variance explained by windows of 10 adjacent SNPs, as below: 

 

Var(𝑎𝑖)

σ𝑎
2

x100 =
Var(∑ 𝑍𝑗 𝑢̂𝑗

10
𝑗=1 )

σ𝑎
2

x100 

 

where, 𝑎𝑖  is the genetic value of the i-th region that consists of continuous 10 SNPs, σ𝑎
2  is 

the additive genetic variance; 𝑍𝑗  is the vector of gene content of the j-th SNP for all 

individuals; and û𝑗  
is the marker effect of the jth SNP within the i-th region. 

 

2.6 Gene prospection and functional enrichment analysis 

The Ensembl Biomart tool with the Genes 111 database and Cow genes ARS-

UCD1.3 dataset was used to identify the gene content of significant genomic regions of 

each studied trait. The search for significant (P < 0.05) Gene Ontology terms (biological 

processes, cellular components and molecular functions) and pathways (KEGG) was 
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performed by DAVID v.2023q4 tool (Sherman et al., 2022) using the bovine genome as 

background. 

 

3  Results and Discussion  

The proportion of additive genetic variance explained by windows of 10 adjacent 

SNPs for APF and PFT from single-trait WssGWAS can be visualized in the Manhattan 

plots present in Fig. 1 and Fig. 2, respectively. The Manhattan plots from the 1st and 2nd 

iterations of WssGWAS, along with the respective percentages of additive genetic 

variance explained by 10-SNP windows for APF and PFT, are presented in supplementary 

material. The proportions of additive genetic variances explained by the windows of 

Figures 1 and 2 indicate the polygenic nature of APF and PFT, suggesting that probably 

many genes with small effect likely influence these analyzed traits. 

Figure 1. Manhattan plot of the genomic regions of 10 adjacent SNPs that explain more 

than 0.5% of the additive genetic variance (Var) obtained in the 3nd iteration of the 

WssGWAS for accumulated profitability in Nelore cattle. The dot above the red line 

indicates the 21 genomic regions explaining together 14.67% of the additive genetic 

variance for APF in Nelore beef cattle.  
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Figure 2. Manhattan plot of the genomic regions of 10 adjacent SNPs that explain more 

than 0.5% of the additive genetic variance (Var) obtained in the 3nd iteration of the 

WssGWAS for profit per kilogram of liveweight gain in Nelore cattle. The dot above the 

red line indicates the 52 genomic regions explaining together 38,11% of the additive 

genetic variance for PFT in Nelore beef cattle. 

A total of 21 genomic regions explaining more than 0.5% of the additive genetic 

variance for APF were identified on chromosomes 1, 2, 3, 4, 7, 8, 10, 13, 14, 16, 17, 21, 

23, and 25, which encompasses 83 genes (47 protein-coding genes and 5 non-coding 

RNA) (Table 3).  
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Table 3. Potential candidate genes based on the proportion of the additive genetic variance 

explained by windows of 10 adjacent SNPs (Var %) obtained in the 3nd iteration of the 

WssGWAS for accumulated profitability in Nelore cattle. 

Chr Start position (bp) End position (bp) Gene symbol/ENSEMBL ID Var (%) 

1 122665580 122970921 -   0.71182 

2 41647204 42042712 GALNT13¹  0.92468 

3 

 115957406 116233438  CHI3L2¹, DENND2D¹, CEPT1¹, 

DRAM2¹, ACKR3¹, 
ENSBTAG00000066299¹,  

ENSBTAG00000050725¹, IQCA1 

 0.52799 

32178026 32406998 0.76174 

4 
 110884207  111245497 

CNTNAP2¹ 
0.54940  

58883457 59154008 0.76754 

7 

 98757265 98907404  GRAMD2B¹, MIR2458², 

ENSBTAG00000068092², 

ENSBTAG00000055597², 

ENSBTAG00000060037², 

ENSBTAG00000059942², 

 0.50930 

27361086 27661808 0.57638 

76689716 77004653 0.84567 

8 20507980 20885550 

ENSBTAG00000067218², 

ENSBTAG00000067020¹, 

ENSBTAG00000066014¹ 

0.57502 

10 

 40483645  40939069 HRH2¹, SFXN¹, DRD1¹, 

ENSBTAG00000060352², 

ENSBTAG00000057676², 

ENSBTAG00000061410², 

ENSBTAG00000057850², 

ENSBTAG00000067561², MDGA2¹,  

0.53580  

5437359 5794507 0.97162 

13 7792833 8069828 FLRT3¹, MACROD2¹ 0.54132 

14 24573257 24710609 

UBXN2B¹, CYP7A1¹, U1², 

ENSBTAG00000061529¹, 

ENSBTAG00000067760¹ 
 0.81010 

16 
25915302   25935999 

- 
0.62888  

9778896 10182016 0.76919 

 

 

 

 

Continued Table 3.  
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Chr Start position (bp) End position (bp) Gene symbol/ENSEMBL ID Var (%) 

17 

 72729254 73183467  

LIF¹, OSM¹, CASTOR1¹, TBC1D10A¹, 

CCDC157¹, RNF215¹, SEC14L2¹, 

MTFP1¹, SEC14L3¹, SEC14L4¹, 

CDC45¹, CLDN5¹, SEPTIN5¹, GP1BB¹, 

TBX1¹, GNB1L¹, TXNRD2¹, COMT¹, 

ARVCF¹, TANGO2¹, MIR185², DGCR8¹, 

MIR3618², MIR1306², TRMT2A¹, 

RANBP1¹, ZDHHC8¹, CCDC188¹, 

RTN4R¹, PRODH¹, DGCR6L¹, SF3A1¹,  

ENSBTAG00000067193², 

ENSBTAG00000064410², 

ENSBTAG00000056180², 

ENSBTAG00000066914², 

ENSBTAG00000067425², 

ENSBTAG00000068969², 

ENSBTAG00000042154², 

ENSBTAG00000065648², 

ENSBTAG00000064523², 

ENSBTAG00000065346¹, 

ENSBTAG00000049878¹ 

0.80385  

69246711 69459128 0.90250 

21 71412000 71412000 -   0.72480 

23 4040152 4359518 COL21A1¹ 0.52107 

25 37799150 38003995 
LMTK2¹, CCZ1¹, RSPH10B¹, 

ENSBTAG00000046943¹ 0.71717 

protein-coding gene¹; non-coding RNA2. 

 

For PFT, 52 regions on chromosomes 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 17, 

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, and 28 were identified explaining more than 0.5% 

of the additive genetic variance, encompassing 268 genes (187 protein-coding, 79 non-

coding RNA and two pseudogenes) (Table 4). 

 

 



68 
 

Table 4. Potential candidate genes based on the proportion of the additive genetic variance 

(Var %) explained by windows of 10 adjacent SNPs obtained in the 3nd iteration of the 

WssGWAS for profit per kilogram of liveweight gain in Nelore cattle. 

Chr Start position (bp) End position (bp) Gene symbol/ENSEMBL ID Var (%) 

1 
  

141205936 141713896 BACE2¹, FAM3B¹, MX1¹, 
MX2¹, C1H21orf91¹, 

TMPRSS2¹, 
ENSBTAG00000060761², 

ENSBTAG00000067615¹, 

ENSBTAG00000066992¹, 
ENSBTAG00000069934¹ 

0.52606 

18843649 19231564 0.54430 

2 85493604 86006315 
PGAP1¹, ANKRD44¹, SF3B1¹, 

SNORA70², 

ENSBTAG00000058339¹ 

0.81517 

3 

78644818 79069350 PDZK1¹, DENND2D¹, 
DRAM2¹, SGIP1¹, PDE4B¹, 

ACKR3¹, ASB18¹, 
CEPT1¹, GJA8¹, GPR89A¹, 

IQCA1¹, 

ENSBTAG00000055369², 
ENSBTAG00000066299¹, 

ENSBTAG00000050725¹, 
ENSBTAG00000056285³ 

0.59149 

21640254 21869985 0.59332 

32178026 32406998 0.66478 

115730569 116035968 0.74251 

61630774 61947686 0.80003 

4 

102525893 102774902 

ETV1¹, DGKB¹, TTC26¹, 

IFT56¹ 
KIAA1549¹, ZC3HAV1¹, 

ZC3HAV1L¹ 

0.52033 

22180214 22588568 
KRBA1¹, SSPO¹, ZNF862¹, 

ENSBTAG00000062759² 
0.72227 

112529847 112756381 

ATP6V0E2¹, LRRC61¹, 
RARRES2¹, ZNF467¹, 

ENSBTAG00000067250², 
ENSBTAG00000064227², 

ENSBTAG00000068937¹ 

0.82340 

5 

24960637 25217149 

USP44¹, MUCL1¹, CDK17¹, 
MB¹, METAP2¹, 

ENSBTAG00000069851², 
ENSBTAG00000062636², 

ENSBTAG00000056536¹, 

ENSBTAG00000049200¹, 
ENSBTAG00000010711¹, 

ENSBTAG00000062967¹, 
ENSBTAG00000057023¹, 

0.50864 

73664348 74010148 RBFOX2¹, PDE3A¹, RASD2¹ 0.52112 

60604166 60985883 

CFAP54¹, 

ENSBTAG00000064001², 
ENSBTAG00000064878², 

ENSBTAG00000057831¹ 

0.53433 
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Continued Table 4. 

Chr Start position (bp) End position (bp) Gene symbol/ENSEMBL ID Var (%) 

5 
60604166 60985883 ENSBTAG00000057741² 0.53433 

89193101 89472174 - 0.75480 

6 56419575 56639531 FGFBP1¹, PROM1¹, U6², 
CD38¹, 

ENSBTAG00000056148¹, 
ENSBTAG00000068440², 

ENSBTAG00000058952², 

ENSBTAG00000059226², 
ENSBTAG00000067563², 

ENSBTAG00000065702² 

0.82805 

  110983795 111321399 0.98191 

7 

37076940 37364183 SEMA6A¹, 

ENSBTAG00000067375², 

ENSBTAG00000055768², 
ENSBTAG00000059150², 

ENSBTAG00000056595², 
ENSBTAG00000062478², 

ENSBTAG00000055597², 

ENSBTAG00000060037² 

0.61589 

76719459 77011685 0.77686 

8 

35996382 36293755 PTPRD², bta-mir-2285bg², 

ENSBTAG00000067020¹, 
ENSBTAG00000066014¹, 

0.68703 

3258367 3663959 0.79303 

20535633 20906765 1.05777 

10 5502939 5822775 
DRD1¹, SFXN1¹, 

ENSBTAG00000061410², 

ENSBTAG00000057850² 

1.05901 

11 

106094470 106396975 UAP1L1¹, MAN1B1¹, GRIN1¹, 

bta-mir-12014², SSNA1¹, 

NDOR1¹, CYSRT1¹, RNF224¹, 
SLC34A3¹, TUBB4B¹, STPG3¹, 

NELFB¹, TOR4A¹, ANAPC2¹, 
CIMIP2A¹, DPP7¹, LRRC26¹, 

NRARP¹, 

RNF208¹, SAPCD2¹, 
EXD3¹, TGFA¹, 

TMEM210¹, TPRN¹, UAP1L1¹, 
ENSBTAG00000058667², 

ENSBTAG00000053827¹, 

ENSBTAG00000061834², 
ENSBTAG00000059218³, 

ENSBTAG00000068829², 
ENSBTAG00000065600², 

ENSBTAG00000067502², 

ENSBTAG00000056166², 
ADD2¹, 

ENSBTAG00000051045² 

0.85735 

13730813 13993403 1.47951 
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Continued Table 4. 

Chr Start position (bp) End position (bp) Gene symbol/ENSEMBL ID Var (%) 

12 

78879934 78914611 bta-mir-759, PCDH8¹, 

COL4A1¹, IRS2¹, TPP2¹, 

ENSBTAG00000058337², 
ENSBTAG00000060184², 

CNMD¹, 
ENSBTAG00000061417², 

ENSBTAG00000064577², 

ENSBTAG00000067735², 

0.50067 

10719656 11096637 0.50393 

84500786 84882391 0.58411 

13 

72638085 72997024 OSER1¹, FITM2¹, SERINC3¹, 

GDAP1L1¹, 
HNF4A¹, JPH2¹, PKIG¹, 

PTPRT¹, R3HDML¹, TTPAL¹, 

U6², ENSBTAG00000062014², 
ENSBTAG00000066052² 

0.88883 

71271729 71544363 0.99982 

14 

32977353 33372261 

SULF1¹, 
ENSBTAG00000064289¹, 

ENSBTAG00000056677², 

ENSBTAG00000063436² 

0.53475 

71025573 71256147 

ENSBTAG00000056366², 

ENSBTAG00000067399², 
ENSBTAG00000061994² 

1.45630 

17 73206420 73511787 MORC2¹ 0.71746 

18 

9328369 9622822 RPL18¹, DBP¹, CA11¹, NTN5¹, 

MAMSTR¹, RASIP1¹, 
IZUMO1¹, FUT1¹, BCAT2¹, 

HSD17B14¹, PLEKHA4¹, 

TULP2¹, GYS1¹, LHB¹, NTF4¹, 
KCNA7¹, BCAT2¹, CDH13¹, 

DHDH¹, 
FGF21¹, FTL¹, FUT2¹, IRX6¹, 

NUCB1¹, PPP1R15A¹, 

RUVBL2¹, SAXO¹, SEC1¹, 
SPHK2¹, 

ENSBTAG00000066099², 
ENSBTAG00000062913², 

ENSBTAG00000056750², 

ENSBTAG00000012131¹, 
ENSBTAG00000058064², 

ENSBTAG00000068021², 
ENSBTAG00000068980², 

ENSBTAG00000069233², 

ENSBTAG00000056999², 
ENSBTAG00000068160², 

ENSBTAG00000058911¹ 

0.55219 

3940271 4373037 0.56773 

23363011 23662224 0.94004 

55262498 55590144 1.26496 
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Continued Table 4. 

