
Citation: Furuya, D.E.G.; Bolfe, É.L.;

Parreiras, T.C.; Barbedo, J.G.A.;

Santos, T.T.; Gebler, L. Combination of

Remote Sensing and Artificial

Intelligence in Fruit Growing:

Progress, Challenges, and Potential

Applications. Remote Sens. 2024, 16,

4805. https://doi.org/10.3390/

rs16244805

Academic Editor: Annamaria

Castrignanò

Received: 20 September 2024

Revised: 18 December 2024

Accepted: 19 December 2024

Published: 23 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Combination of Remote Sensing and Artificial Intelligence in
Fruit Growing: Progress, Challenges, and Potential Applications
Danielle Elis Garcia Furuya 1,*, Édson Luis Bolfe 1,2 , Taya Cristo Parreiras 2 , Jayme Garcia Arnal Barbedo 1 ,
Thiago Teixeira Santos 1 and Luciano Gebler 3

1 Brazilian Agricultural Research Corporation, Embrapa Agricultura Digital, Campinas 13083-886, São Paulo,
Brazil; edson.bolfe@embrapa.br (É.L.B.); jayme.barbedo@embrapa.br (J.G.A.B.);
thiago.santos@embrapa.br (T.T.S.)

2 Institute of Geosciences, State University of Campinas (Unicamp), Campinas 13083-970, São Paulo, Brazil;
t234520@dac.unicamp.br

3 Brazilian Agricultural Research Corporation, Embrapa Uva e Vinho, Vacaria 95200-970, Rio Grande do Sul,
Brazil; luciano.gebler@embrapa.br

* Correspondence: danielle.furuya@colaborador.embrapa.br

Abstract: Fruit growing is important in the global agricultural economy, contributing significantly to
food security, job creation, and rural development. With the advancement of technologies, mapping
fruits using remote sensing and machine learning (ML) and deep learning (DL) techniques has
become an essential tool to optimize production, monitor crop health, and predict harvests with
greater accuracy. This study was developed in four main stages. In the first stage, a comprehensive
review of the existing literature was made from July 2018 (first article found) to June 2024, totaling
117 articles. In the second stage, a general analysis of the data obtained was made, such as the
identification of the most studied fruits with the techniques of interest. In the third stage, a more
in-depth analysis was made focusing on apples and grapes, with 27 and 30 articles, respectively. The
analysis included the use of remote sensing (orbital and proximal) imagery and ML/DL algorithms
to map crop areas, detect diseases, and monitor crop development, among other analyses. The
fourth stage shows the data’s potential application in a Southern Brazilian region, known for apple
and grape production. This study demonstrates how the integration of modern technologies can
transform fruit farming, promoting more sustainable and efficient agriculture through remote sensing
and artificial intelligence technologies.

Keywords: digital agriculture; deep learning; machine learning; orchard; apple; grape

1. Introduction

Fruit cultivation plays a fundamental role in agriculture, combining efficient produc-
tion with technological advancements. Several fruits are produced in significant quantities
worldwide, directly impacting both the economy and society [1,2]. Apples are among the
most economically important fruits globally [3], being widely cultivated in many coun-
tries [4]. Asia is the largest producer of apples, accounting for 64.10% of global production,
followed by Europe with 20%, and the Americas with 11.6% [5]. Grapes are also one of
the most consumed fruits worldwide, especially valued for wine production [6]. Citrus
fruits are cultivated in over 140 countries, with approximately 70% of global production
concentrated in Brazil, the United States, and Mediterranean countries [7]. Bananas are
grown in more than 130 countries and rank as the second most important fruit crop in the
world [8,9]. Jujube, a fruit cultivated for over 4000 years in China, has spread to other coun-
tries, where it plays a vital role in addressing economic, social, and ecological concerns [1].
Given the wide variety and high consumption of fruits, it is essential to carefully plan and
manage all stages of cultivation.
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Efficient monitoring and management of fruit crops are crucial to ensure quality and
productivity. Every year, crops suffer losses due to several factors, including pests, adverse
climatic conditions, socioeconomic constraints, and insufficient technical knowledge [10–12].
Detecting or accurately recognizing fruits in orchards is one of the key steps in predicting
harvest logistics and ensuring efficiency [13].

