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ABSTRACT. Developing new cultivars, particularly in perennial species like Coffea arabica, can be a time-

consuming process. Employing molecular markers in genome-wide selection (GWS) for predicting genetic 

values offers an alternative to accelerate this process. However, implementing GWS typically involves 

genotyping many markers for both training and candidate individuals, which can increase the total 

genotyping cost for the breeding program. Therefore, this study aimed to assess the feasibility of using low-

density marker panels to predict the genetic merit of C. arabica for a range of desirable agronomic traits. 

For this purpose, GWS analyses were performed using the G-BLUP method with panels of varying marker 

densities, selected based on marker effect magnitude. The results indicate that employing lower-density 

panels might be advantageous for this species' improvement. Models based on these panels yielded accurate 

predictions for various traits and demonstrated high agreement in terms of selected individuals compared 

to more complex models. 
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Introduction 

Coffee remains a major commodity in the international market, accounting for over 170 million 60 kg bags 

in production during 2022 (ICO, 2023). For coffee-growing regions worldwide, cultivation plays a vital 

economic and social role (Partelli et al., 2014), driving research into genetic improvement programs and 

technological advancements. This has led to the development and recommendation of numerous cultivars 

with enhanced traits such as uniform maturation, resistance or tolerance to pests and diseases, high 

productivity, and beverage quality (Carvalho, 2008; Santana et al., 2021). 

However, one of the biggest challenges in plant genetic breeding, especially for perennial species like 

coffee, is the lengthy and costly process involved in obtaining a new cultivar. And, the molecular markers can 

offer valuable assistance to breeding programs by overcoming this limitation. DNA markers linked to genes 

of interest are essential tools for selecting superior genotypes and play a crucial role in the selection process 

(Caixeta, Pestana, & Pestana, 2015). 

Meuwissen, Hayes, and Goddard (2001) introduced Genomic Wide Selection (GWS), suggesting that 

genetic variation originates from all segments of the genome, with varying contributions. Each segment is in 

high Linkage Disequilibrium (LD) with at least one known genetic marker. GWS relies on molecular genetic 

markers of the Single Nucleotide Polymorphism (SNP) type, abundantly distributed throughout the genome. 

The genetic effects of these markers, in linkage disequilibrium with Quantitative Trait Loci (QTLs), can be 

used to identify candidate individuals for selection, thereby increasing the accuracy of genetic evaluation 

(Goddard & Hayes, 2007; Resende, Silva, Lopes, & Azevedo, 2012). GWS has proven to be a valuable tool for 

estimating the genetic values of plants and animals in a shorter period (Zhang, Yin, Wang, Yuan, & Liu, 2019). 

While high-density SNP marker panels provide better genome coverage, requiring the genotyping of a 

large number of individuals is common for genomic prediction, leading to increased costs for breeding 

programs (Sousa et al., 2019a; Resende et al., 2012). One alternative to minimize these costs is to genotype 

selection candidates with a reduced-density panel of SNPs. This allows for genotyping of more individuals 
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using fewer markers. Studies in diverse fields, including aquaculture data (Kriaridou, Tsairidou, Houston, & 

Robledo, 2020), rice and maize (Sousa et al., 2019b), dairy cattle (Aliloo et al., 2018), soybeans (Ma et al., 

2016), and pigs (Wellmann et al., 2013), have demonstrated the success of selecting markers with relevant 

effects, increasing both accuracy and precision from a low-density and more affordable SNP panel for 

implementing genomic selection in breeding programs. 

In this context, our work aims to evaluate the feasibility of using low-density marker panels to predict the 

genetic value of economically important traits in Coffea arabica. Our goal is to develop a more parsimonious 

prediction model and ultimately reduce genotyping costs in coffee breeding programs. 

Material and methods 

Field trials 

The experiment was conducted at the experimental station of the Department of Plant Pathology at the 

Federal University of Viçosa (UFV) in Viçosa, Minas Gerais State, Brazil (20º44'25" S; 42º50'52" W), starting 

on February 11, 2011. Phenotypic data was collected in the years 2014, 2015, and 2016. In this study, eight 

agronomically important traits were analyzed: branch length (BL), number of vegetative nodes (NVN), total 

number of fruits (NF), canopy diameter (CD), ripening fruit size (RFS), cercosporiosis incidence (Cer), leaf 

miner infestation (LM), and vegetative vigor (Vig). 