Chr Start position (bp) End position (bp) Gene symbol/ENSEMBL ID Var (%) 

19 44174487 44547216 

ITGA2B¹, GPATCH8¹, 

CCDC43¹, GJC1¹, ADAM11¹, 

DBF4B¹, FZD2¹, MEIOC¹, 
ENSBTAG00000064367², 

ENSBTAG00000060869² 

0.68536 

20 

24744585 25028988 ARL15¹, CTNND2¹, FGF18¹, 

U6², ENSBTAG00000068631², 
ENSBTAG00000055331², 

0.54638 

3253977 3532931 0.63697 

61537001 61834994 0.79704 

21 25792494 26146591 

ZFAND6¹, FAH¹, BCL2A¹, 
MTHFS¹, 

ENSBTAG00000065309¹, 

ENSBTAG00000068050², 
ENSBTAG00000060444¹ 

 1.05007 

22 
20686811 20984209 

SEC61G¹, U6², NEK10¹ 
0.51086 

1426126 1741940 0.62315 

23 

14935852 15276599 UNC5CL¹, OARD1¹, TREML1¹, 

TREM2¹, TREML2¹, TREM1¹, 
NEDD9¹, APOBEC2¹, NFYA¹, 

ENSBTAG00000021359¹, 
ENSBTAG00000060030², 

ENSBTAG00000050887¹, 

ENSBTAG00000061826², 
ENSBTAG00000064702¹, 

ENSBTAG00000062933¹, 
ENSBTAG00000055384², 

ENSBTAG00000057654², 

ENSBTAG00000065527², 
ENSBTAG00000064351², 

0.56817 

44876806 45125767 0.93532 

38412668 38891267 0.96628 

24 51371971 51846761 
DCC¹, 

ENSBTAG00000049503¹, 

ENSBTAG00000066760¹, 

0.76479 

25 37501749 37799150 

NPTX2¹, BRI3¹, BHLHA15¹, 
BAIAP2L1¹, TECPR1¹, 

ENSBTAG00000069291², 
ENSBTAG00000060002², 

ENSBTAG00000066747², 

ENSBTAG00000060317², 
ENSBTAG00000066438¹ 

0.51895 

26 30168678 30504596 
XPNPEP1¹, 

ENSBTAG00000068792¹, 

ENSBTAG00000067787² 

0.72092 

27 3243779 3783637 
CSMD1¹, 

ENSBTAG00000065138¹ 
1.03616 

28 13995887 14338094 
BICC1¹, 

ENSBTAG00000069738², 

ENSBTAG00000058304² 

1.55328 

protein-coding gene¹; non-coding RNA²; pseudogene³.  
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The functional enrichment analysis for APF revealed eight significant Gene 

Ontology terms, in which we highlighted the negative regulation of hormonal secretion 

(GO:0046888) biological process (Table 5), with the OSM and LIF genes participates. 

The OSM and LIF genes encodes cytokines belonging to the interleukin 6 family and are 

intrinsically associated with the structures and functions of this cytokine family (Tanaka 

& Miyahima, 2003). Cytokines influence virtually all cell types, termed pleiotropic, as a 

single cytokine can influence the activity of several distinct cells (Dinarello, 2007).  

 

Table 5. Significant (P < 0.05) Gene Ontology terms revealed by DAVID for accumulated 

profitability in Nelore cattle. 

 

The LIF gene is involved in a variety of physiological and biological processes, 

including an important function in the early stage of embryonic development and in 

regulating endometrial function during implantation and placentation in various species 

(Campanile et al., 2021), suggesting its relevance as a potential gene associated with 

female fertility (Cai et al., 2019). The OSM gene is structurally, genetically, and 

functionally associated with LIF. However, the specific biological functions of OSM have 

GO terms N Genes P-value 

Biological process    

    

GO:0046888 - negative regulation of hormone secretion 2 OSM, LIF 0.006 

GO:0046604 - positive regulation of mitotic centrosome 

separation 
2 RANBP1, UBXN2B 0.006 

GO:0010646 - regulation of cell communication 2 OSM, LIF 0.008 

GO:0023051 - regulation of signaling 2 OSM, LIF 0.016 
    

Cellular component    

GO:0005739 - mitochondrion 6 
TXNRD2, TANGO2, SFXN1, 
ZDHHC8, PRODH, MTFP1 

0.042 

GO:0005829 - cytosol 12 

CASTOR1, TXNRD2, 

TANGO2, DENND2D, 
COMT, FLRT3, DGCR8, 

TBC1D10A, LIF, LMTK2, 

RANBP1, UBXN2B 

0.025 

GO:0044295 - axonal growth cone 2 FLRT3, RTN4R 0.025 

GO:0005794 - Golgi apparatus 6 
TANGO2, ZDHHC8, LMTK2, 
CEPT1, DRAM2, GALNT13 

0.016 
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been documented in the process of blood cell formation, liver development, nervous 

system (Morikawa, 2005), and insulin metabolism (Komori et al., 2014). 

Many important genes were identified in the genomic regions associated with APF 

(Table 3); however, the functional enrichment analysis not revealed biological process or 

cellular component relevant to APF trait, probably due to the small number of genes 

detected. These genes were highlighted according their functions and categorized into 

seven groups, as following: lipid and cholesterol metabolism (GALNT13, CEPT1, 

GRAMD2A, SEC14L2 and PRODH), carbohydrate metabolism (CHI3L2), muscular 

development and growth (CASTOR1 and MIR1306), fertility and reproductive traits 

(ACKR3, CDC45, RANBP1, TANGO2, DGCR8, SFXN, RNF215 and ARVCF), carcass 

traits (IQCA1, MACROD2 as IQCA1, ASB18 and MACROD2), feed efficiency (UBXN2B, 

CYP7A1, DGCR6L and TBC1D10A), homeostasis (TXNRD2 and TCAF1), 

gastrointestinal regulation (HRH2) as well as genes related to the nervous system and 

behavior (GNB1L, COMT, FLRT3, SEPTIN5, RTN4R and LMTK2) (Table 3). 

Regarding lipid and cholesterol metabolism genes, the GALNT13 gene is among 

the 20 enzymes identified to initiate O-glycosylation, a process with multiple functions 

in organisms (Van Den Steen et al., 1998; Goettig, 2016). Although the functions of 

GALNTs are not fully understood, the targets regulated by them (Schjoldager et al., 2012; 

Katrine et al., 2010) may influence lipoprotein metabolism and fat deposition in the 

intramuscular space (Anton et al., 2018). In cattle, Abo-Ismail et al. (2018) reported the 

GALNT13 association with metabolic weight and dorsal fat deposition, using models that 

considered genotypic, additive, and dominance effects in Angus, Hereford, and Angus-

Hereford crossbreeds. 

The CEPT1 gene responsible for encoding the choline/ethanolamine 

phosphotransferase enzyme, which acts on choline- and ethanolamine-containing 

phospholipids (Wright et al., 2002) and may also play an essential role in lipid metabolism 

regulation in the large intestine (Chao et al., 2017). The GRAMD2A gene encodes a 

protein involved in regulation of store-operated calcium entry and has shown consistent 

and favorable associations with genes related to lipid metabolism in both humans and 

mice (Besprozvannaya et al., 2018). 

SEC14L2 encodes the SEC14-like protein 2, a cytosolic protein which belongs to 

a family of lipid-binding proteins in which studies suggest its participation as a potential 

transporter of lipophilic molecules between various cellular compartments and is closely 

linked to regulating the availability of vitamin E (Panagabko et al., 2003). PRODH 
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encodes the enzyme proline dehydrogenase, which is responsible for catalyzing the first 

phase of the proline degradation (Wang et al., 2020), which is essential for energy 

metabolism (Amorim et al., 2022) and has been associated with lipid metabolism 

(Murakami et al., (2017). The CHI3L2 gene encodes a protein involved in cartilage 

biogenesis, and it is known for its association with carbohydrate metabolism 

(Cunningham et al., 2015; Yates et al., 2016), as well as has been correlated with 

comprehensive metabolic processes in cattle, such as carbohydrate, lipid, and protein 

metabolism (Chen et al., 2021) 

 CASTOR1 encodes a cytosolic arginine sensor that is involved in cellular 

response to L-arginine and regulation of mTOR signalling pathway (Xia et al., 2016). L-

arginine plays a central role in the nitrogen metabolism (e.g., syntheses of protein, 

polyamines, creatine and nitric oxide), nutrient utilization, blood flow, and health of 

ruminants (Wu et al., 2022). mTOR is the primary regulator of growth (mass 

accumulation) in animals that controls most anabolic and catabolic processes in response 

to nutrient signals such as insulin (Sabatini et al., 2017). Lastly, the MIR1306 gene 

encodes a miRNA that may regulate the synthesis of growth hormone, as described in a 

Holstein cattle study (Mullen et al., 2010). 

The BTA14:24573257-24710609 bp genomic region revealed the presence of 

several relevant genes associated with economically important traits such as feed 

efficiency and carcass. The UBXN2B and CYP7A1 genes, associated with feed efficiency. 

The UBXN2B gene encodes a protein involved in the Golgi complex and endoplasmic 

reticulum biogenesis (Luca et al., 2013) and has been associated with metabolic weight 

during feed efficiency testing in Angus, Hereford, and SimAngus cattle breeds (Seabury 

et al., 2017). CYP7A1 gene encodes the cholesterol 7α-hydroxylase, member of the 

cytochrome P450 superfamily, which catalyze several reactions involved in synthesis of 

steroids, cholesterol, and other lipids.  

Cholesterol 7α-hydroxylase acts as a key enzyme to catalyzes the cholesterol to 

bile acids conversion in the liver, which is the main mechanism for the regulation of bile 

acid synthesis and removal of cholesterol from the body (Qi et al., 2015; Han et al., 2016), 

which was associated with residual feed intake in Nordic dairy cattle (Salleh et al., 2017). 

These enzymes play important roles in nutrient absorption and digestion, as well as in 

regulating lipid homeostasis, glucose metabolism, and energy (Ferrell et al., 2016). Two 

other genes, DGCR6L and TBC1D10A, located on BTA17, were previously associated 

with high-gain-low-intake and low-gain-high-intake traits (Kern et al., 2017; Kern et al., 
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2016). Other genes such as IQCA1, ASB18 and MACROD2 were also reported as 

associated with rib eye area and carcass weight traits (Niu et al., 2021), 

Genes related to fertility in both males and females were also found in this study. 

Previous studies have shown that the ACKR3 gene performs critical functions in 

reproductive physiology, acting as the alternative receptor for the inflammatory 

chemokine C-X-C motif ligand 12 (stromal cell-derived factor 1) and adrenomedullin 

(Quinn et al., 2018). Studies suggest that the protein encoded by ACKR3 also significantly 

regulates lipid levels in adipose tissue, indeed, this gene has been associated with 

controlling systemic lipid levels by lipid uptake in adipose tissue (Gencer et al., 2021). 

The CDC45 gene has been described as an important component in the 

development process of sperm cells and embryogenesis, necessary for initiating 

chromosomal DNA replication (Owens et al., 1997; Özbek et al., 2021). Özbek et al. 

(2021) reported that sperm from bulls with high fertility showed increased expression of 

the CDC45 gene. RANBP1 participates in the regulation of the cell cycle by controlling 

transport of proteins and nucleic acids into the nucleus, and transcription process in both 

oocyte and cumulus cells. This network induces biological pathways that activate primary 

follicles, follicular secretion, and cell migration (Tavana et al., 2021). 

The TANGO2 gene was associated with Holstein' fertility traits, such as daughters' 

pregnancy rate (Cochran et al., 2013). DGCR8 gene encodes a subunit of the 

microprocessor complex that mediates the biogenesis of microRNAs, which acts in the 

regulation of stem cell proliferation and appears to be associated with the transition from 

morula to blastocyst in cattle (Paulson et al., 2013). The SFXN gene was identified as 

positively regulated with the multipotent trophoblast cell mass of bovine blastocysts 

(Ozawa et al., 2012). 

ARVCF gene encodes a member of the catenin family that plays an important role 

in the formation of adherent junction complexes, which facilitates communication 

between the inside and outside cellular environments. Kiser et al. (2019) reported a list 

positional candidate gene, among which includes the ARVCF gene, along with binding 

sites for conception-associated transcription factors in first service and services per 

conception in primiparous Holstein cows in the United States. 

Of the six genes related to the nervous system and behavior, one gene associated 

with behavior also had its function linked to an economically important trait, such as the 

COMT gene. The GNB1L and COMT genes have previously been associated with animal 

behavior (Qayyum et al., 2015). In addition to the mentioned function, the COMT gene 
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is vital in estrogen metabolic pathways (Worda et al., 2003). Activation of COMT during 

the estrous cycle and pregnancy has led researchers to hypothesize that COMT activity is 

sensitive to estrogen levels (Jiang et al., 2003). Interestingly, this gene has also been 

associated with growth traits in Montana breed animals, such as weaning and yearling 

weight (Grigoletto et al., 2019). The SEPTIN5 gene in transgenic cattle may be related to 

enhancing olfactory and visual sensory functions (Malnic et al., 2004; Xin et al., 2007). 

The FLRT3 gene is linked to the Unc-5 family of receptor proteins involved in multiple 

physiological interactions in the developing mammalian nervous system (Yamagishi et 

al., 2011). 

The RTN4R gene encodes the reticulon-4 receptor, also known as nogo receptor, 

is suggested to regulate axonal regeneration and plasticity in the adult central nervous 

system (Bianco et al., 2017). LMTK2 gene encodes aserine/threonine-protein kinase, 

where its biological functions are notably observed in neuronal and muscular tissues, 

where it plays a role in intracellular trafficking (Luz et al., 2014). 

According to Ghaffari et al. (2023), the positive regulation of the TCAF1 gene has 

been associated with cellular motility, which may influence increasing nutrient uptake 

and utilization in NBCS-PN cows (High Body Condition Score predicted Normal Body 

Condition Score) due to optimal ECC (Energy Corrected Milk). TXNRD2, thioredoxin 

reductase 2, participates in controlling levels of reactive oxygen species, playing a key 

role in mitochondrial redox homeostasis, and is considered to function in cell signaling 

controlled by the redox state (Alexandre et al., 2020). Inhibiting TRXR2 affects redox 

homeostasis, increasing H2O levels, which may compromise cellular functions (Prasad et 

al., 2014). 

Concerning HRH2 encodes the histamine H2 receptor, an integral membrane 

protein that stimulates gastric acid secretion and regulates gastrointestinal motility and 

intestinal secretion (Fernández-Novoa et al., 2017). Another study reported that this gene 

was also identified in the 'signal transduction' category during the analysis of 

differentially expressed genes between pregnant and non-pregnant heifers (Moorey et al., 

2020). 