Modern techniques such as precision agriculture enable farmers to monitor plant
growth, detect pests and diseases, and optimize the use of natural resources like water
and nutrients [14,15]. Advanced technologies such as drones and satellite imagery provide
real-time data and detailed analysis for improved crop management. Remote sensing
technology is increasingly being enhanced with higher spatial, temporal, and spectral
resolutions [16]. Hyperspectral sensors, for instance, allow researchers and farmers to
obtain detailed information about crop health, nutritional status, and water content [17].

The combination of remote sensing and artificial intelligence has gained prominence in
fruit farming and crop monitoring. Machine learning and deep learning techniques enable
the extraction of valuable, high-level information from data, and are particularly effective in
high-precision classification and recognition tasks across many domains [18,19]. Machine
learning requires predefining several parameters, which significantly impact recognition
accuracy [20]. Deep learning aims to develop intelligent and robust mechanisms that can
handle multiple learning patterns [21]. Despite some limitations, these techniques have
yielded significant results in fruit farming research [22–25].

In the context of fruit production, Brazil ranks as the third-largest fruit producer glob-
ally, contributing 5.4% of global production (58 million metric tons) [26]. In 2023, Brazilian
fruit exports increased by 6% in volume and 26.7% in value compared to the previous year,
reaching a total of 1.085 million metric tons exported [27]. Brazil is particularly known for
its apple and grape production, especially in the Southern region. The state of Rio Grande
do Sul alone is responsible for more than 500,000 metric tons of apple production and over
80% of Brazil’s grape production [28–31].

Although the combination of remote sensing techniques and artificial intelligence has
shown promise, there is no comprehensive review specifically focused on apples and grapes
that could support production in Brazil. Therefore, this study aims to (1) review studies
that applied remote sensing and artificial intelligence for fruit analysis; (2) examine the
techniques used for studying apples (Malus domestica) and grapes (Vitis vinifera), focusing on
data types, algorithms, and research objectives, among other characteristics; and (3) analyze
the case of the municipality of Vacaria, Rio Grande do Sul (Brazil), highlighting potential
applications of these technologies in Brazil, which could also serve as a foundation for
other apple- and grape-growing regions.

2. Materials and Methods

This study was conducted in four main stages: (i) review on fruit growing, (ii) analysis
of general data, (iii) analysis of specific data, and (iv) potential applications for Brazil
(Figure 1). The first stage involved a review of articles available on the Web of Science [32,33]
using the following keywords: TS = ((fruit OR orchard OR apple OR grape) AND (machine
learning OR deep learning OR artificial intelligence) AND (remote sensing)). The analysis
was based on studies available from 2018 up until June 2024. Using the chosen keywords,
the Web of Science filtered 177 studies, of which only 117 were analyzed. All articles that
used the combination of remote sensing and artificial intelligence (machine learning or
deep learning) to study some type of fruit were selected. The aim is to analyze the trends
and types of fruits that are being studied.
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Figure 1. Flowchart showing the structure and steps taken in this study. Initially, data were collected
from articles on the Web of Science. Subsequently, the information and data were distributed into
three stages: analysis of general data, analysis of specific data (grape and apple), and potential
applications for Brazil.

The second stage consisted of a more focused analysis of studies dealing with apples
and grapes. The main sensors used, the machine learning and deep learning algorithms
found, the most used evaluation metrics, and the focus of the research were identified. Sub-
sequently, some of the studies found were analyzed in detail and the authors’ suggestions
for future research were presented.

The third stage focused on analyzing potential applications in the city of Vacaria,
Brazil. As one of the ten Agrotechnological Districts (DATs) selected in the project “Center
for Development in Digital Agriculture (CCD-SemeAr)” [34], led by the Brazilian Agricul-
tural Research Corporation (Embrapa) and involving six other major research institutions,
Vacaria was a natural choice, given its prominence in apple and grape production. Al-
though this analysis was centered on Vacaria, the findings and methods discussed hold
broader applicability, offering valuable insights for fruit production regions with similar
agricultural profiles.