For the genetic material, six genotypes from two contrasting groups based on coffee leaf rust resistance 

were selected for crossing: three from the Catuaí group, susceptible to Hemileia vastatrix, and three from the 

‘Híbrido de Timor’ (HdT) group, resistant to H. vastatrix. These crosses resulted in 13 Coffea arabica progenies 

from the Epamig/UFV/Embrapa breeding program, with each progeny containing 15 genotypes. This yielded 

a total of 195 individuals belonging to generations of resistant backcrosses (BCr), susceptible backcrosses 

(BCs), and F2 (Table 1). 

Table 1. Coffea arabica progenies from the Epamig/UFV/Embrapa breeding program. 

Progeny Genotypes Parental 1 Parental 2 

BCr1 1-15 H 419-1 c-17 UFV 445-46 

BCs2 16-30 H 419-1 c-17 UFV 2143-235 

BCr3 31-45 H 514-8 c-387 UFV 440-10 

BCs4 46-60 H 514-8 c-387 UFV 2154-344 

BCr5 61-75 H 514-7 c-364 UFV 440-10 

BCs6 76-90 H 514-7 c-364 UFV 2154-344 

BCr7 91-105 H 419-10 c-214 UFV 445-46 

BCs8 106-120 H 419-10 c-214 UFV 2143-235 

BCs9 121-135 H 513-5 c-14  UFV 2148-57 

F2 10 136-150 H 514-8 c-387 - 

F2 11 151-165 H 514-7 c-364 - 

F2 12 166-180 H 419-10 c-214 - 

F2 13 181-195 H 513-5 c-14 - 

 

In addition to phenotyping, the 195 individuals were genotyped using 40,000 polymorphic probes, yielding 

21,211 SNPs. These markers underwent quality control to remove those failing to meet minimal criteria: Call 

Rate (CR) ≥ 90% and Minor Allele Frequency (MAF) ≥ 5%. For MAF, the critical level was established by the 

equation: 𝑀𝐴𝐹 =
1

√2𝑁
, where N is the number of individuals evaluated. Additionally, markers lacking variance 

within the population were eliminated to avoid false SNPs (Vidal et al., 2010). Following this analysis, 20,477 

SNPs were retained, representing a 3.46% reduction from the initial set. 

Phenotypic data analysis 

Individual analysis of the eight agronomic traits was performed to estimate genetic parameters, and the 

following statistical model was adjusted:  

𝑦 = Xu + Zg + Wp + Vr + Tb + Ri + e                                (1) 

where: y is the vector of phenotypes; u is the general average of each evaluation year; g is the vector of 

progeny effects (random effect); p is the permanent variance between plants (random effect); r is the variance 
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between population types (random effect); b is the variance between plots (random effect); i is the variance 

of the interaction progenies × years (random effect); and e is the vector of errors (random effect). In the model, 

uppercase letters correspond to incidence matrices for the effects. Analyses were performed using the 

Selegen-REML/BLUP software (Resende, 2016). To account for variations due to year, plot, and progeny × year 

interactions, the phenotypic data was adjusted. 

Genomic selection and cross-validation 

Genomic predictions were performed using the G-BLUP (Genomic Best Linear Unbiased Prediction) 

method. This involved first fitting a mixed linear model to estimate additive individual genetic effects based 

on corrected phenotypic data (Resende et al., 2012), as follows: 

y∗ = Xb + Zg + e      (2) 

where: y∗ is the vector of adjusted phenotypic observations for the effects of years, plots, and interaction progenies 

× years; b is the vector of the mean fixed effects; g is the vector of additive individual genetic effect [g~𝑁(0, G𝜎𝑔
2)], 

with 𝐺 being the additive kinship matrix and 𝜎𝑔
2 the additive genetic variance; X and Z are the incidence matrices 

of the fixed and random effects, respectively; e is a normal random error vector, with e~𝑁(0, I𝜎𝑒
2) and 𝜎𝑒