Regarding the functional enrichment analyses for PFT trait, a total of 14 Gene 

Ontology terms and seven KEGG pathways were found as significant (Table 6), in which 

we emphasized the glucose homeostasis (GO:0042593), lipid homeostasis 

(GO:0055088), proteolysis (GO:0006508), PI3K-Akt signaling pathway (bta04151), 

calcium signaling (bta04020) and metabolic pathways (bta01100) terms. 
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Table 6. Significant (P < 0.05) Gene Ontology terms and KEGG pathways revealed by 

DAVID for profit per kilogram of liveweight gain in Nelore cattle. 

Terms N Genes P-value 

Biological process    

GO:0036065 - fucosylation 3 SEC1, FUT1, FUT2 0.0026 

GO:0042593 - glucose homeostasis 5 HNF4A, CSMD1, FAM3B, BHLHA15, BACE2 0.0068 

GO:0007267 - cell-cell signaling 4 BHLHA15, GJA8, GJC1, FGFBP1 0.0076 
GO:0005975 - carbohydrate metabolic 

process 
5 

SEC1, FUT1, FUT2, A0A3Q1NNK3_BOVIN, 

MAN1B1 
0.0145 

GO:0001936 - regulation of endothelial cell 

proliferation 
2 FUT1, FUT2 0.0381 

GO:0055088 - lipid homeostasis 3 TREM2, HNF4A, FITM2 0.0455 

GO:0006508 - proteolysis 5 PDZK1, XPNPEP1, DPP7, TPP2, METAP2 0.0471 

    

Cellular component    

GO:0016020 -membrane 15 

MX2, PPP1R15A, RUVBL2, COL4A1, 
MAN1B1, SPHK2, BACE2, SERINC3, MX1, 

CNMD, NUCB1, PDE3A, 

A0A3Q1NNK3_BOVIN, PTPRT, BAX 

0.0096 

GO:0032580 - Golgi cisterna membrane 4 SEC1, FUT1, FUT2, GPR89A 0.0024 
    

Molecular function    

GO:0008107 -galactoside 2-alpha-L-

fucosyltransferase activity 
3 SEC1, FUT1, FUT2 0.0001 

GO:0031127 -alpha-(1,2) -fucosyltransferase 
activity 

3 SEC1, FUT1, FUT2 0.0001 

GO:0045296 - cadherin binding 4 CDH13, PROM1, PTPRT, CTNND2 0.0068 
GO:0005042 - netrin receptor activity 2 DCC, UNC5CL 0.0401 

GO:0042803 - protein homodimerization 

activity 
9 

HNF4A, ADD2, CDH13, BCL2A1, XPNPEP1, 

PTPRT, RUVBL2, BAX, RASIP1 
0.0472 

    

KEGG_Pathway    

bta04151: PI3K-Akt signaling pathway 7 
NTF4, TGFA, ITGA2B, GYS18, FGF21, 

FGF18, COL4A1 
0.0394 

bta05202: Transcriptional misregulation in 
cancer 

5 TMPRSS2, BCL2A1, PROM1, BAX, ETV1 0.0395 

bta00601: Glycosphingolipid biosynthesis - 

lacto and neolacto series 
3 SEC1, FUT1, FUT2 0.0154 

bta04024: cAMP signaling pathway 6 
LHB, GRIN1, DRD1, PDE3A, LOC531747, 

PDE4B 
0.0227 

bta00603: Glycosphingolipid biosynthesis - 

globo and isoglobo series 
3 SEC1, FUT1, FUT2 0.0061 

bta04020:Calcium signaling pathway 7 
GRIN1, TGFA, CD38, FGF21, DRD1, 

FGF18, SPHK2 
0.0072 

bta01100:Metabolic pathways 19 

SEC1, DHDH, DGKB, FAH, GYS1, CD38, 
PGAP1, BCAT2, LOC531747, CEPT1, 

PDE4B, MAN1B1, ATP6V0E2, SPHK2, 

MTHFS, FUT1, FUT2, PDE3A, UAP1L1 

0.0118 
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The biological process of glucose homeostasis (GO:0042593) is extremely 

important for the body's cells and the central nervous (SNC) system since glucose is the 

main source of energy for both (Thorens, 2005). Due to its function in cellular and brain 

energy, blood glucose concentration levels are continuously controlled to adapt cellular 

and whole-body physiology and regulate blood glucose levels at normal levels (Thorens, 

2005). Glucose originates from three different sources: intestinal absorption of food, 

glycogenolysis, the breakdown of glycogen in the liver, and gluconeogenesis, which 

involves the production of glucose in the liver and kidneys from different precursors such 

as lactate, pyruvate, amino acids, and glycerol (Bano, 2013). 

The main factors that control glucose levels include immediate response 

hormones: insulin, glucagon, and catecholamines; sympathetic nervous system activity; 

the concentration of free fatty acids (FFA); prolonged response hormones: cortisol and 

growth hormone; and nutritional factors, exercise, and physical fitness (Bano, 2013). Two 

important genes in this pathway were identified in this study: BHLHA15 and BACE2. 

The BHLHA15 gene, also known as MIST1, acts in several processes, including 

glucose homeostasis, cellular response to glucose starvation and mitochondrial calcium 

ion transmembrane transport. BHLHA15 has a critical function during the embryonic 

development of mice, specifically in gastrulas, plantules, and skeletal muscle (Pin et al., 

2000). The BACE2 gene encodes a transmembrane protease that catalyzes the proteolysis 

of amyloid precursor protein to produce amyloid beta peptide. Mice lacking this protease 

exhibit. BACE2 suppression in mice leads to excessive body weight gain, 

hyperinsulinemia, insulin resistance and improved glucose tolerance due to increased 

insulin secretion (Díaz-Catalán et al., 2021). BACE2 gene has been linked to bovine 

muscle formation, and its expression has been observed in adipocytes (Lee et al., 2012). 

Lipid homeostasis (GO:0055088) is an essential biological process for normal 

cells to ensure their physiological functioning (Zhao et al., 2024). In terms of quantity, 

the main way of storing energy is represented by lipids in adipose tissue (Ferré et al., 

2007), and the liver is the primary organ for lipid metabolism (Ipsen et al., 2018). As the 

primary regulator of lipid homeostasis, the liver is responsible for coordinating the 

production of new fatty acids, their transport and subsequent redistribution to other 

organs, and their use as an animal energy source (Nguyen et al., 2008). Complex 

interactions between hormones, nuclear receptors, and transcription factors control these 

activities, strictly preserving lipid homeostasis (Bechmann et al., 2012). 

https://scholar.google.com.br/citations?user=1ONcuFwAAAAJ&hl=pt-BR&oi=sra
https://scholar.google.com.br/citations?user=1ONcuFwAAAAJ&hl=pt-BR&oi=sra
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Diverse groups of lipids, encompassing energy storage lipids, structural lipids, and 

signaling lipids, are closely related through the lipid homeostasis system (Vendruscolo et 

al., 2022). Any alteration of these pathways results in an imbalance between the uptake 

and output of lipids, which is controlled by four important pathways, such as uptake of 

circulating lipids, de novo lipogenesis (DNL), fatty acid oxidation (FAO), and export of 

lipids at deficient levels lows density lipoproteins (VLDL) (Ipsen et al., 2018). Among 

the three genes identified in this biological process (Table 6), the FITM2 gene is involved 

in many biological processes, such as fatty-acyl-CoA catabolic process, diacylglycerol 

and triglyceride binding activities, cellular triglyceride homeostasis, lipid droplet 

formation and lipid homeostasis (Miranda et al., 2014; Pan et al., 2022). 

Proteolysis (GO:0006508) is a biological process that regulates the progression of 

the cell cycle in the manipulation of proteins and is essential for several phases of mitosis 

and the beginning of DNA replication (King et al., 1996); this process is not only relevant 

for maintenance but is also responsible for regulating critical cellular activities, such as 

homeostasis and survival (Chondrogianni et al., 2014). Protein degradation occurs 

constantly in all tissues throughout the animals' lives (Baracos et al., 2005). Proteolytic 

degradation is coordinated by two central systems, the lysosome and proteasome 

(Chondrogianni et al., 2014).  

The absence/decrease or increase in the function of the two systems is linked in 

all directions to the complex cellular metabolic networks associated with physiological 

and pathological processes (Chondrogianni et al., 2014). Furthermore, proteolysis has a 

vital role in the post-mortem phase, as in cattle, these proteolytic processes originate 

mainly from studies of skeletal muscle, covering techniques and strategies for their 

determination, addressing proteolytic enzymes and regulators, as well as controls—

physiological and post-mortem proteolytic transformations that influence meat quality 

(Baracos et al., 2005). Five genes were identified participating in the proteolysis 

(GO:0006508), in which we highlighted the PDZK1.The PDZK1 gene encodes a PDZ 

domain-containing scaffolding protein that plays a pivot role in cholesterol metabolism 

through regulation of HDL receptor, scavenger receptor class B type 1. It acts as an 

adaptor protein for the Scavenger Receptor Class B Type I (SR-BI), with high expression 

in the placenta, enabling the developing fetus to acquire a significant portion of its 

cholesterol from maternal lipoproteins (Kocher et al., 2003).  

The PI3K-Akt signaling pathway (bta04151) has been extensively studied and 

considered a key regulator of diverse cellular functions, including cell migration, 
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mitogenesis, differentiation, and cell survival (Vara et al., 2004). Furthermore, it plays a 

central role in regulating skeletal muscle mass and metabolism, promoting protein 

synthesis and inhibiting protein degradation (Glass, 2005). In this signaling route, a 

relevant gene, FGF18, was identified. 

The FGF18 gene encoded the fibroblast growth factor 18, a member of the 

fibroblast growth factor (FGF) family, which members are involved many biological 

processes, such as cell growth, morphogenesis, tissue repair, embryonic development and 

skeletal system development (Ornitz et a., 2001). Studies in mouse suggested its 

pleiotropic growth factor function that stimulates proliferation in several tissues, most 

notably the small intestine and liver (Ornitz et a., 2001).  

The calcium signaling pathway (bta04020) is important in regulating the growth, 

development, and function of skeletal muscle in beef cattle (Sadkowski et al., 2009; Liu 

et al., 2022). Additionally, calcium exhibits relevant roles in meat tenderness, feed 

efficiency, and muscle contraction, and numerous genes participating in processes 

associated with calcium also influence meat quality in cattle (Mateescu et al., 2017; Rolf 

et al., 2012). Among the seven genes identified in the calcium signaling pathway 

(bta04020), we highlighted the TGFA and DRD1. TGFA gene encodes the transforming 

growth factor alpha, a protein that participates in signaling events that results in cellular 

proliferation, mucous production, or inhibition of gastric acid secretion.  FGF21encodes 

a secreted endocrine factor member of the fibroblast growth factor (FGF) family, that acts 

as a major metabolic regulator and stimulates the uptake of glucose in adipose tissue. 

TGFA and FGF21 are associated with adipose tissue metabolism (Singh et al., 2014; Sun 

et al.,2013). 

The DRD1 gene encodes the most abundant dopamine receptor in the central 

nervous system, named D(1A) dopamine receptor, which is highly characterized for its 

association with cattle temperament (Garza-Brenner et al., 2017). Dopamine receptors 

(DRDs) are major candidates in regulating energy homeostasis, have been linked to the 

modulation of feeding behavior (Martel & Fantino, 1996; Lutz et al., 2001) and linked to 

reducing feeding duration (Szczypka et al., 1999). 

The metabolic pathway (bta01100) plays crucial roles in regulating the 

metabolism of carbohydrates, energy, glucose, lipids, nucleotides, amino acids, glycans, 

vitamins, xenobiotics, oxidative stress, and inflammation (Abdalla et al., 2021; Veshkini 

et al., 2022). In beef cattle, this pathway has been identified as associated with primary 

beef cuts (Naserkheil et al., 2021), subcutaneous fat (Muroya et al., 2021), feed efficiency 
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(Abo-Ismail et al., 2014; Fonseca et al., 2019) and was associated with body size in 

Holstein cattle (Abdalla et al., 2023). Among the 19 genes detected in metabolic pathway 

(bta01100), we highlighted the DHDH, DGKB, GYS1 and BCAT2 genes. DHDH encodes 

an enzyme that from dihydrodiol dehydrogenases family, which are involved in the 

metabolism of xenobiotics and sugars. The DHDH and IRX6 genes were described in the 

literature as being associated with metabolic live weight (Hardie et al., 2017). Gan et al. 

(2020) reported that DGKB is closely related to insulin secretion in cattle. Variation in an 

SNP located within DGKB likely affects signal transduction, cell proliferation, 

development, glucose sensing, and circadian regulation (Gan et al., 2020). 

The glycogen synthase 1 (GYS1) gene, responsible for encoding an enzyme that 

mediates glycogen synthesis in skeletal muscles, suggests that this gene is an important 

biological candidate for production traits (Wang et al., 2012b) and have been associated 

with meat quality traits in pigs (Zuo et al., 2007).  The BCAT2 gene is involved in the 

metabolism of branched-chain amino acids in peripheral tissues, acting on the catabolism 

of these amino acids and the regulation of BCKDHA and BCKDHB genes during pre-

adipocyte differentiation (Shi et al., 2018).  

Other important genes have been identified in genomic regions associated with 

PFT trait, but they were not related to any significative biological processes, molecular 

function, or pathway, probably due to the small number of genes detected to perform the 

functional enrichment analysis. Among these genes, 70 were highlighted according their 

functions and also classified into seven groups: lipid metabolism (BCAT2, CDK17, 

RUNX1T1, BRI3 and PDE4B), muscle development and growth (MAMSTR, SEC61G, 

ETV1, FGFBP1, PROM1, USP4, PREX2, BICC1, CCDC43 and GJC1), fertility and 

reproductive traits (NTN5, IZUMO1, FUT1, TULP2, LHB, HSD17B14, PDZK1, PDE3A, 

PGAP1, ANKRD44, ZFAND6, FAH, ADD2 and MBD1), carcass traits (COL11A1, 

SLC34A, TUBB4B, ITGA2B, RBFOX2, C1H21orf91, PTPRD and MORC2), feed 

efficiency (PCDH8, RPL18, CA11, RASIP1, NTF4, KCNA7, SNORA70, NEDD9, and 

NEK10), insulin (CDK17, RARRES2), behavior (DRD1, DBP, SGIP1 and NPTX2), 

immune system (MX1, MX2, OARD1, TREML1, TREM2, TREML2, TREM1, SSNA1 and 

UNC5CL) and genes related to multiple traits (TOR4A, NELFB, RNF224, CYSRT1, 

RNF224, NDOR1 and MUCL1). 