3. Results and Discussion
3.1. General Data

A word cloud was created with the keywords of all 117 articles (Figure 2). The
objectives of the studies are varied, including subjects like orchard classification, fruit
detection and segmentation, pest and disease identification and prediction, among others.



Remote Sens. 2024, 16, 4805 4 of 29

Remote Sens. 2025, 17, x FOR PEER REVIEW 4 of 30 
 

 

A word cloud was created with the keywords of all 117 articles (Figure 2). The objec-
tives of the studies are varied, including subjects like orchard classification, fruit detection 
and segmentation, pest and disease identification and prediction, among others. 

 

Figure 2. Word cloud with the keywords of the 117 articles analyzed in the Web of Science 2018/2024. 

From 2021 onwards, the number of studies increased significantly due to advance-
ments in techniques and data availability (Figure 3). Recently, there has been significant 
growth in the use of machine and deep learning algorithms, as well as in the different 
methods of obtaining remote sensing data, including new satellites, advanced sensors, 
and other emerging technologies that can enhance the mapping and monitoring of fruit 
cultivation. Furthermore, the journals with the most publications are “Remote Sensing” 
(with 28 articles) and “Computers and Electronics in Agriculture” (with 15 articles). 

 

Figure 2. Word cloud with the keywords of the 117 articles analyzed in the Web of Science 2018/2024.

From 2021 onwards, the number of studies increased significantly due to advance-
ments in techniques and data availability (Figure 3). Recently, there has been significant
growth in the use of machine and deep learning algorithms, as well as in the different
methods of obtaining remote sensing data, including new satellites, advanced sensors,
and other emerging technologies that can enhance the mapping and monitoring of fruit
cultivation. Furthermore, the journals with the most publications are “Remote Sensing”
(with 28 articles) and “Computers and Electronics in Agriculture” (with 15 articles).
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A total of twenty-six countries were identified, each with at least one article analyzing
the cultivation of fruit in a specific area within the country. Six countries stand out with
the highest number of studies and fruit species (Figure 4). China and the United States led
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with 34 and 10 articles, respectively, followed by Australia and Spain, with 7 articles, and
Brazil and Italy, with 5 articles.
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The articles selected for this review collectively investigated 38 fruit crops (Figure 5).
Apples and grapes have the largest number of studies, followed by citrus.
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3.2. Specific Data (Apple and Grape)

In this step, information related to the articles dealing with apples and grapes was
analyzed. The distribution of articles by year of publication is shown in Figure 6.
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Figure 6. Distribution of the number of articles per year for grapes (left) and apples (right).

Although most of the studies in the review focused on grapes and apples, the studied
areas were concentrated in only thirteen and five countries, respectively (Figure 7). Although
the two fruits have been studied in few countries, these are geographically widespread, which
shows the importance of apple and grape cultivation in different regions.
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the review.

The information from the Web of Science review is summarized in Table 1 (grapes)
and Table 2 (apple) to provide a clearer understanding about the techniques used to study
these fruits. It is important to highlight that in studies dedicated to grapes, the terms may
appear as ”Grape”, “Grapevine”, “Vineyard”, or “Viticulture”.
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Of the total number of studies found on grapes and apples, some correspond to review
articles, which explains why Table 1 contains fewer articles than Figure 5. The key strategies
and findings reported in the articles are summarized in the following section. Gutiérrez
et al., 2018 [35] proposed a new non-destructive tool useful for plant phenotyping under
field conditions. The authors used SVM and MLP with hyperspectral images to classify a
large number of grapevine varieties (Vitis vinifera L.) in Spain. For the analyses, 1200 spectral
samples were acquired at two different leaf phenological stages from the canopy of 30 different
varieties in a vineyard. Recall and F1 values reached 0.99 in tests employing a 5-fold cross
validation, while prediction accuracy for individual varieties ranged from 0.94 to 0.99 and
from 0.83 to 0.97 using MLP and SVM, respectively. The best activation function for MLP was
the hyperbolic tangent function and the best SVM kernel was linear.