2 being the 

residual variance. The vector g was predicted using the following mixed model equations: 

[
X′X X′Z

Z′X Z′Z + G−1 σe
2

σg
2
] [

𝑏
𝑔

] = [
X′y

Z′y
], 

where: G =
WW′

2 ∑ pi
n
i (1−pi)

 is the additive genomic relatedness matrix, W is the incidence matrix of markers coded 

according to Vitezica, Varona, and Legarra (2013), 𝑝𝑖  is the allele frequency of A of the i-th marker, and 𝑛 is the 

number of markers. Variance components were estimated via REML (Restricted maximum likelihood). 

Therefore, based on the prediction of genomic genetic values (𝑔̂) through the G-BLUP, the estimates of marker 

effects (m̂) were obtained as follows: m̂ = (W′W)−1W′ĝ. 

The population consisted of 195 coffee trees, which were divided into k = 5 folds. Within these folds, 156 

individuals were used for estimating and training the predictive models, while the remaining 39 individuals 

were reserved for validation purposes. This process was repeated five times, ensuring that each group served 

as a validation set once. After these iterations, the predictive ability (𝑟𝑦𝑦̂) was estimated. Subsequently, 

Cohen's Kappa coefficient was employed to assess the agreement among individuals selected using the 

genomic estimated breeding values (GEBV) derived from the various adjusted models. This coefficient takes 

into consideration the probability of random agreement, rendering it a more precise index. The calculation of 

this coefficient can be expressed as follows: 

𝑘̂ =
𝑃𝑟(𝑎) − 𝑃𝑟(𝑒)

1 − 𝑃𝑟(𝑒)
, 

where: 𝑃𝑟(𝑎) − 𝑃𝑟(𝑒) is the proportion of observed agreements that occurred with a magnitude greater than 

what would be expected, and 1 − 𝑃𝑟(𝑒) represents the proportion of observed disagreements. The coefficient 

𝑘̂ ranges from 0 to 1, where higher values indicate a greater level of agreement among the groups. According 

to Landis and Koch (1977), 𝑘̂ values greater than 0.4 are considered satisfactory. 

Different densities of SNP markers were used to assess the feasibility of employing low-density panels for 

predicting the GEBV of the eight analyzed traits. This feasibility was determined by evaluating how the 

reduction in the number of markers affected the predictive ability of the model (𝑟𝑦𝑦̀), using the G-BLUP 

method. Additionally, concordance between individuals selected using GEBV derived from all 20,477 markers 

and those selected from models adjusted for various densities was examined. 

Initially, models were adjusted for each trait of interest with different marker densities, namely: 2,047; 

4,095; 6,143; 8,191; 10,238; 12,286; 14,334; 16,382; 18,429; and 20,477 SNPs, selected based on the magnitude 

of their effects (largest effects in absolute value). These densities correspond to 10, 20, and so on up to 100% 

of the 20,477 SNPs.  

From the initial analyses, the model with the best predictive ability estimates and the highest concordance 

with the full model (20,477 SNPs) was selected for each trait. Based on these best models, further evaluations 

were conducted using SNPs corresponding to the intersection and union of those previously selected within 

the three groups of traits evaluated in this study. 
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The formation of these groups aimed to identify SNPs associated with different traits collectively, as the 

breeding process considers all traits simultaneously. Group 1 included traits associated with Arabica coffee 

morphology (CD, BL, NVN, and Vig), Group 2 included traits related to C. arabica fruits (RFS and NF), and 

Group 3 comprised traits associated with diseases and pests affecting C. arabica (Cer and LM). 

The set intersection of SNPs represents those markers that are common to the traits within their respective 

group. Conversely, the SNP union sets result from markers that are relevant to at least one of the traits in 

each group, including markers selected for all traits. Subsequently, new densities were obtained, and the 

analyses were repeated to estimate predictive ability and agreement. 

Results and discussion 

This study aimed to assess the potential of low-density marker panels for predicting the GEBVs associated 

with economically significant traits in Coffea arabica. To this end, the G-BLUP genomic selection method was 

employed. This method involved adjusting models for each trait of interest at various marker densities, 

ranging from 2,047 to 20,477 SNPs. These models were selected based on the strength of their effects, 

prioritizing those markers with the most effects in absolute terms. 