In the analysis of this study, important genes related with muscular development 

and growth were identified. The gene MAMSTR is a member of the myomodulins family 

(Swärd et al., 2016) and is associated with muscular development in various species, 
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including cattle (Jing et al., 2023). The SEC61G gene was associated with 

musculoskeletal development and growth (Adamson et al., 2016). The ETV1 gene 

encodes a member of the E twenty-six family of transcription factors that regulate several 

target genes that modulate many biological processes such as angiogenesis, cell growth, 

migration, proliferation, and differentiation. ETVI gene has also been reported as essential 

in muscular organ development (Ben-Jemaa et al., 2021).  

The fibroblast growth factor binding protein 1 (FGFBP1) interacts with fibroblast 

growth factors, which are essential for skeletal muscle development, stimulating myoblast 

proliferation and differentiation into mature muscle cells (Beer et al., 2005). The FGFBP1 

gene was initially identified in chickens and associated with carcass quality and muscular 

growth (Nassar et al., 2012). On the other hand, the gene PROM1 was reported as a 

candidate gene for birth weight in Simental and Simbrah breed animals (Calderón-

Chagoya et al., 2023).  

The USP44 gene encodes a protease that acts as a deubiquitinating enzyme and 

showed positive regulation during skeletal muscle development in pigs (Jiang et al., 

2010). The PREX2 gene was associated with genomic regions within a QTL related to 

musculature in Charolais cattle (Doyle et al., 2020). BICC1 encodes an RNA-binding 

protein that regulates gene expression during embryonic development, which is 

maternally provided in mouse. Some studies have indicated the BICC1 gene's relation to 

muscle mass, metabolic body weight (Mukiibi et al., 2019), and carcass traits such as 

marbling (Li et al., 2017). Notably, the epigenetic regulation of BICC1 in muscle 

hypertrophy suggests its potential contribution to feed efficiency, encompassing both food 

intake and body development (Seaborne et al., 2018). The GJC1 gene, responsible for 

encoding a member of the connexin gene family, is a component of gap junctions that is 

involved in bone tissue development (Chaible et al., 2011) and has been identified as a 

potential candidate for stature in Holstein cows (Sassi et al., 2016).  

Regarding the genes associated with carcass traits, the COL11A1, SLC34A, 

TUBB4B and ITGA2B genes has been described as potential candidates for meat quality 

traits, such as tenderness in Nelore cattle (Berton et al., 2021; Leal-Gutiérrez et al., 2020). 

Myoglobin (MB) is a monomeric heme protein predominantly expressed in skeletal and 

cardiac muscles, which has been considered a potential marker for meat tenderness in 

Nelore cattle, as reported by Muniz et al. (2021) and Gonçalves et al. (2018). The ARL15 

gene has been associated with carcass conformation in a study conducted with multi-

breed beef cattle (Purfield et al., 2019), carcass weight in Limousin and Charolais cows 
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(Keogh et al., 2021), and subcutaneous fat deposition in Nelore cattle (Carvalho et al., 

2020). The BRI3 was previously reported by Arikawa et al. (2022), establishing its 

association with subcutaneous fat deposition in Nelore cattle.  

The RBFOX2 gene encodes a key regulator of alternative exon splicing in the 

nervous system and other cell types, which also regulates estrogen receptor 1 

transcriptional activity. RBFOX2 has been pinpointed as a relevant candidate for carcass 

traits such as loin eye area and meat color in Nelore cattle (Junior et al., 2016; Marín-

Garzón et al., 2021), as well as in crossbred animals of Angus, Simmental, and Hereford 

breeds associated with ribeye, loin, rib, and whole carcass side (Sood et al., 2023). Sood 

et al. (2023) reported the association of the C1H21orf91 gene with the primary carcass 

cuts traits. The PTPRD gene encodes a tyrosine phosphatase protein involved in signaling 

receptor binding and cell adhesion molecule binding activities, regulation of immune 

response and regulation of receptor signaling pathway through JAK-STAT. PTPRD has 

been previously identified as a potential candidate for intramuscular fat and carcass 

weight, in Nelore and Limousin cattle, respectively (Ariwaya 2022; Keogh et al., 2021). 

The MORC2 gene, which regulate the condensation of heterochromatin in response to 

DNA damage and play a role in repressing transcription (Li et al., 2013), has been 

associated with marbling (Li et al., 2017). The GPR89A gene is associated with visual 

precocity scores (Machado et al., 2022). 

Other genes, even if not directly related to PFT, have been reported to be 

associated with other reproductive and fertility traits in males and females. The izumo 

sperm-egg fusion protein 1 (IZUMO1), belonging to the immunoglobulin family, plays 

an essential role in fertilization due its pivot role in binding and fusion of sperm to egg 

plasma membrane (Kim et al., 2015). FUT1 was reported to be associated with 

reproductive traits in dairy cows, such as pregnancy rate (Cochran et al., 2013), services 

per conception, and days open (Ortega et al., 2017). 

The LHB encodes the luteinizing hormone beta subunit, which promotes ovulation 

and spermatogenesis by stimulating ovaries and testes to synthesize steroids (Degani et 

al., 2003; Junior et al., 2017), as well as its involvement in male sexual behavior (Degani 

et al., 2003). The 17β-hydroxysteroid dehydrogenases, such as the encoded by 

HSD17B14, acts primarily on metabolism of steroids and of other substrates, such as 

prostaglandins, fatty acids, and xenobiotics (Gao et al., 2022). In cattle, HSD17B14 has 

been associated with early pregnancy in Nelore heifers (Junior et al., 2017). The ADD2 
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gene was also identified in regions associated with the probability of early calving in 

Nelore heifers (Mota et al., 2022). 

The FAH gene is associated with days from calving to first service in Holstein 

cows (Mohammadi et al., 2022). The PGAP1 gene was associated with male infertility 

and autocephaly in mice (Ueda et al., 2007). PDE3A, a phosphodiesterase family member, 

exhibits role in regulation of oocyte development and maturation and regulation of 

meiosis. PDE3A has been reported to have high expression in oocytes and the post-

acrosomal segment of the sperm head (Qin et al., 2017). The ZFAND6 gene has been 

linked to reproductive traits in Holstein cows, such as days from calving to first service 

(Mohammadi et al., 2022).  

Another significant group of genes related to feed efficiency, associated with PFT, 

was also found in this study. The PCDH8, NEK10 and SNORA70 genes were associated 

with residual feed intake, residual gain, and feed efficiency in Charolais, Brown Swiss, 

Red Angus, and Creole cattle (Taussat et al., 2020; Manca et al., 2021; Pitt et al., 2019, 

Smith et al., 2022).  The CA11, RASIP1, NTF4 and KCNA7 genes have also been reported 

in the literature as associated with body metabolic weight in dairy cows (Hardie et al., 

2017). CA11 encodes a member of carbonic anhydrases (CAs) family, which is formed 

by zinc metalloenzymes that participate in several biological processes, including 

calcification, acid-base balance, bone resorption, respiration, and the formation saliva and 

gastric acid.   

KCNA7 encodes a member of potassium voltage-gated ion channels that play 

several functions including regulating of insulin secretion and smooth muscle contraction. 

The NEDD9 gene encodes a focal adhesion protein that regulates signaling complexes 

crucial in cell attachment, migration and as apoptosis, which has been related to 

phenotypic variation between high and low RFI animals in pigs (Wang et al., 2022). The 

bta-mir-2285bg was associated as a positive regulator in cattle with low residual feed 

intake (Mukiibi et al., 2020). 

Some genes related to immune function were identified in genomic regions 

associated with PFT trait, some of which are associated with potential mechanisms of 

bovine immune response and others with immunological functions in the reproductive 

system. The MX1 and MX2 genes encodes members of the Mx protein family of large 

GTPases, which acts in the immune system (Davoodi et al., 2016). The MX1 gene is 

recognized for its well-characterized antiviral properties (Lee & Vidal, 2002), while the 

MX2 is a possible reliable marker for predicting pregnancy (Yoshino et al., 2018).  
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The genes OARD1, TREML1, TREM2, TREML2, and TREM1 located on 

chromosome 23 are also related to bovine immune functions (Elsik et al., 2009; Otto et 

al., 2018; Goszczynski et al., 2018). The TREML1, TREM2, TREML2, and TREM1 genes 

belong to the family of triggering receptors expressed on myeloid cells (TREM). This 

family of immune receptors encompasses both inhibitory and activating receptors, which 

regulate the development and function of myeloid cells (Colonna, 2003). Colonna (2003) 

reported that TREM is associated with granulocytic and monocytic inflammatory 

responses during infections and in the differentiation of osteoclasts and glial cells from 

monocytic precursors. The SSNA1 and RASD2 genes are widely described in the literature 

for its roles in the immune system (Goszczynski et al., 2018; Rocha et al., 2020) and the 

UNC5CL gene is involved in the positive regulation of I-kappaB kinase/NF-kappaB 

signaling and JNK cascade (Goszczynski et al., 2018). 

Several genes widely known in the literature related to behavior were also 

identified genomic regions associated with PFT trait, such as DRD1, DBP, and SGIP1. 

The DBP gene acts in the circadian rhythym transcriptional regulation of various 

metabolic enzymes (Reppert & Weaver, 2002; Lowrey & Takahashi, 2004). Daily cycles 

of hormones and metabolites may contribute to coordinating the timing of ingestion with 

metabolism (Plaut & Casey, 2012). Additionally, this gene was associated with variations 

in residual feed intake phenotype in cattle (McKenna et al., 2021). 

The SGIP1 gene has been reported as an essential regulator of food intake, fat 

mass, energy balance, and energy homeostasis (Trevaskis et al., 2005; Cummings et al., 

2012). Its function as a regulator of feeding behavior can affect any process that activates 

or increases the frequency, rate, or extent of feeding behavior (Trevaskis et al., 2005; 

Cummings et al., 2012). Khansefid et al. (2015), identifying variants associated with 

complex traits, suggest that SGIP1 gene may affect residual feed intake in Angus cattle.  

The NPTX2 gene’s function depends on activity-dependent exocytosis and dynamic 

elimination at synapses, and it is associated with the circadian behavior pattern (Xiao et 

al., 2021).  Concerning genes associated with lipid metabolism, the gene FZD2 exhibits 

high expression in adipose cells (Miranda et al., 2014; Pan et al., 2022).  

The CDK17 gene, belonging to the cyclin-dependent kinase (CDK) family, 

primarily regulates vital cellular processes such as the cell cycle and transcription (Pan et 

al., 2021). CDK family genes regulate adipocyte differentiation (Pan et al., 2021). The 

RARRES2 gene is involved in the regulation of fat cell differentiation, protein 
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phosphorylation, and insulin receptor signaling pathway. Acts upstream of or within 

brown fat cell differentiation (Coppack, 2001).  

Also, in genomic regions associated with PFT trait, a group of genes related to 

various traits was also identified (TOR4A, NELFB, NDOR1, MUCL1, DCC and IRS2. Pitt 

et al. (2019) associated the genes TOR4A, NELFB, RNF224, CYSRT1, and NDOR1 with 

a QTL related to milk traits, reproduction, conformation, and fatty acids. MUCL1, a gene 

linked to several traits, was identified in a QTL related to daughter pregnancy rate, milk 

fat yield, and milk production in Charolais cattle (Olšanská et al., 2020). DCC is related 

to body depth as pointed out by Abdalla et al. (2023). IRS2 encodes the insulin receptor 

substrate 2, a signaling protein that mediates effects of insulin, insulin-like growth factor 

1, and other cytokines. Some studies have reported that IRS2 has crucial roles in 

regulating cellular processes, such as growth, development, survival, and metabolism 

(Zhang et al., 2023).  

 

4. Conclusions 

The results presented in this study provide new insights into the biological and 

molecular mechanisms underlying the novel phenotypes of APF and PFT in feedlot. This 

study showed that the genetic architecture of these phenotypes demonstrates a polygenic 

inheritance pattern, with several genomic regions exhibiting small effects. Different 

candidate regions for APF and PFT were identified, which are associated with traits of 

economic importance such as growth, feed efficiency, fertility, and carcass. Several genes 

involved in biological processes related to the metabolism of carbohydrates, proteins and 

lipids and immunological functions and behavior were also identified. In this way, these 

findings provide us with a better understanding of the biological and genetic control of 

the expression of APF and PFT. 
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Figure S1. Manhattan plot of the genomic regions of 10 adjacent SNPs that explain more 

than 0.5% of the additive genetic variance (Var) obtained in the 1nd iteration of the 

WssGWAS for accumulated profitability in Nelore cattle. 
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Figure S2. Manhattan plot of the genomic regions of 10 adjacent SNPs that explain more 

than 0.5% of the additive genetic variance (Var) obtained in the 2nd iteration of the 

WssGWAS for accumulated profitability in Nelore cattle. 
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Figure S3. Manhattan plot of the genomic regions of 10 adjacent SNPs that explain more 

than 0.5% of the additive genetic variance (Var) obtained in the 1nd iteration of the 

WssGWAS for profit per kilogram of liveweight gain in Nelore cattle. 
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Figure S4. Manhattan plot of the genomic regions of 10 adjacent SNPs that explain more 

than 0.5% of the additive genetic variance (Var) obtained in the 2nd iteration of the 

WssGWAS for profit per kilogram of liveweight gain in Nelore cattle. 
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Figure S5. Manhattan plot of absolute values of SNP effects estimated obtained in the 3nd 

iteration of the WssGWAS for accumulated profitability in Nelore cattle.  
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Figure S6. Manhattan plot of absolute values of SNP effects estimated obtained in the 3nd 

iteration of the WssGWAS for profit per kilogram of liveweight gain in Nelore cattle.  
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CHAPTER 4: GENOMIC PREDICTION FOR NOVEL FEEDLOT 

PROFITABILITY RELATED-TRAITS IN NELORE CATTLE 

 