Table 1. Characteristics of studies on grapes found in this review.

Reference Fruit(s)-
Research Focus Data/Imagery/Sensor (Origin) ML/DL-

Algorithm Accuracy

Gutiérrez et al.,
2018 [35]

Grape;

Classification of
grapevines

A Resonon Pika L VNIR
hyperspectral imaging camera
(Resonon, Inc., Bozeman, MA,

USA) mounted on the front
part of an all-terrain vehicle

(ATV) (Trail Boss 330, Polaris
Industries, MN, USA).

SVM, MLP

Both classifiers: recall F1
scores up to 0.99 for 5-fold
cross validation. Prediction
performance for individual

varieties of MLP ranged from
0.94 to 0.99 while SVM

ranged from 0.83 to 0.97.

Loggenberg et al.,
2018 [36]

Grape;

Water stress in
Vineyards

SIMERA HX MkII
hyperspectral sensor (SIMERA
Technology Group, Somerset

West, South Africa).

RF, XGBoost

Using all wavebands
(p = 176), RF produced a test

accuracy of 83.3% (KHAT
(kappa analysis) = 0.67), and
XGBoost reached an accuracy

of 80.0% (KHAT = 0.6).
Using a subset of wavebands

(p = 18) resulted in slight
increases in accuracy ranging

from 1.7% to 5.5% for both
RF and XGBoost.

Fuentes et al.,
2019 [37]

Grape;

Predict smoke taint
in grapes

Thermal images with an
infrared thermal camera FLIR®

T-series (Model B360) (FLIR
Systems, Portland, OR, USA).

Full berries scanned with a
spectrophotometer (ASD
FieldSpec®3, Analytical

Spectral Devices, Boulder,
CO, USA).

A regression model Accuracy of 96%.

Maimaitiyiming
et al., 2019 [38]

Grape;

Estimating
grapevine berry

yield and quality

Hyperspectral reflectance—
spectroradiometer PSR-3500

(Spectral Revolution, Inc.,
Lawrence, MA, USA).

MLR, PLSR, RFR,
WRELM,

WRELM-TanhRe
(proposed model)

WRELM-TanhRe: highest
prediction accuracy for all

berry yields and quality
parameters (R2 of 0.522–0.682

and RMSE of 2–15%).

Ohana-Levi et al.,
2019 [39]

Grape;

Determination of
irrigation

management zones

UAV—A FLIR SC2000 thermal
camera (FLIR® Systems, Inc.,

Bilerica, MA, USA) and a
multispectral camera
MicaSense RedEdge

(MicaSense® Inc., Seattle,
WA, USA).

BRT, K-means

BRT: cross-validation score of
0.84 with measured values of

the predictors vs. yield. A
cross-validation score of 0.97.
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Table 1. Cont.

Reference Fruit(s)-
Research Focus Data/Imagery/Sensor (Origin) ML/DL-

Algorithm Accuracy

Ballesteros et al.,
2020 [40]

Grape;

Vineyard yield
estimation

A quadcopter md4-1000
(Microdrones, Inc., Kreuztal,
Germany) with a mounted

multispectral Sequoia camera
(Parrot, Paris, France).

MLP

Combination of VIs and Fc:
RMSE = 0.9 kg vine−1, and
RE = 21.8%. Simple use of
VIs: RMSE = 1.2 kg vine−1,
and RE = 28.7%. Machine

learning techniques resulted
in much more accurate
results: RMSE = 0.5 kg

vine−1, and RE = 12.1%.

Summerson et al.,
2020 [41]

Grape;

Detection of
smoke-derived

compounds from
bushfires in
Cabernet-

Sauvignon grapes,
must, and wine

MicroPHAZIRTM RX
Analyzer (Thermo Fisher

Scientific, Waltham, MA, USA).