After adjusting the model for different marker densities, the goal was to identify the subset of markers that 

would provide the most accurate GEBV values for the evaluated traits. To achieve this, we estimated predictive 

capacities (𝑟𝑦𝑦̂), along with their standard errors (Table 2), and assessed the concordance between individuals 

selected based on GEBV derived from the complete set of 20,477 SNPs and those chosen from models fitted 

with different marker densities (Table 3). 

Predictive capabilities ranged from 0.03 to 0.39 across different marker densities for the eight evaluated 

traits. Overall, these estimates remained relatively stable, except for the LM trait, which exhibited an increase 

in predictive ability from 0.03 for the complete model to 0.12 for the model with the lowest density evaluated 

(Table 2). However, when considering the standard error, they remained constant for each trait. This outcome 

suggests that genomic prediction can be effectively conducted with lower marker densities, without 

sacrificing predictive ability. 

Likewise, Sousa et al. (2019a) used the G-BLUP method with the RKHS (Reproducing Kernel Hilbert Spaces) 

procedure, incorporating a Bayesian algorithm and using 20,477 SNPs for a GWS research on C. arabica traits. 

They reported a predictive ability of 0.40 for CD, 0.32 for BL, 0.21 for Vig, 0.23 for RFS, and 0.31 for Cer. These 

values closely align with ours, where a lower number of SNPs were analyzed. 

Table 2. Mean predictive abilities values (𝒓𝒚𝒚̂) and their standard errors (between parentheses) using different SNP marker densities.  

Traits Number of SNPs 

 2047 4095 6143 8191 10238 12286 14334 16382 18429 20477 

CD 0.36 

(0.02) 

0.36 

(0.02) 

0.39 

(0.02) 

0.39 

(0.02) 

0.39 

(0.02) 

0.38 

(0.02) 

0.37 

(0.02) 

0.37 

(0.02) 

0.36 

(0.02) 

0.36 

(0.02) 

BL 0.36 

(0.03) 

0.35 

(0.03) 

0.35 

(0.03) 

0.35 

(0.03) 

0.35 

(0.03) 

0.35 

(0.03) 

0.34 

(0.03) 

0.34 

(0.03) 

0.34 

(0.03) 

0.33 

(0.03) 

NVN 0.26 

(0.07) 

0.26 

(0.07) 

0.29 

(0.08) 

0.30 

(0.08) 

0.30 

(0.08) 

0.30 

(0.08) 

0.30 

(0.07) 

0.29 

(0.06) 

0.28 

(0.06) 

0.27 

(0.05) 

Vig 0.30 

(0.07) 

0.32 

(0.08) 

0.33 

(0.08) 

0.33 

(0.08) 

0.32 

(0.08) 

0.32 

(0.08) 

0.30 

(0.07) 

0.29 

(0.07) 

0.28 

(0.07) 

0.27 

(0.07) 

RFS 0.28 

(0.07) 

0.27 

(0.07) 

0.25 

(0.07) 

0.24 

(0.07) 

0.24 

(0.07) 

0.24 

(0.07) 

0.24 

(0.07) 

0.23 

(0.07) 

0.23 

(0.07) 

0.22 

(0.07) 

NF 0.29 

(0.04) 

0.26 

(0.05) 

0.25 

(0.05) 

0.23 

(0.05) 

0.21 

(0.05) 

0.20 

(0.04) 

0.18 

(0.04) 

0.16 

(0.04) 

0.14 

(0.03) 

0.11 

(0.03) 

Cer 0.33 

(0.08) 

0.32 

(0.08) 

0.32 

(0.08) 

0.32 

(0.08) 

0.32 

(0.08) 

0.32 

(0.08) 

0.32 

(0.08) 

0.32 

(0.08) 

0.31 

(0.08) 

0.31 

(0.08) 

LM 0.12 

(0.06) 

0.09 

(0.06) 

0.09 

(0.07) 

0.09 

(0.07) 

0.09 

(0.07) 

0.08 

(0.07) 

0.08 

(0.08) 

0.06 

(0.08) 

0.05 

(0.08) 

0.03 

(0.08) 

CD = Canopy diameter; BL = Branch length; NVN = Number of vegetative nodes; Vig = Vegetative Vigor; RFS = Ripening fruit size; NF = Total number of 

fruits; Cer = Cercosporiosis incidence; LM = Leaf miner infestation. 