Abstract: The aim of this study was to assess the accuracy, bias, and dispersion of 

genomic predictions accumulated profitability (APF) and profit per kilogram of 

liveweight gain (PFT) in Nelore cattle using different prediction approaches. Data set 

consisted of 3,969 phenotypic records for each trait. The pedigree harbored information 

from 38,930 animals born between 1998 and 2016, 2,691 sires and 19,884 dams. A total 

of 2,449 animals were genotyped with the Clarifide® Nelore 3.0 SNP panel. Nine models 

for genomic prediction were evaluated: a linear animal model was applied to estimate the 

genetic parameters and to perform the genomic single-trait best linear unbiased prediction 

(ST_ss - default), bi-trait ssGBLUP (TT_CAR, TT_W450, and TT_DMI), and multi-trait 

ssGBLUP (MT_ss), and finally, two models using the weighted linear (ST_sswl1 and 

ST_sswl2) and non-linear  (ST_sswnl1 and ST_sswnl2) single-step genomic approach 

(WssGBLUP) were implemented to predict genomic breeding values (GEBV). The 

ability to predict future performance was calculated as the correlation between GEBV and 

adjusted phenotypes. The average prediction accuracy of the GEBV of the models ranged 

from 0.345 to 0.665 for PFT and from 0.425 to 0.603 for APF. The predictive capability 

of the MT_ss model (0.665) was significantly higher than that of the other models for 

PFT, except for the TT_CAR model (0.604), which also showed improvements in 

predictive capacity. For APF, the MT_ss (0.561) and TT_W450 (0.556) models 

demonstrated improvements in genomic prediction accuracy compared to the other 

models. In general, the single trait ssGBLUP (ST_ss – default) models and the nonlinear 

weighting did not increase the accuracy of predictions for both traits. For the phenotypic 

prediction ability of PFT, the linear WssGBLUP models ST_sswl1 (0.65) and ST_sswl2 

(0.70), TT_W450 W450 (0.64), and ssGBLUP-M (0.66) demonstrated the highest 

prediction abilities. Similar results were observed for the phenotypic prediction ability of 

APF for both models. However, the linear WssGBLUP model ST_sswl1 (0.84) and 

ST_sswl2 (0.94) provided higher prediction compared to the bi-trait and multi-trait 

models. The results indicate that the multi-trait model achieved better predictive ability 

for the new traits of PFT and APF. Multi-trait genomic selection may provide greater 

genetic gains than other models for these new economically important traits in breeding 

programs. 
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Keywords: Genomic selection, multi-trait model, prediction accuracy, phenotypes of 

profit. 

 

1. Introduction  

Beef cattle genetic breeding has proven and will continue to be an essential driver 

of sustainability in the livestock industry worldwide (Mueller & Van Eenennaam, 2022). 

Selective breeding for economically important traits has been performed typically based 

on phenotypic observations (Meuwissen et al., 2016). In the last decades, significant 

advances in the tools and methods used in genetic improvement occurred, increasing the 

speed of the rate of genetic change (Van Eenennaam et al., 2017). Objective 

measurements replaced subjective records, and more refined statistical methods were 

adopted to separate heritable genetic effects from environmental factors (Van Eenennaam 

et al., 2014). Among these methods, the application of genomic selection stands out as 

the strategy with the highest potential to increase the rate of genetic progress in livestock 

breeding (Weigel et al., 2010). 

Genomic selection has been advancing rapidly, and even after a decade since its 

initial implementation, various innovative resources continue to be incorporated 

(VanRaden et al., 2020). Despite this progress, it is becoming increasingly challenging to 

meet the needs of the market and livestock producers, in addition to the expectations of 

consumers (Merks et al., 2012). Livestock farming is facing new challenges regarding 

sustainability, considering its three main components: social, environmental, and 

economic (Boichard & Brochard, 2012). 

In the current "phenomic era," it is crucial to have access to robust phenotypes to 

address these new concerns (Boichard et al., 2016). In livestock farming, new possibilities 

are emerging using precision data (Boichard et al., 2016). Technological innovation and 

the ability to handle large volumes of data play a significant role in this scenario (Seidel 

et al., 2020). Considering current and future perspectives, selection goals should 

incorporate new phenotypes and additional traits (Merks et al., 2012), supported by high-

precision or large-scale technological tools (Seidel et al., 2020). 

One of these new phenotypes includes the ability to predict an animal's 

profitability and utilize this prediction to assist in identifying and selecting high-

performance animals based on their genetic potential for economic return. Additionally, 

this tool aims to be a management strategy and decision-making tool that directly impacts 
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productivity and sustainability. These phenotypes encompass accumulated feedlot 

profitability (AFP) and profit per kilogram of liveweight gain (PFT), measurements 

obtained in the context of precision livestock techniques, which are proposed in this study 

as a strategy considering current trends. 

In this regard, genomic selection brings new possibilities to initiate the selection 

of emerging traits, which ones often have reference populations with a limited number of 

animals, as phenotyping large volumes still needs to be feasible due to the cost and 

challenges of practical measurement (Calus et al., 2013). Therefore, genomic selection 

has proven to be an advantageous resource for increasing genetic gains, especially for 

complex traits, challenging, or costly-to-measure traits with low heritability (Alvarenga 

et al., 2020). 

In this scenario, different methodologies have been proposed to estimate Genomic 

Estimated Breeding Values (GEBVs), such as the single-step Genomic Best Linear 

Unbiased Prediction (ssGBLUP) (Misztal et al., 2009; Aguilar et al., 2010; Christensen 

& Lund, 2010). The ssGBLUP combines phenotype, pedigree, and genomic information 

simultaneously in individuals with phenotypic but no genotypic information and 

individuals with only genotypic information through a pedigree-based relationship matrix 

(A) with the genomic relationship matrix (G) into a hybrid matrix (H) (Legarra et al., 

2009; Christensen & Lund, 2010). However, this approach assumes that the effects of 

single nucleotide polymorphisms (SNPs) have equal variance, which may not be the most 

appropriate assumption biologically (Meuwissen et al., 2001; VanRaden, 2008; Goddard 

& Hayes, 2009). As a result, approaches that consider locus-specific variance have been 

proposed, such as the weighted single-step GBLUP method (WssGBLUP), proposed by 

Zhang et al., 2016, which is an extended method of ssGBLUP that assigns different 

weights to SNPs used in the calculation of matrix G. 

Most of the current genomic prediction models have been supported by univariate 

analyses (Mehrban et al., 2021). However, this analysis may need to adequately reproduce 

the complex interactions among the analyzed traits, as it does not capture the flow of 

information between them through available information on genetic (co)variances (Gaire 

et al., 2022). These (co)variances result from pleiotropy and linkage disequilibrium, 

which are involved in complex relationships among quantitative traits (Lynch, 1998). 

Therefore, the multi-trait model adopted in genomic selection has demonstrated 

efficiency in integrating information and identifying the effect of association among traits, 

resulting in more precise GEBV predictions than univariate analysis models (Calus & 
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Veerkamp, 2011; Guo et al., 2014; Wang et al., 2017). Thus, it is presumed that the multi-

trait model enhances gains by increasing the predictive capacity of GEBVs through the 

incorporation of records of genetically correlated traits, especially for traits with low 

heritability or limited number of phenotypes (Song et al., 2019), such as the feedlot 

profitability-related traits proposed in this study. 

In this context, the present study aimed to assess the predictive ability for novel 

feedlot profitability-related traits in Nelore cattle. For this purpose, seven models were 

evaluated, as follow: Best linear unbiased genomic prediction of single-step (ssGBLUP) 

and genomic single-step Weighted Linear and Non-linear approaches (WssGBLUP) 

under single-, two- and multi-trait models. The model comparison was based on the bias, 

dispersion, and accuracy of genetic values for profitability-related traits. 

 

2. Materials and methods  

This study was exempt from evaluation by the Animal Ethics Committee (CEUA), 

as established by Law No. 11,794 of 08/10/2008 and Normative Resolution No. 51 of 

05/19/2021 from the National Council for Animal Experimentation Control (CONCEA) 

because all the analyses were performed using pre-existing databases. 

 

2.1 Data source  

The dataset used in this study was provided by the National Association of 

Breeders and Researchers (ANCP, São Paulo, Brazil) in collaboration with @Tech 

(Piracicaba, São Paulo, Brazil). The ANCP provided the pedigree information and 

genotypes, and novel feedlot profitability-related phenotypes were provided by @tech. 

For further information about the company, please refer to the website 

https://techagr.com/beeftrader. The animals belonged to 26 different herds located in the 

Southeast, Northeast, and Midwest regions of Brazil. The pedigree contained information 

of 38,930 animals, born from 1998 to 2016, comprising 2,691 sires and 19,884 dams. 

 

2.2 Phenotyping  

Novel phenotypes: The new phenotypes analyzed were accumulated feedlot profitability 

(AFP) profit per kilogram of liveweight gain (PFT) in feedlot. @Tech's algorithms are 

designed to make full use of this data, ideally collected within a standardized 80-day trial 

period for running in the BeefTrader Decision Support System generating the phenotypes 
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used by the Livestock Profit Tool (LPT) profitability. For trials that do not meet this 80-

day standard, our system employs Artificial Intelligence and advanced growth modeling 

techniques to set the standard. This approach considers historical data to produce 

estimates that align with the 80-day prediction requirements of the LPT, ensuring robust 

and reliable analytics across varying trial durations. 

The BeefTrader algorithm uses animal traits as input variables (gender, breed, 

body condition score, initial weight, initial date, among other exogenous factors that 

impact on growth dynamics), daily weights individually collected through a weighing 

sensor (daily basis), and information on the nutritional composition of the diets. The 

records for obtaining the new phenotypes were collected from animals participating in 

feed efficiency trials, following the same guidelines as Mendes et al., 2020, as mentioned 

in the section on feed efficiency traits. Based on this information, adjusted for local 

conditions, weight prediction is carried out in two steps: based on the biology of each 

animal and with the nutritional data and animal daily weight profile (observed or 

predicted), it is possible to estimate an optimal growth function for the animals (Step 1); 

from there, a dynamically adjusted linear or non-linear regression is performed using the 

least squares method on the weights to fit the predicted growth curve (Step 2). From the 

predicted growth curve, it is possible to find other variables required by the model, 

including animal performance in terms of growth and composition of gain, as well as 

economic and environmental factors. The profitability is the central trait used by LPT, as 

commented, thus the next topics the @Tech intention is to present the equations related 

to this core phenotype. 

 

Accumulated kilograms* 

                                                  (𝑠𝑏𝑤 ∗ 𝑐𝑑𝑓/100) / 15 

 

Where: 

𝑠𝑏𝑤: Shrunk Body Weight (kg) - 96% of the Body Weight 

𝑐𝑑𝑓:  Carcass Dressing (%) 

 

kilograms ∗ Gain 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑎𝑖𝑛 = 𝑎𝑐𝑢𝑚 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠 [2] − 𝑎𝑐𝑢𝑚 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠 [1] 

 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑎𝑖𝑛 = 𝑎𝑐𝑢𝑚 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠 [𝑑] − 𝑎𝑐𝑢𝑚 𝑎𝑟𝑟𝑜𝑏𝑎 [1] + 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑎𝑖𝑛 
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Where: 

Acum 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠 = accumulated 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠 (15𝑘𝑔) on a specific day 
d = Day 

gain initial = gain to be considered on the first day since it is unknown. This value 

becomes a constant. 
Note: The correct procedure for the first day would be to calculate based on the corral 

weight and remove the constant from the subsequent days. 
 

Daily Cost 

𝐷𝑀𝐼 ∗ 𝑑𝑖𝑒𝑡 𝑝𝑟𝑖𝑐𝑒 (𝑘𝑔) + 𝑓𝑒𝑒𝑑𝑙𝑜𝑡 𝑑𝑎𝑖𝑙𝑦 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑  

Where: 

dmi = Dry Matter intake (kg) 

diet_price_kg = diet cost ($/kg) 
feedlot_daily_overhead = non-feed cost ($) 

 

Daily Revenue 

𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠  𝑝𝑟𝑖𝑐𝑒 ∗ 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠  𝑔𝑎𝑖𝑛 

Where, 

arroba_price = price of the arroba ($/𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠) 

gain_arroba = arroba gain (𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠 /day) 
 
 

Daily Profit 

𝑟𝑒𝑣𝑒𝑛𝑢𝑒 𝑑𝑎𝑖𝑙𝑦 − 𝑐𝑜𝑠𝑡 𝑑𝑎𝑖𝑙𝑦 

Where, 
Revenue daily = daily revenue ($)  

Cost daily = daily cost ($) 

 

Total Revenue, Cost and Profit 

∑ 𝑑𝑎𝑖𝑙𝑦 𝑟𝑒𝑣𝑒𝑛𝑢𝑒

𝑡𝑖𝑚𝑒

 

 

∑ 𝑑𝑎𝑖𝑙𝑦 𝑐𝑜𝑠𝑡

𝑡𝑖𝑚𝑒

 

 

∑ 𝑑𝑎𝑖𝑙𝑦 𝑝𝑟𝑜𝑓𝑖𝑡

𝑡𝑖𝑚𝑒

 

Where, 
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revenue_daily= see section 4 

cost_daily = see section 3 
profit_ddaily  = see section 5 
 

Cost and Profit per kilograms ∗ 

total cos𝑡/𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠  𝑔𝑎𝑖𝑛𝑡 

𝑡𝑜𝑡𝑎𝑙  𝑝𝑟𝑜𝑓𝑖𝑡/𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠  𝑔𝑎𝑖𝑛 𝑡  

Where, 

Total profit = see section 6 
Total cost = see section 6 

𝑎𝑟𝑟𝑜𝑏𝑎 𝑔𝑎𝑖𝑛 𝑡  = 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠 gain over time, see section 2 

* To assess the profit obtained by meat producers, it is common to use the unit of 

measurement 'arroba' in Brazil. In this study, the 'arroba' unit is defined as equivalent to 

15 kilograms, following the standard practice in the national livestock industry. 

Therefore, for the purposes of this study, the term 'arroba' in this equation will be used to 

represent the profit obtained per each 15 kilograms of meat produced. 

 

Standardization of Costs and Arroba Pricing  

i. Food cost: 

Even considering the effect of the batch (animals evaluated by farm) in the analyses, all 

common foods between batches, especially among farms, had their prices standardized to 

set up the food cost (for example, for corn silage, the price was always the same for the 

different batches). Based on the cost of natural natter and the percentage of dry matter 

(DM), from the measurement of each animal's daily individual intake, the food cost for 

everyone was imputed over the 80-day evaluation period. It is important to note that after 

a seven-day adaptation period, there were 80 days of data collection on weight, DM intake 

(DMI), and food and non-food costs (operational cost), all individual, to obtain the 

measure of accumulated profit and profitability per arroba gained by the evaluated animal. 