Levenberg
Marquardt,
Bayesian

regularization,
ANN

(Five models)

R above 0.95 for all models.

Arab et al., 2021
[42]

Grape;

Develop yield
prediction models

Landsat 8 OLI. ANN

NDVI in
2017 (R = 0.94);
2018 (R = 0.95);
2019 (R = 0.92).

Gautam,
Ostendorf, and
Pagay, 2021 [43]

Grape;

Estimation of
grapevine crop

coefficient

A hexacopter multirotor (DJI
Matrice 600 Pro, Dà-Jiāng

Innovations Science
and Technology Co., Ltd.,

Shenzhen, China).

The UAV carried trifecta
cameras including a

multispectral sensor placed in
a Gimbal (DJI Ronin, Dà-Jiāng

Innovations Science and
Technology Co., Ltd.,

Shenzhen, China).

CNN, RF
RF: highest accuracy—

R2 = 0.675; RMSE = 0.062;
and MAE = 0.047.

Gomes.,
Mendes-Ferreira,
and Melo-Pinto,

2021 [44]

Grape;

Prediction of sugar
and pH levels

Hyperspectral camera: JAI
Pulnix (JAI, Yokohama, Japan).

Specim Imspector V10E
spectrograph (Specim, Oulu,

Finland).

1D CNN

RMSEP values of 1.118 ◦Brix
and 1.085 ◦Brix for sugar

content and 0.199 and 0.183
for pH.

Kasimati et al.,
2021 [45]

Grape;

Prediction of total
soluble solids

among
wine grapes

UAV and Sentinel-2

Ordinary least
square, Theil–Sen
estimator, Huber
regression, DT,
AdaBoost, RF,

Extremely
randomized trees

Best-fitted regressions with
R2 value of 0.61.
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Table 1. Cont.

Reference Fruit(s)-
Research Focus Data/Imagery/Sensor (Origin) ML/DL-

Algorithm Accuracy

Khan et al., 2021
[46]

Apple, banana,
citrus, pear, grape;

Fruit growth
prediction

Publicly available dataset from
the Food and Agriculture
Organization (FAO) of the

United Nations.

AdaBoost, MLP,
SVR, LR

Agricultural Deep
Learning (AGR-
DL)—Proposed

model

Precision of
LR—87.65%

SVR—88.96%
AdaBoost—90.37%

MLP—91.23%
AGR-DL—94.12% (capable
of achieving up to 95.56%).

Navarro et al.,
2021 [47]

Grape;

Image classification
of seedless table
grape varieties

Dark chamber, an illumination
subsystem, a multispectral

image capturing subsystem,
and a processing subsystem.

Two multispectral cameras of
mosaic type from Photonfocus:
MV1-D2048x1088-HS03-96-G2
and MV1-D2048x1088-HS02-

96-G2.

AlexNet, ResNet,
3DeepM

architecture

Optimization procedures to
determine the size and

sequence of the kernels for
the 3D convolutions have
made it possible to obtain

100% accuracy in the
classification of multispectral

images of five table grape
varieties.

Barriguinha et al.,
2022 [48]

Grape;

Estimating wine
grape yield

Sentinel-2A and 2B. LSTM Neural
Network

The best prediction was
made for 2020 at the VER
(veraison) phenological
stage, with the model

overestimating the yield per
hectare by 8%, with the

average absolute error for
the entire period being 17%.

Kasimati et al.,
2022 [49]

Grape;

Grape sugar
content prediction

Active proximal canopy sensor
(ACS-470, Holland Scientific

Inc., Lincoln, NE, USA);

Spectrosense+ passive GPS
sensor (Skye Instruments Ltd.,

Landrindod Wells, UK);

Garmin GPS16X HVS (Garmin,
Olathe, Kansas, USA);

Phantom 4 Pro drone (Dà-Jing
Innovations, Shenzhen,

Guangdong, China) equipped
with a multispectral Parrot

Sequoia+ camera (Parrot SA,
Paris, France);

Sentinel-2 satellite images
(ESA portal).