The agreement between individuals selected based on GEBV using all 20,477 markers and those 

chosen from models with lower marker densities (Table 3) ranged from 0.62 to 1, falling within the substantial 

to almost perfect range according to Landis and Koch (1977). While decreasing marker density led to a slight 

reduction in agreement, the selected individuals remained similar in their predictions. 
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Table 3. Cohen's Kappa coefficient of agreement between individuals selected based on genomic estimated breeding values (GEBV) 

using all (20,477) vs. reduced-density markers (selected by fitted models). 

Number of SNPs 

Traits 2047 4095 6143 8191 10238 12286 14334 16382 18429 20477 

CD 0.69 0.72 0.84 0.81 0.87 0.94 0.94 0.97 0.97 1 

BL 0.87 0.94 0.94 0.97 1 1 1 1 1 1 

NVN 0.65 0.81 0.91 0.94 0.97 0.97  0.97 1 1 1 

Vig 0.65 0.84 0.91 0.94 0.94 0.94  0.97 1 1 1 

RFS 0.62 0.84 0.87 0.91 0.91 0.94  0.94 0.97 1 1 

NF 0.78 0.84 0.94 0.94 0.97 0.97  0.97 0.97 0.97 1 

Cer 0.69 0.75 0.81 0.87 0.97 0.97  0.97 0.97 0.97 1 

LM 0.65 0.75 0.84 0.97 0.94 0.91  0.91 0.94 0.97 1 

CD = Canopy diameter; BL = Branch length; NVN = Number of vegetative nodes; Vig = Vegetative Vigor; RFS = Ripening fruit size; NF = Total number of 

fruits; Cer = Cercosporiosis incidence; LM = Leaf miner infestation. 

Our results indicate that genomic prediction in C. arabica can effectively be carried out with fewer than 

20,477 SNPs. The models' predictive abilities remained stable, and agreement between individuals selected 

by different models remained strong (Tables 2 and 3). This finding aligns with previous research. For instance, 

Habier, Fernando, and Dekkers (2009) demonstrated, using simulated data, that a subset of low-density 

markers can effectively represent high-density SNP genotypes. Moreover, Wellmann et al. (2013), in a study 

involving a breeding line of pigs, showed that imputing low-density marker panels is a promising strategy, even 

when the low-density panel contains fewer than 1,000 markers. Likewise, Kriaridou et al. (2020) examined SNP 

panels of varying densities in a dataset featuring different aquaculture species, revealing that a low-density SNP 

panel can provide near-maximal prediction accuracy for most polygenic traits in aquaculture stock. 

Starting with a panel of 2,047 markers, representing 10% of the total available SNPs, we explored the 

feasibility of utilizing even lower marker densities without compromising prediction quality. Subsequently, 

within the formed groups, we aimed to identify subsets by intersecting and uniting the 2,047 SNPs with the 

highest significance for each trait within their respective groups. We then evaluated these subsets in terms of 

predictive ability (𝑟𝑦𝑦), standard errors, and agreement between models based on these subsets. 

In Group 1 (comprising CD, BL, NVN, and Vig traits), the intersection of the 2,047 markers yielded 655 

SNPs, equivalent to 32% of the original 2,047 and about 3.2% of the total 20,477 evaluated SNPs. The 

predictive ability estimates (𝑟𝑦𝑦) or the traits within this Group (Table 4) remained consistent when compared 

to the model with 2,047 SNPs. This observation suggests that prediction quality remained unaffected despite 

the reduction in marker density.  

In Group 2 (RFS and NF), the intersection of the 2,047 markers resulted in 890 SNPs, representing 

approximately 43.5% of the original 2,047 markers and about 4.3% of the total 20,477 SNPs. Within this group, 

the predictive ability of the model containing 890 SNPs remained consistent when compared to the model 

with 2,047 SNPs for the RFS trait (Table 4). Notably, the predictive ability for RFS in this study exceeded that 

reported for the same trait in Coffea canephora (Alkimim et al., 2017), where it was recorded as 𝑟𝑦𝑦 = 0.00. 