 

ii. Non-food cost (operational cost): 

The non-feed cost was also set at the same value for all evaluated batches with the aim of 

standardizing this cost source in the process, and it's a source that doesn't affect the 

animals' performance. 

 

iii. Price paid per  kilograms (arroba*): 
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The arroba price for all batches was standardized to the prices at the time of data 

collection, with the aim of ensuring that the revenue per arroba was equal for all animals. 

The prices followed those indicated by Center for Advanced Studies in Applied 

Economics (CEPEA, https://www.cepea.esalq.usp.br/br/indicador/boi-gordo.aspx)* - 

University of São Paulo (USP). 

 

For the two- and multi-trait genomic prediction models, the following traits were 

included in the analyses along with AFP and PFT:  

 

Growth: A growth trait considered in this study was adjusted weight at 450 days of age 

(W450, kg). The calculation of standardized weight was conducted through linear 

regression, considering the average daily gain assessed between days 405 and 495 of age 

for the variable P450 (Negreiros et al., 2022). 

 

Carcass: The carcass traits considered were ribeye area (REA, cm2) and rump fat 

thickness (RFT, mm). To obtain carcass phenotypes, ultrasound images were taken of the 

Longissimus dorsi muscle among the 12th and 13th ribs (REA) and in the rump region, 

between the ilium and ischium at the intersection of the Gluteus medius and Biceps 

femoris muscles (RFT), using the ALOKA 500V equipment with a 3.5 MHz linear probe. 

 

Feed Efficiency: The feed efficiency trait considered was DMI.  This trait was obtained 

through Intergado® and GrowSafe electronic systems. Feed efficiency tests followed the 

guidelines established by Mendes et al., 2020, for assessing individual feed intake in beef 

cattle using both electronic systems. Animals were kept in collective or individual pens 

and subjected to a 21-day adaptation period followed by a valid 70-day testing phase. 

Throughout this period, each animal’s average weight was recorded via manual weighing 

every 14 days or through automated weighing platforms (Intergado®). Daily dry matter 

intake (DMI, kg/day) was derived from the mean of all valid individual daily intake values 

electronically recorded by the Intergado and GrowSafe systems during the test period. 

 

2.4 Statistical and quality control analyses 

The contemporary groups (CG s) were composed considering the effect of farm, 

year, and season of birth (dry: March to August, and rainy: September to February), 

management group and sex. For the feed efficiency trait, the identification of the feed 
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efficiency test was also considered to form the CG. The phenotypic quality control 

removed records that deviated 3.5 standard deviations from the overall mean of the CG 

and those with fewer than four records. The descriptive statistics for APF, PFT, and 

carcass, growth, and feed efficiency related-traits used in the two- and multi-trait analyses 

after quality control are summarized in Table 1. 

 

Table 1. Descriptive statistics for profitability, growth, feed efficiency, and carcass-related 

traits in Nelore cattle. 

TRAIT N MEAN SD MIN MAX CV (%) CG 

APF ($) 3969 157.71 67.18 -17.98 420.06 42.60 252 

PFT ($/kg) 3969 36.65 9.54 -13.33 51.23 26.04 252 
W450 (kg) 55052 289.96 63.23 119.00 592.00 21.81 2211 

DMI (kg/day)  11169 8.17 2.06 3.18 20.66 25.23 251 
REA (cm2)  37091 57.55 12.85 20.45 114.97 22.33 1559 

RFT (mm) 37003 4.35 2.74 0.13 24.39 62.94 1559 
APF, accumulated profitability; PFT, Profit per each 30 kilograms; BW450, weight at 450 days of age; 

DMI, dry-matter intake; REA, rib eye area; RFT, rump fat thickness; N, number animals with records; SD, 

standard deviation; MIN, minimum; MAX, maximum; CV, coefficient of variation; CG, number 

contemporary group. 

 

2.5 Genotyping  

Genotypes were provided by the National Association of Breeders and 

Researchers (ANCP), Ribeirão Preto, Brazil. A total of 2,449 animals were genotyped 

with the low-density panel (Clarifide® Nelore 3.0). The genotype quality control (QC) 

was performed by the PREGSF90 package (Aguilar et al., 2014), excluding both animals 

and SNPs from the dataset with call rates < 0.90. Additionally, SNPs with a minor allele 

frequency (MAF) < 0.05, Mendelian conflicts > 1%, monomorphic SNPs with redundant 

positions, SNPs deviating from Hardy-Weinberg equilibrium expectations, and those 

located on non-autosomal chromosomes were also excluded. After QC, 2,449 genotyped 

animals and 35,658 SNPs remained in the database for analysis. 

 

2.6 Genomic prediction models 

Genomic prediction models for APF and PFT was performed using nine genomic 

models applying the ssGBLUP methodology as follows: single-trait model, three two-

trait models, and multi-trait model. Additionally, in the case of the single-trait model, the 

weighted linear and non-linear single-step genomic approach (WssGBLUP) was also 

applied in the analyses. The analyses were performed using the BLUPF90 family (Misztal 

et al., 2002). The general model can be defined as: 
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                                                    𝒚 = 𝑿𝜷 + 𝒁𝒖 + 𝒆         (1)                               

where y is a vector of phenotypic records; β is a vector of fixed effects; X is a design 

matrix associating β with y; u is a vector of random effects of the direct additive genetic 

effects; Z is the incidence matrix associating u with y; e is the residual effect. 

Assumptions for residual effects are described below: 

𝒆 ~ 𝑵(𝟎, 𝑰𝝈𝒆
𝟐), 

where 𝝈𝒆
𝟐 is the residual variance, and I is an identity matrix with a dimension equal to 

the number of animals with records. 

 

The description of the genomic prediction models is presented in Table 2. 

 

Table 2. Genomic prediction models for feedlot profitability-related traits in Nelore cattle. 

Model Description 

Single-trait  
ST_ss (default) ssGBLUP based on genotypic records (default) 

ST_sswl1 

ssGBLUP weighting the diagonal of D matrix with the 𝜆 values 

obtained in the 1
st
 iteration of the WssGWAS for nonlinear 

model 

ST_sswl2 
ssGBLUP weighting the diagonal of D matrix with the 𝜆 values 

obtained in the 2
nd

 iteration of the WssGWAS for linear model 

ST_sswnl1 

ssGBLUP weighting the diagonal of D matrix with the 𝜆 values 

obtained in the 1
st
 iteration of the WssGWAS for nonlinear 

model 

ST_sswnl2 

ssGBLUP weighting the diagonal of D matrix with the 𝜆 values 

obtained in the 2
st
 iteration of the WssGWAS for nonlinear 

model 

 
 

Two-trait  

TT_CAR ssGBLUP based on genotypic records + carcass records 

TT – W450 ssGBLUP based on genotypic records + BW450 records 

TT_DMI ssGBLUP based on genotypic records + DMI records 

 
 

Mult-trait  

MT_ss 
ssGBLUP based on genotypic records + W450, DMI, REA and 

RFT records 
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Single-Trait prediction model 

The ssGBLUP single-trait model using information of both genotyped and non-

genotyped phenotype information and using both marker and pedigree information for 

genetic evaluations were performed. The ssGBLUP is a modification of the BLUP model, 

in which the inverse of the numerator relationship matrix A−1 is replaced by H−1 (Aguilar 

et al., 2010), which is given by: 

𝐇−𝟏 = 𝐀−𝟏 + [
𝟎 𝟎
𝟎 𝐆−𝟏 − 𝐀𝟐𝟐

−𝟏] 

where H is the relationship coefficient matrix between the animals; A is the (numerator) 

additive relationship matrix; 𝐀𝟐𝟐
−𝟏 is a partition of A corresponding to the genotyped 

animals and 𝑮−𝟏 is the genomic relationship matrix as described by VanRaden (2008), 

where: 

𝐺 = 𝑍𝑍′ 

Where, 

𝑍 = (𝑀 − 𝑃)/ [2 ∑ 𝑝𝑗(1 − 𝑝𝑗)
𝐾

𝑗=1
]

1/2

 

in which M is the matrix of K SNP genotype for each animal, and P is the matrix of 

frequency of the second allele p in the locus j (p j) multiplied by two. 

 

Two-trait and multi-trait prediction model 

In the analysis of two or three traits and multi-trait models, carcass traits (REA 

and RFT), growth (W450), and feed efficiency (DMI) were identified as those genetically 

correlated with APF and PFT in feedlot, being used as predictors in genomic prediction. 

The covariances and genetic correlations are presented in the supplementary material 

section, completing Table S2, and further details about the datasets used in this study are 

described in Pereira et al. (2024). Regarding the construction of the models, for the two-

trait analysis, the traits W450 and DMI were considered alongside APF and PFT in 

feedlot, leading to the following combinations: APF-W450, APF-DMI, PFT-W450, and 

PFT-DMI. The three-trait analysis combined carcass traits with APF and PFT, resulting 

in APF-REA-RFT and PFT-REA-RFT combinations. In the multi-trait analysis, the traits 

W450, DMI, REA, and RFT were considered in the APF and PFT models. 

The two, three-trait and multi-trait models was applied to estimate genomic 

breeding values for traits through the realized matrix (H) as follows (adapted from Guo 

et al., 2014): 
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𝑦1

⋮
𝑦𝑛

=  [
𝐼1

⋮
0

     
0
⋮

𝐼𝑁

]  [

𝜇1

⋮
𝜇𝑛

] +  [
𝑍1

⋮
0

   
0
⋮

𝑍𝑛

] [

𝑔1

⋮
𝑔𝑛

]   +  [

𝑒1

⋮
𝑒𝑛

] 

 

Where 𝑦 is the vector that includes each of the n type traits. In these two-trait and multi-

trait model, it was assumed that the genomic effects ~N (0, G ⊗ H) and the residuals (e) 

~N (0, R ⊗ I) where ⊗ is the Kronecker direct product, G and R are the genetic and 

residual covariance matrices, respectively and I is an identity matrix. The assumed co-

variance structure is: 

 

𝑉𝑎𝑟 [
𝑔
𝑒] =  [

𝐺 ⊗ H 0

0 𝐼𝜎𝑒
2] 

 

Single-trait WssGBLUP linear and nonlinear 

Before performing weighted genomic prediction, a single-step weighted GWAS 

(WssGWAS) was conducted to identify SNPs and their respective weights. To perform 

the ssGWAS a single-trait animal model was applied. The effects and variances of the 

SNPs were estimated following the methodology proposed by Wang et al. (2012). In this 

methodology, SNP effects are obtained from the genomic values estimated by the 

ssGBLUP model, where SNP weights are iteratively obtained. The iterative process 

increases the weights of SNPs with large effects and decreases those with small effects, 

essentially regressing them towards the mean. The equation 1 was employed to construct 

the WssGBLUP model. For the derivation of SNPs effects and weights, the animal effect 

was decomposed into genotyped animals (𝑎𝑔) and not genotyped (𝑎𝑛), as described by 

Wang et al. (2012). The animal effect of the genotyped animals is a function of the SNP 

effects (Wang et al., 2012):  

 

𝑎𝑔 = 𝑍𝑔𝑢 

 

where 𝒁𝒈 represents the relationship matrix of the genotypes of each locus, and u is a 

vector of the SNPs effects. The variance of animal effects was assumed as: 

 

𝑣𝑎𝑟 (𝑎𝑔) = 𝑣𝑎𝑟(𝑍𝑔𝑢) = 𝑍𝑔𝐷𝑍𝑔´𝜎𝑢 
2 =  𝐺∗𝜎𝑎

2 
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where D is a diagonal matrix of weights for variances of SNP variances (D = I for 

GBLUP), 𝜎𝑢
2 is the variance of the additive genetic effect obtained from each SNP when 

the same variance is assumed for all SNPs, σ𝑎
2  is the additive genetic variance, and 𝐺∗ is 

the weighted genomic relationship matrix. 

 

The ratio of covariance of additive genetic (𝑎g) and SNPs (u) effects is: 

 

𝑣𝑎𝑟𝑢

𝑎𝑔 =  [
𝑍𝐷𝑍′ 𝑍𝐷′

𝐷𝑍′ 𝐷
] σ𝑢

2  

 

Sequentially: 

 

𝐺∗ =
𝑣𝑎𝑟(𝑎𝑔)

𝜎𝑎
2

=
𝑣𝑎𝑟(𝑍𝑢)

𝜎𝑎
2

= 𝑍𝐷𝑍′λ  

 

where λ is a normalizing constant described by VanRaden et al. (2009) as: 

 

𝜆 =  
𝜎𝑢

2

𝜎𝑎
2

=  
1

∑ 2𝑝𝑖(1 − 𝑝𝑖)𝑚
𝑖=1

 

 

where m is the number of SNPs and pi is the frequency of the second allele in the i-th 

SNP. The SNP effects can be described by Wang et al. (2012): 

 

𝑢̂ =  λD𝑍′𝐺∗−1𝑎̂𝑔 = 𝐷𝑍′[𝑍𝐷𝑍′]−1𝑎̂𝑔 

 

The estimated SNP effects can be used to calculate the variance of each individual SNP 

(Zhang et al., 2010), which can be used as different weighting for each SNP: 

 

σu,i
2 = 𝑈i

22𝑝𝑖(1 − 𝑝𝑖) 

Where σu,i
2  is the j SNP weight (equivalent to j SNP variance); û is a vector of estimated 

j SNP effect; and p is the allele frequency of j SNP.  

Two strategies were used to weight SNPs and perform genomic prediction: 

linear and non-linear methodology. Weighted ssGWAS is an iterative process with 

several steps, considering t as the iteration number, the steps are (Wang et al., 2012): 
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8. Let D = I in the first step. 

9. Calculate G = 𝐙𝒈𝐃𝐙𝒈´𝛌. 

10. Calculate GEBVs for the entire data set using the ssGBLUP. 

11. Convert GEBVs to SNP effects (û): û = 𝛌 DZ′ (𝐙𝒈D𝐙𝒈′ 𝛌)−1â𝐠 ,  

where â𝐠  is the GEBVs of animals which were also genotyped. 