OLS, Theil-Sen,
Huber Regression,
DT, AdaBoost, RF,
Extra Trees, SVM,

ARD

Regression models with both
manually fine-tuned ML
(R2 = 0.61) and AutoML

(R2 = 0.65).

Average of R2 = 0.66
combining multiple sensors
and growth stages per year.



Remote Sens. 2024, 16, 4805 10 of 29

Table 1. Cont.

Reference Fruit(s)-
Research Focus Data/Imagery/Sensor (Origin) ML/DL-

Algorithm Accuracy

Noguera, Millan,
and Andújar, 2022

[50]

Red-grape;

New device for
in-field

fruit-ripening
assessment

The multispectral sensor
device is composed of different

elements that are assembled
inside a 3D-printed enclosure:

AMS AS7265x development
board (AMS AG, Premstätten,
Austria)—Arduino MKRZero
Board (Arduino LLC, Monza,

Italy)—LED PCB (OSLON
P1616 SFH 4737, OSRAM,
Germany)—OLED Screen.

Spectral data—captures of a
surface of known reflectance

(Labsphere, Inc, North Sutton,
NH, USA).

MLP with back
propagation

R2 = 0.70 and RMSE = 1.21
for SSC (soluble solid

content); R2 = 0.67 and
RMSE = 0.91 for TA
(titratable acidity).

Peng et al., 2022
[51]

Grape;

Predict nutrient
content

UAV—A six-rotor M600 UAV
(Dajiang Innovation
Technology Co., Ltd.,

Shenzhen, China) to carry a
six-channel multispectral

Micro-MCA camera (Tetracam
Inc., Chatsworth, CA, USA).

RF, SVM, ELM
Best model: ELM. Obtained
R2—0.853; RRMSE—0.113;

WIA—0.955.

Dutta et al., 2023
[52]

Raspberry, coconut,
papaya, orange,

apple, muskmelon,
watermelon, grapes,

mango, banana,
and pomegranate;

Pomological
recommendation

system

Dataset from the
Kaggle source. Light GBM

The accuracy of the model is
99%, the macro average is

0.99, and the weighted
average is 0.9.

Imran et al., 2023
[53]

Grape;

Detecting
Flavescence Dorée
(a highly epidemic

and incurable
disease) in
Vineyards

Two portable hyperspectral
micro-spectrometers

(Hamamatsu C12880MA series
and DLP NIRScan Nano

Evaluation Module (EVM),
Texas Instruments, Dallas,

TX, USA).

LR, SVM, XGBoost,
RF, Cubist

LR—accuracy of 96%;

SVM—accuracy of 85%.
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Table 1. Cont.

Reference Fruit(s)-
Research Focus Data/Imagery/Sensor (Origin) ML/DL-

Algorithm Accuracy

Lyu et al., 2023
[54]

Grape;

Non-destructive
and rapid

prediction of grape
quality

Global navigation satellite
system (GNSS) with real-time

kinematic (RTK) correction
(model: GPS1200+, Leica

Geosystems AG., Heerbrugg,
Switzerland).

Portable digital refractometer
(PAL-ALPHA Digital

Refractometer, ATAGO CO.,
LTD, Tokyo, Japan).

Multispectral imagery
acquired by DJI P4

Multispectral (Da-Jiang
Innovations, Shenzhen, China).

Ridge regression,
lasso regression,
KNN, SVR, RFR,
XGBoost, ANN

RFR and XGBoost
outperform other regression
models with an average of
RMSE of 1.19 and 1.2 ◦Brix

and R2 of 0.52 and 0.52,
respectively.

Swe, Takai, and
Noguchi, 2023

[55]

Grape;

Brix prediction
model in Rondo

wine grapes

Hyper Suprime-Cam (HSC)
camera.

EBM, SVR, Ridge
regressor

Accuracy from 0.72 to 0.75
for the EBM followed by the
SVR model and from 0.74 to

0.77 for the ridge
regression model.