However, for the NF trait, there was a slight decrease in predictive ability (Table 4). 

Table 4. Mean predictive abilities of models with 2,047 SNPs, intersection sets, and union sets of SNPs. 

Group Traits Initial  

Model * 

SNPs of 

 intersection 

SNPs of the union 

of traits by group 

SNPs of the union  

of all traits 

1 

CD 0.36 (0.02) [2047] 0.31 (0.02) [655] 0.35 (0.03) [3830] 0.35 (0.03) [5970] 

BL 0.36 (0.03) [2047] 0.32 (0.02) [655] 0.35 (0.02) [3830] 0.34 (0.02) [5970] 

NVN 0.26 (0.07) [2047] 0.18 (0.05) [655] 0.30 (0.08) [3830] 0.31 (0.07) [5970] 

Vig 0.30 (0.07) [2047] 0.22 (0.07) [655] 0.30 (0.08) [3830] 0.30 (0.08) [5970] 

2 
RFS 0.28 (0.07) [2047] 0.28 (0.07) [890] 0.23 (0.07) [3204] 0.20 (0.08) [5970] 

NF 0.29 (0.04) [2047] 0.18 (0.02) [890] 0.30 (0.03) [3204] 0.17 (0.03) [5970] 

3 
Cer 0.33 (0.08) [2047] 0.31 (0.08) [270] 0.31 (0.08) [3824] 0.31 (0.09) [5970] 

LM 0.12 (0.06) [2047] 0.18 (0.06) [270] 0.02 (0.08) [3824] 0.10 (0.07) [5970] 

CD = Canopy diameter; BL = Branch length; NVN = Number of vegetative nodes; Vig = Vegetative Vigor; RFS = Ripening fruit size; NF = Total number of 

fruits; Cer = Cercosporiosis incidence; LM = Leaf miner infestation. *Model containing 10% of the markers with the best accuracy and concordance. (*) 

standard error of the estimates; and [*] number of SNPs considered in the model. 

In Group 3 (Cer and LM), the intersection of the 2,047 SNPs resulted in 270 SNPs, constituting nearly 13% 

of the original 2,047 markers and just over 1% of the total 20,477 SNPs (Table 4). Regarding the Cer trait, there 
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was no statistically significant change in predictive ability when comparing the model containing 270 SNPs 

to the one with 2,047 SNPs. However, there was a slight increase in predictive ability for the LM trait (Table 4). 

It is worth noting that Sousa et al. (2019a) reported similar 𝑟𝑦𝑦 values for Cer (0.31) and LM (0.18) in their C. 

arabica studies. 

The union of the 2,047 markers within Group 1 (CD, BL, NVN, and Vig) resulted in 3,830 SNPs, for Group 2 

(RFS and NF), it yielded 3,204 SNPs, and for Group 3 (Cer and LM), it produced 3,824 SNPs. When considering 

all traits simultaneously (CD, BL, NVN, RFS, NF, Cer, and LM), it resulted in 5,970 SNPs (Table 4). In terms of 

predictive abilities, there were no statistically significant changes observed for the union of Group 1 traits 

when compared to the parameter estimates, indicating that prediction quality was maintained when 

increasing the density from 2,047 SNPs to 3,830 markers. This outcome was expected since, as shown in 

Table 2, marker densities ranging from 2,047 SNPs to 20,477 SNPs exhibited statistically similar values of 𝑟𝑦𝑦. 

This trend was also observed for the traits within Group 2. 

In Group 3, the predictive ability estimated of 𝑟𝑦𝑦 for the density of 3,824 SNPs remained consistent when 

compared to the density of 2,047 SNPs for the Cer trait (Table 4). However, for the LM trait, there was a 

decrease in 𝑟𝑦𝑦 for the density of 3,824 markers compared to the density of 2,047 SNPs (Table 4). 