12. Calculate weight for each SNP for linear model (Zhang et al., 2010):  

𝑑𝑖 = 𝑎̂𝑖
22𝑝𝑖(1 − 𝑝𝑖) (default) 

For the non-linear weighted model, using similar approach to VanRaden (2008), 

SNP-specific weights were calculated as: 

𝑑𝑖 =  1.125
|𝑎̂𝑖|

𝑠𝑑 (𝑎)̂
−2

 

13. Normalize SNP weights to remain the total genetic variance constant. 

14. Back to step 2. 

A total of two iterations (i.e., using the identity matrix plus one iteration using 

the D matrix derived from SNP solutions) were used in the WssGBLUP because the 

second iteration provided higher GEBV accuracies in the preliminary analysis. The SNP 

solutions were estimated using the POSTGSF90 software (Aguilar et al., 2014). The 

genomic association analyses were performed using the BLUPF90 software family 

(Misztal et al., 2002) including the genomic information (Aguilar et al., 2010).  

 

2.7 Prediction accuracy, bias, and dispersion 

To conduct the prediction analyses, the data set was divided into whole (w, 

training) and partial (p, validation) subsets, which initially requires evaluations with a 

partial dataset where the phenotypic records of target validation animals are removed. 

Thus, the partial GEBV (GEBVp) is calculated from relatives and genomic information. 

Then, the phenotypes of validation animals are included for further evaluation, and the 

whole genomic breeding value (GEBVw) is achieved. Animals born in 2022 and 2023 

belonged to six herds were selected as the target validation group for being the young 

selection candidates. This validation methodology simulates the practical situation of 

genomic selection, where the estimate of GEBV prediction of younger animals (i.e., those 
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candidates for selection) is based on phenotypic and genotypic information from proven 

or older animals in the total population. Table 3 presents the descriptive statistics of the 

traits for the whole and partial datasets. 

 

Table 3. Number of animals with phenotypic records in the whole and partial subsets for 

profitability-related traits in Nelore cattle. 

Dataset Trait N Mean SD Min Max CV (%) CG 

Training 
APF 3478 160.26 62.54 -17.98 420.06 39.02 242 

PFT 3478 37.62 8.83 -13.34 51.23 23.47 242 

Validation 
APF 502 139.64 91.75 -6.59 374.61 65.70 28 

PFT 502 29.76 11.39 -3.49 48.57 38.28 28 
APF, accumulated profitability; PFT, Profit per each 30 kilograms; N, number animals with records; SD, 

standard deviation; MIN, minimum; MAX, maximum; CV, coefficient of variation; CG, number 

contemporary group. 

 

Prediction accuracy, bias, and dispersion were calculated according to the 

methodology proposed by Legarra and Reverter (2018). The prediction accuracy (𝑎𝑐𝑐𝑝
2) 

was calculated as a direct estimate of squared population accuracy of the estimated 

genomic breeding value (GEBV) based on partial dataset. In this methodology, the 

covariance of GEBV based on partial and whole data (ρ𝐶𝑜𝑣
2

𝑤,𝑝
) is a function of the 

squared accuracy (reliability) of the partial GEBV, as follows: 

 

𝑎𝑐𝑐𝑝
2 =  ρ𝐶𝑜𝑣

2
𝑤,𝑝

=  √
𝑐𝑜𝑣(û𝑤 , û𝑝)

(1 − 𝐹̅)σ𝑎
2

 

 

where ûw is the GEBV estimated with genomic and phenotypic information; ûp is 

the (G)EBV considering the partial dataset; F is the average inbreeding coefficient 

estimated for the animals included in the validation dataset; and σ𝑢
2 is the additive genetic 

variance for APF and PFT. 

The averages of the estimated breeding values were used to estimate bias. It has 

an expected value of 0 if the evaluation is unbiased. 

µ𝑤𝑝 = û𝑝 −  û𝑤 

The dispersion was obtained through the regression of EBV from whole data on 

EBV from partial data. The 𝑏𝑤,𝑝 has an expectation, 𝐸(𝑏𝑤,𝑝) = 1 if there is not 

over/under dispersion: 
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𝑏𝑤,𝑝 =
𝑐𝑜𝑣(û𝑤 , û𝑝)

𝑣𝑎𝑟(û𝑝)
 

To assess the predictive capacity of the phenotypes in the different models, the 

Pearson's correlation between the o GEBV and the adjusted phenotype for the fixed 

effects (Yc) was used (Legarra et al., 2008). The phenotype adjustment was performed 

using the PREDICTF90 software (BLUPF90 family) (Misztal et al., 2002). This 

correlation was calculated between a GEBV and the adjusted phenotype (y*; phenotype 

y adjusted for fixed effects) for individuals in the validation population, and divided by 

the square root of heritability (ℎ2): 

𝐴𝐶𝐶𝑃 =
𝑟(𝑢̂𝑝, 𝑦∗)

√ℎ2
 

 

3. Results and Discussion 

The prediction accuracy, bias, and dispersion of genomic prediction for PFT and 

APF using different prediction models are described in Table 4. The prediction accuracy 

results obtained through the different models demonstrate their dependency on the ability 

to capture and evaluate the genetic architecture of the studied traits, as well as the effects 

of the present polymorphisms, regardless of their magnitude, whether they are of minor 

or significant effect (Terakado et al., 2021). 

The results revealed that the prediction accuracy of the ST_sswl1 (0.587) and 

ST_sswl2 (0.528) models was higher to that of the ST_ss model (0.345) for PFT. A 

significant gain of 59% in prediction accuracy was observed using the WssGBLUP 

method. A similar trend was observed concerning APF, where the prediction accuracy of 

ST_sswl1 (0.575) and ST_sswl2 (0.603) models was higher to that of the ssGBLUP 

single-trait model (0.425).  On the other hand, the results obtained with the ST_sswnl1 

(0.365 and 0.443, respectively) and ST_sswnl2 (0.365 and 0.442, respectively) nonlinear 

models did not indicate improvements compared to the ssGBLUP model in terms of 

prediction accuracy for both traits. 

These results pointed out that the ST_sswnl1 and ST_sswnl2 nonlinear models 

did not contribute to improvements in prediction accuracy for both PFT and APF traits. 

This considerable increase observed in prediction accuracy of the ST_sswl1 and 

ST_sswl2 linear models compared to the nonlinear can be attributed to the polygenic 
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nature of the analyzed trait, where several small-effect SNPs probably explained most of 

the genetic additive variation for feedlot profitability-related traits in Nelore cattle. 

Concerning the two- and three-trait models, when incorporating information from 

correlated traits, such as W450 and carcass traits with PFT, an improvement in the 

accuracy of the GEBVs obtained was observed, 0.604 and 0.523 (TT_CAR and 

TT_W450), respectively. However, the PFT benefited less from the two-trait analysis 

with DMI (TT_ DMI), which can be attributed to the low genetic correlation between 

these traits and the lower number of records for DMI, reducing accuracy to 0.372. 

Likewise, it was observed that in the two- and three-trait models for APF with W450, 

DMI, and carcass traits, there were also improvements in predictive ability, with values 

of 0.503, 0.505, and 0.556 for TT_DMI, TT_CAR and TT_W450, respectively.  

The differences observed, therefore, in the precision of GEBVs between the two- 

and three-trait models can be explained by the fact that the traits that contributed more 

information to the models, as well as those that showed higher genetic correlation with 

PFT, such as W450 and carcass traits, and APF with DMI, W450, and carcass, resulted in 

improvements in the predictive ability of GEBVs. 

According to results obtained here, the MT_ss model showed the highest 

prediction accuracy (0.665) than all evaluated models for PFT, meaning that prediction 

accuracy increased using the multi-trait model compared to the single and two-trait 

models. In contrast, the prediction accuracy of GEBV using the MT_ss model (0.561) for 

APF showed little improved predictive ability compared to the values obtained from the 

WssGBLUP single-trait linear model, ssGBLUP two-trait model, and three models. These 

results align with those reported by Guo et al. (2014), and Song et al. (2019), where the 

two-trait and multi-trait genomic models proved more effective for traits with a smaller 

set of phenotypic data. This observation is relevant for livestock breeding programs, as 

often, no phenotypes are available for all traits of interest in all individuals of a reference 

population Guo et al. (2014). According to Guo et al. (2014), incorporating phenotypic 

data from correlated and easily measurable traits through the multi-trait model improved 

the accuracy of GEBVs. 

 

 

 



136 
 

Table 4. Genomic prediction accuracy, bias, and dispersion of genomic prediction for 

feedlot accumulated profitability and profit per kilogram of liveweight gain in Nelore 

cattle based on different models. 

Trait Model Accuracy Bias Dispersion 
 Single-trait    

Profit per 
kilogram of 

liveweight 

gain  

ST_ss 0.345 (0.000) -0.771 (0.250) 1.124 (0.043) 
ST_sswl1 0.587 (0.000) -0.792 (0.242) 0.713 (0.013) 

ST_sswl2 0.528 (0.000) -0.746 (0.234) 0.470 (0.014) 

ST_sswnl1 0.365 (0.000) -0.770 (0.249) 1.111 (0.038) 
ST_sswnl2 0.365 (0.000) -0.770 (0.249) 1.120 (0.038) 

    

Two-trait    

TT_CAR 0.604 (0.005) -1.230 (0.345) 0.969 (0.019) 

TT_W450 0.523 (0.000) -1.031 (0.349) 1.063 (0.019) 

TT_ DMI 0.372 (0.000) -1.075 (0.346) 1.122 (0.034) 

    
Mult-trait    

MT_ss 0.665 (0.00) -1.111 (0.344) 0.982 (0.016) 
 Single-trait    

Accumulated 

Profitability 

ST_ss 0.425 (0.000) 0.002 (0.018) 1.104 (0.045) 

ST_sswl1 0.575 (0.000) 0.049 (0.017) 0.739 (0.023) 

ST_sswl2 0.603 (0.000) 0.033 (0.024) 0.556 (0.022) 

ST_sswnl1 0.443 (0.000) 0.001 (0.017) 1.084 (0.040) 

ST_sswnl2 0.442 (0.000) 0.001 (0.017) 1.093 (0.040) 
    

Two-trait    

TT_CAR 0.505 (0.000) 0.096 (0.015) 1.068 (0.032) 

TT_W450 0.556 (0.000) 0.002(0.015) 1.087 (0.028) 

TT_ DMI 0.503 (0.000) -0.003 (0.016) 1.065 (0.034) 

    
Mult-trait    

MT_ss 0.5612 (0.000) 0.004 (0.015) 1.049 (0.027) 

ST_ ss, ssGBLUP (default) based on genotypic records; ST_sswl1, ssGBLUP weighting the diagonal of 

D matrix with the 𝜆 values obtained in the 1st iteration of the WssGWAS for nonlinear model; ST_sswl2, 

ssGBLUP weighting the diagonal of D matrix with the 𝜆 values obtained in the 2nd iteration of the 

WssGWAS for linear model; ST_sswnl1, ssGBLUP weighting the diagonal of D matrix with the 𝜆 values 

obtained in the 1st iteration of the WssGWAS for nonlinear model; ST_sswnl2, ssGBLUP weighting the 

diagonal of D matrix with the 𝜆 values obtained in the 1st iteration of the WssGWAS for nonlinear model; 

TT_CAR, ssGBLUP based on genotypic records + carcass records; TT_W450, ssGBLUP based on 

genotypic records + BW450 records; TT_ DMI, ssGBLUP based on genotypic records + DMI records; 

MT_ss, ssGBLUP based on genotypic records + BW450, DMI, REA and RFT records; 𝜆, lambda 

(proportion of the additive genetic variance explained by each SNP). 

Regarding bias, it was observed to be low and followed the same trends for all 

prediction models of the PFT. Different variables may limit the response of prediction 

accuracy and reduce the bias of genomic predictions, as reported by Lund et al. (2009), 

Zhang et al. (2011), and Goddard (2009), where the genetic structure of the traits in focus 
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can be characterized by heritability and the number of associated QTLs. This report is 

consistent with the biases found in our results, which may be due to the low genetic 

variance and heritability of the PFT trait. In contrast, the observed values for bias in PFT 

were close to zero for all models, ranging from -0.003 to 0.096. 

The dispersion values varied for PFT and APF among the different models, as 

illustrated in Table 4. These values indicated variation in predictive ability, showing both 

inflation and deflation of the estimated GEBVs. Values below 1 indicate overdispersion 

(inflation) of the estimated genetic values, while values above 1 imply underdispersion 

(deflation) (Himmelbauer et al., 2023). The single-trait models ssGBLUP, nonlinear 

models (ST – sswnl1 and ST - sswnl2), and the bi-trait models TT_CAR, TT_W450, and 

TT_DMI obtained slightly higher slopes, ranging from 1.063 to 1.124 for PFT and from 

1.065 to 1.104 for PFT, respectively, suggesting a slight tendency towards inflation and 

more significant variability in predictions. The ST_sswl1 and ST_sswl2 single-trait 

models exhibited the lowest dispersions, with values of 0.713 and 0.470 for PFT and 

0.556 and 0.739 for APFT, respectively. However, it is important to note that although the 

predictive ability of these models was high compared to other single-trait models and like 

two- and multi-trait models, these values showed greater underdispersion and indicated 

possible deflation in the estimated genetic values. 

The models that showed dispersions with values closer to 1 were the multi-trait 

models (MT_ss), with values of 0.982 and 1.049 for PFT and APF, respectively. When 

predictions are deflated and greater than one, in practical terms, the difference between 

the progenies of selected sires is expected to be greater than predicted by the GEBV. In 

contrast, the opposite occurs when the predictor is inflated (Chiaia et al., 2017). Although 

the predictive ability between multi-trait and bi-trait models is similar, the dispersion of 

multi-trait predictions was close to one, demonstrating the consistency of this model for 

better prediction of GEBVs. In other words, this model was more effective in predicting 

the absolute differences between individuals under evaluation (Rezende et al., 2012) for 

the two traits evaluated in this study.  

Regarding the accuracies of prediction of the fraction of additive genetic variance 

that explains the phenotype, the accuracy was calculated by dividing the correlation 

between the partial GEBV and the phenotype adjusted for fixed effects by the square root 

of the heritability. The weighted models ST_sswl1 and ST_sswl2 presented the highest 

estimate of the accuracy of the genetic fraction that explains the phenotype, 0.65 and 0.70, 

respectively for PFT. Similarly, for APF, the ST_sswl1 and ST_sswl2 models showed 
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high accuracy, 0.84 and 0.94, respectively, which was significantly higher compared to 

the other models. In the two-, three-, and multi-trait scenarios, accuracy ranged from 0.46 

to 0.57. For this dataset, it was observed that the weighted WssGBLUP linear model was 

more efficient in predicting the fraction of additive genetic variance responsible for 

explaining the phenotype. These results also showed that incorporating information from 

weighted regions of GWAS into genomic prediction models, through the weighted linear 

WssGBLUP approach, can be an efficient strategy to improve the accuracy of predicting 

the fraction of additive genetic variance for the traits under study. 

Regarding the predictive accuracy of the fraction of additive genetic variance 

explaining the adjusted phenotype for PFT, weighted linear model demonstrated the 

highest predictive abilities, ST_sswl2 (0.70), followed by MT_ss (0.66), ST_sswl (0.65), 

and TT_W450 (0.64). Conversely, models ST_sswnl1 (0.58) and ST_sswnl2 (0.55) 

exhibited slightly lower predictive abilities, while models TT_CAR (0.41), TT_DMI 

(0.38), and ST_ss (0.33) displayed the lowest predictive abilities.  

For APF, the same trend was observed for weighted linear models, where ST_sswl 

(0.84) and ST_sswl2 (0.94) showed substantially higher predictive accuracies of the 

fraction of additive genetic variance explaining the adjusted phenotype for APF compared 

to other models, such as TT_W450 (0.57), MT_ss (0.56), ST_sswnl1 (0.54), ST_sswnl2 

(0.54), TT_DMI (0.52), TT_CAR (0.46), and ST_ss (0.46). 

These results suggest that the analyses of two- and three-multi-trait models and 

nonlinear weighted models did not contribute to the predictive accuracies of the adjusted 

phenotypes. On the other hand, weighted regions, where weighted linear models used 

their own QTL information, contributed to a better predictive capacity of the fraction of 

additive genetic variance explaining the adjusted phenotypes for PFT and APF. This 

indicates that these models were more effective in capturing the additive genetic variation 

that genuinely contributes to each trait. 

 

4. Conclusions 

The multi-trait model increased the genomic prediction accuracy of feedlot 

profitability related traits. Genomic prediction using multi-trait models is particularly 

relevant when the trait is complex and the number of phenotypes is limited, as is the case 

for novel traits. This strategy is more accurate for improving genomic prediction estimates 

of these traits and integrating them efficiently into genetic improvement programs. These 

results would provide additional support to breeders to improve management and 
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selection decision in order to enhance the feedlot profitability operations. In the weighted 

linear single-trait model, incorporating weighted regions for GEBV prediction showed 

adequate predictive ability, but resulted in a dispersion below 1 and yielded more biased 

predictions.  

For commercial herds, feedlot operators, and buyers of calves for rearing and 

fattening, for example, the models in general demonstrated adequate predictive ability of 

the phenotype. The results obtained in predicting future performance (phenotype) can 

assist these producers in making more assertive management decisions, aiming to 

optimize productivity efficiency and maximize profitability per animal in their operations. 

This would enable producers to prioritize animals with greater genetic potential for higher 

economic returns based on feedlot profitability-related traits. 
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6. Supplementary material 

 

Table S1. Covariance components and genetic and residual correlations between 

accumulated profitability (APF), profit per kilogram of liveweight gain (PFT) and e 

adjusted weight at 450 days of age (W450), dry matter intake (DMI), ribeye area (REA) 

and rump fat thickness (RFT). 

Trait Components W450 DMI REA RFT 

PFT 

𝐶𝑜𝑣𝑎 35.78 0.47 5.13 -1.19 

𝐶𝑜𝑣𝑒 43.99 0.92 5.17 1.49 

𝑟𝑎 0.64 ±0.05 0.26 ±0.08 0.44 ±0.07 -0.68 ±0.04 

𝑟𝑒 0.09 ±0.03 0.06 ±0.02 0.05 ±0.02 0.07 ±0.03 

APF 

𝐶𝑜𝑣𝑎 35.78 0.47 5.13 -1.19 

𝐶𝑜𝑣𝑒 43.99 0.92 5.17 1.49 

𝑟𝑎 0.64 ±0.05 0.26 ±0.08 0.44 ±0.07 -0.68 ±0.04 

𝑟𝑒 0.09 ±0.03 0.06 ±0.02 0.05 ±0.02 0.07 ±0.03 

𝐶𝑜𝑣𝑎, additive genetic covariance; 𝐶𝑜𝑣𝑒  , residual covariance;  𝑟𝑎 additive genetic 

correlation; 𝑟𝑒 , residual correlation. 
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Figure S1 Manhattan plot of the genomic regions of 10 adjacent SNPs that explain more 

than 0.5% of the additive genetic variance (Var) obtained in the 1nd iteration of the linear 

WssGWAS for accumulated profitability in Nelore cattle. 
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Figure S2. Manhattan plot of the genomic regions of 10 adjacent SNPs that explain more 

than 0.5% of the additive genetic variance (Var) obtained in the 2nd iteration of the linear 

WssGWAS for accumulated profitability in Nelore cattle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



148 
 

Figure S3. Manhattan plot of the genomic regions of 10 adjacent SNPs that explain more 

than 0.5% of the additive genetic variance (Var) obtained in the 1nd iteration of the linear 

WssGWAS for profit per kilogram of liveweight gain in Nelore cattle. 
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Figure S4. Manhattan plot of the genomic regions of 10 adjacent SNPs that explain more 

than 0.5% of the additive genetic variance (Var) obtained in the 2nd iteration of the linear 

WssGWAS for profit per kilogram of liveweight gain in Nelore cattle. 
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Figure S5. Manhattan plot of the genomic regions of 10 adjacent SNPs that explain more 

than 0.5% of the additive genetic variance (Var) obtained in the 1nd iteration of the 

nonlinear WssGWAS for accumulated profitability in Nelore cattle. 
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Figure S6. Manhattan plot of the genomic regions of 10 adjacent SNPs that explain more 

than 0.5% of the additive genetic variance (Var) obtained in the 2nd iteration of the 

nonlinear WssGWAS for accumulated profitability in Nelore cattle. 
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Figure S7. Manhattan plot of the genomic regions of 10 adjacent SNPs that explain more 

than 0.5% of the additive genetic variance (Var) obtained in the 1nd iteration of the 

nonlinear WssGWAS for profit per kilogram of liveweight gain in Nelore cattle. 
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Figure S8. Manhattan plot of the genomic regions of 10 adjacent SNPs that explain more 

than 0.5% of the additive genetic variance (Var) obtained in the 2nd iteration of the 

nonlinear WssGWAS for profit per kilogram of liveweight gain in Nelore cattle. 
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CHAPTER 5: FINAL CONSIDERATIONS 

The beef cattle industry plays an important role in the global economy, food 

security, and the agribusiness economy, and is essential to develop strategies and 

technological solutions that promote its long-term sustainability. Genetic improvement is 

an efficient tool that contributes to the increase of sustainable production in livestock due 

to its ability to generate continuous and cumulative productive and economically 

improvements over time. The use of new measurement technologies in precision livestock 

farming, promoting phenotyping through phenomics, has provided new opportunities for 

genetic improvement.  

Among them, it highlights the more precise and large volumes of measurement of 

traditional traits, such as carcass, weight, feed efficiency, and reproduction, and 

introducing new traits into selection programs.  These new traits can be considered 

technological solutions resulting from the synergy between genetics, precision livestock 

farming, and phenomics, aiming to complement the already used selection criteria and 

enhance the outcomes of economic, productive, and sustainable indicators. And, through 

genomics, these traits have the potential to be explored and incorporated into selection 

programs, thus accelerating the genetic gain of herds. 

Finishing is recognized as a strategic and determining phase within the beef cattle 

production cycle, representing all the work carried out from the breeding phase to the 

moment of slaughter. At this stage, attention and appropriate investments are necessary 

to ensure the success and profitability of the business. Producers often focus on carcass 

traits and growth to obtain high performance from animals in feedlot. Despite significant 

advances, there is still room for further growth in terms of productivity. In this sense, this 

study investigated two novel traits: profit per kilogram of liveweight gain (PFT) and 

accumulated profitability (APF) in feedlot.  

The variance components and genetic parameters for these traits were estimated, 

showing genetic variability and moderate to low heritability. The results provided 

important information on the relationship of these traits with carcass, reproduction, feed 

efficiency, growth, and body composition. Including these traits as selection criteria can 

improve performance and economic indicators due to the observed associations with dry 

matter intake, body composition, rib eye area, and yearling weight. Furthermore, it is 

important to highlight that, despite being traits measured in feedlot, a favorable 

relationship with sexual precocity indicators traits was observed. 
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These two traits are recommended for both rearing and finishing. Feedlot 

operators will have at their disposal two new tools that can assist in managing the animals 

during lot formation along with selection indices, considering the expected economic 

return. Based on this, breeders can make more informed decisions, as animals with more 

significant genetic potential for profitability will be prioritized to exit the feedlot earlier. 

This allows for developing specific strategies for each lot, considering the expected 

productive and economic performance. Identifying animals with higher economic return 

potential reduces production costs and minimizes resource wastage, such as unnecessary 

feeding for animals that will not achieve the expected performance in the feedlot. This 

increases meat production efficiency and contributes to reducing environmental impact. 

Concerning the favorable association between APF, PFT gain, and indicators traits 

of sexual precocity, it is important to highlight that sexual precocity is closely related to 

herd productivity and the overall efficiency of the production system, which can have a 

considerable impact on production costs and economic returns. The ability to produce 

sexually precocious animals is especially relevant in breeding herds, where age at first 

calving is a performance indicator. The identification and selection of females based on 

profitability traits, along with genetic and reproductive indicators, can lead to 

improvements in the economic outcomes of this phase. This represents another metric for 

selecting females that produce calves with higher growth rates, better carcass 

conformation, and greater feed conversion efficiency. Furthermore, including these traits 

as selection criteria can contribute to reducing the costs associated with maintaining 

economically unproductive dams in the herd. 

Detecting causal genetic variability is one of the main objectives of bovine genetic 

improvement, as understanding the genetic architecture of the characteristics of interest 

is fundamental to efficiently direct genetic variants in the selection process. In this 

context, Genome-Wide Association Studies (GWAS) represent an important approach to 

identifying genomic regions and the genetic basis of complex traits, elucidating the 

associations between genotype and phenotype in each study population. To better 

understand and elucidate the genetic and biological mechanisms associated with 

regulating APF and PFT gain, this study conducted a GWAS analysis using the weighted 

single-step approach and a functional enrichment and metabolic pathway analysis. 

As a result, it was revealed that these traits are controlled by many genes of small 

effect. A total of 21 genomic regions collectively explains 14.67% of the additive genetic 

variance for APF, while 52 genomic regions collectively explain 38.11% of the additive 
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genetic variance for PFT in Nelore cattle. Different candidate genomic regions have been 

associated with biological processes such as carbohydrate, protein, and lipid metabolism, 

as well as physiological processes regulating ingestive behavior and the immune system. 

Several candidate genes located in these genomic regions associated with growth, feed 

efficiency, carcass traits, and fertility were also identified. 

In practical terms, these biological and molecular processes play roles in 

expressing traits that make an animal more profitable. For example, genes in genomic 

regions associated with growth can regulate the expression of growth and growth-related 

hormones, influencing weight gain. Similarly, processes or genes regulating feed 

efficiency or ingestive behavior affect the efficiency of converting feed into body weight, 

such as nutrient absorption and degradation. Additionally, regions associated with carcass 

conformation, fat deposition, and muscle development directly impact the determination 

of the quantity of meat produced. 

As shown in the results of genetic parameter estimation, all these traits are 

associated with the animal's profitability genetic potential. These results contribute to a 

better understanding of the genetic architecture and the identification of molecular 

markers for the new traits proposed in this study, enabling more precise and targeted 

genetic improvement, which may help accelerate genetic gains in Nelore cattle. 

The use of genomic selection in breeding programs has contributed to increasing 

genetic progress, owing to the greater precision of estimated breeding values (EBVs), 

thereby reducing the generation interval. Different methods have been introduced in the 

literature to perform genomic prediction of genetic values. The accuracy, bias, and 

dispersion of genomic predictions are influenced by the trait of interest, the number of 

animals and markers, reference population size, and the trait's heritability. Additionally, 

another critical aspect is the relationship between animals in the reference population and 

the evaluated animals. 

There is generally not a large population of animals with genotypes and 

phenotypes available simultaneously for novel and difficult-to-measure traits. Multi-trait 

models have emerged as a strategy to improve the prediction capacity of these traits. 

Multi-trait models can potentially increase genetic gain for profitability-related traits, as 

they benefit from relationships between traits, such as additional information from genetic 

covariances. These covariances arise from pleiotropy and linkage disequilibrium, 

resulting in complex relationships between traits. 
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The multi-trait model demonstrated to be the most appropriate for estimating 

genomic values for profitability-related traits in Nelore cattle. This study revealed that 

genomic prediction for APF and PFT had a better predictive ability of GEBVs when 

incorporating correlated traits, such as carcass, weight, and dry matter intake. This model, 

therefore, can be used to obtain the most accurate genomic values in young animals. 

Genomic prediction for APF and PFT in young animals can serve as an additional tool to 

distinguish between more and less profitable groups of animals, enabling early decision-

making. 

The predictive ability of the fraction of genetic variance explaining the phenotype, 

using the weighted single-trait linear method, also yielded high accuracy values. This 

predictive capacity is essential for anticipating the future performance of animals 

regarding profitability indicators in selection programs, translating into substantial gains 

in greater economic returns from the animals. 

The results presented are innovative for the new traits evaluated in Nelore cattle 

in feedlot, which have potential as profitability indicators. These traits can assist 

producers and breeding programs identify and select animals with high genetic potential 

for profitability. They can be widely integrated as selection criteria, enabling more 

informed decision-making when selecting individuals based on their productive 

performance and economic return. The integration of genomic regions associated with 

these traits identified by GWAS provides valuable insights into the underlying genetic 

basis and offers opportunities for more effective selection. Genomic predictions would 

significantly contribute to the early identification of the most profitable animals at the 

expense of those with lower-than-expected economic returns, thus accelerating genetic 

progress for these traits through more precise selection. 

 

 