Regarding the union of SNPs for all traits, the 𝑟𝑦𝑦̂ estimated of 𝑟𝑦𝑦 for the density of 5,970 SNPs did not 

exhibit statistically significant changes for CD, BL, NVN, Vig, Cer, and LM when compared to the density of 

2,047 SNPs. However, there was a slight decrease in 𝑟𝑦𝑦̂ for RFS and NF concerning this parameter (Table 4). 

In terms of concordances between individuals selected based on GEBV using all 20,477 SNPs and those 

chosen from the model fitted with the 655-marker density in the intersection of Group 1, there was substantial 

agreement for BL, moderate agreement for CD, and fair agreement for NVN (Table 5). Within the intersection 

of Group 2, the Kappa index remained at 0.62 for the RFS trait when considering the density of 890 SNPs 

compared to the density of 2,047 markers, indicating substantial agreement. For Group 3, the concordances 

were moderate for the individuals selected using GEBV based on the 20,477 SNPs and those selected from the 

model with 655 SNPs for both traits in this group. 

Table 5. Cohen's Kappa coefficient (CK) of agreement between individuals selected based on genomic estimated breeding values 

(GEBV) using all (20,477) vs. reduced-density markers (selected by fitted models) with the different intersection and union densities. 

Group  CK - Initial  

Model* 

CK – intersection of traits 

 by group 

CK – union of traits 

 by group 

CK - union 

of all traits 

1 

CD 0.69 [2047] 0.53 [655] 0.69 [3830] 0.81 [5970] 

BL 0.87 [2047] 0.72 [655] 0.91 [3830] 0.94 [5970] 

NVN 0.65 [2047] 0.34 [655] 0.78 [3830] 0.84 [5970] 

Vig 0.65 [2047] 0.18 [655] 0.75 [3830] 0.87 [5970] 

2 
RFS 0.62 [2047] 0.62 [890] 0.75 [3204] 0.81 [5970] 

NF 0.78 [2047] 0.53[890] 0.87 [3204] 0.84 [5970] 

3 
Cer 0.69 [2047] 0.53 [270] 0.72 [3204] 0.81 [5970] 

LM 0.65 [2047] 0.56 [270] 0.65 [3204] 0.81 [5970] 

CD = Canopy diameter; BL = Branch length; NVN = Number of vegetative nodes; Vig = Vegetative Vigor; RFS = Ripening fruit size; NF = Total number of 

fruits; Cer = Cercosporiosis incidence; LM = Leaf miner infestation. [*] number of SNPs considered in the model. 

In the union groups, most of the traits exhibited increased Kappa index estimates compared to the group 

using 20,477 SNPs. Substantial agreement was observed for traits CD, NVN, and Vig in Group 1. A similar 

substantial agreement was found for RFS in Group 2 and for Cer and LM in Group 3. As for the union of SNPs 

across all traits, the Kappa index (CK) registered an overall increase in estimates for all traits (Table 5). This 

rise in concordances for the union groups and when considering all traits was expected because higher 

densities approach the 20,477 SNPs density, leading to increased concordance between individuals selected 

using GEBV with these SNPs and those selected from the model with varying densities. 

In summary, using marker densities from the intersection of SNPs within groups, considering trait 

relationships, proves to be a viable strategy for enhancing C. arabica through GWS. Despite slight decreases 

in Kappa indexes for these group traits, individuals remained in agreement regarding phenotype and total 

SNP count. 

Furthermore, employing the union of SNPs within the formed groups also appears to be a feasible strategy. 

It does not substantially alter predictive capabilities, and concordances between selected individuals remain 

noteworthy. 
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These strategies (SNP intersection and union) offer breeders the opportunity to reduce genotyping costs 

while improving C. arabica by selecting more productive, adapted, and high-quality beverage cultivars. 

Platforms allowing the use of a selected, cost-effective subset of SNPs with robust sequencing coverage can 

be implemented in practice. 

Conclusion 

Our findings highlight the effectiveness of low-density marker panels in genomic prediction, particularly 

when considering intersection groups and unions among markers for different traits in Coffea arabica. Models 

based on these panels consistently yield favorable predictive ability estimates and substantial concordance 

values among selected individuals when compared to models that use higher marker densities. 
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