Tao et al., 2023
[56]

Grape;

Retrieving soil
moisture from
grape growing

areas

NASA Terra satellite’s MODIS. RF, GBDT, CatBoost

Integrating multiple features
and using the stacking

ensemble learning algorithm,
the average R2 and RMSE of

25-period soil moisture
retrieval models were 0.7504

and 0.0245 m3/m3.

Wu et al., 2023
[57]

Grape, peach,
apple, cherry;

Mapping—
classification and
identification of

orchards

UAV—DJI Phantom 4
four-rotor.

FCN, SegNet,
U-Net and

ISDU-Net model
(proposed model)

ISDU-Net obtained pixel
accuracy, mean IoU,

frequency weight IoU, and
Kappa coefficient of 87.73%,

70.68%, 78.69%, and 0.84,
respectively.

Gavrilović et al.,
2024 [24]

Grape;

Precision
viticulture: vine

detection and
vineyard zoning

UAV—DJI Phantom P4 v2.0
drone (DJI Sky City, Shenzhen,

China).

Multispectral camera,
MicaSense RedEdge-M

(MicaSense, Inc., Seattle, WA,
USA).

YOLOv5s, K-means
Accuracy, precision, recall,
and F1-Score above 0.85,

reaching 0.98.

Peanusaha et al.,
2024 [58]

Grape;

Nitrogen retrieval
in grapevine

LI-COR leaf area meter
(LI-3100, LI-COR Bioscience,

NE, USA).

Field spectrometer, SVC
HR-1024i (Spectra Vista Corp,

NY, USA).

RFR, GPR

A hybrid model with
machine learning and a

radiative transfer model can
reduce 50% of the spectral

bands required and maintain
an acceptable level of
accuracy (R2 = 0.54).
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Gavrilović et al., 2024 [24] used YOLOv5 and transfer learning with UAV images for
vine detection and vineyard zoning. YOLOv5 achieved 90% accuracy using images and
several spectral bands of various phenological stages. In addition, the authors employed
K-means with NDVI for the evaluation of nitrogen, phosphorus, and potassium content in
leaf blades and petioles. According to the authors, the model studied leads to fast results
and has minimum data requirements, making it ideal for precision viticulture. Gomes
et al., 2021 [44] proposed a new model based on the one-dimensional convolutional neural
network (1D CNN) architecture for predicting sugar content and pH, using hyperspectral
reflectance data from grape vintages. The results for the generalization capacity of the
model were a RMSEP (root-mean-square error of predictions) of 1.118 ◦Brix and 1.085 ◦Brix
for sugar content and 0.199 and 0.183 for pH. The model proved to be capable of non-
destructively and rapidly assessing wine grape ripeness.

Peng et al., 2022 [51] combined vegetation indices with machine learning algorithms
to analyze leaf nitrogen content (LNC), leaf potassium content (LKC), and leaf phosphorus
content (LPC) in grape leaves using UAV-acquired images. Three irrigation levels and four
fertilization levels were established. The authors showed that UAV multispectral images
are an effective option for predicting nutrient content in grape leaves, and the combination
of spectral variables with algorithms such as RF, SVM, ELM can result in better nutrient
predictions (with R2 above 0.65 during the new-shoot growth period and above 0.75 during
other growth periods). In addition, the authors found that phosphorus was the main
nutrient absorbed during the veraison and ripening periods, and potassium was the main
nutrient absorbed during the fruit expansion period. Finally, it was also observed that
during the periods of new-shoot growth and flowering, there were high nitrogen demands.

Arab et al., 2021 [42] developed a grape yield prediction model with ANN and Landsat
8 OLI satellite-based time-series images. In this study, the normalized difference vegetation
index (NDVI), leaf area index (LAI), and normalized difference water index (NDWI) were
drawn from data captured in 2017, 2018, and 2019. According to the authors, machine
learning based on artificial neural networks using satellite time-series images can achieve
reliable yield prediction models of table grapes. NDVI had the highest accuracy (R = 0.92 to
0.94) compared to the other indices. Kasimati et al., 2021 [45] proposed a method to predict
wine grape quality using UAV and Sentinel-2 imagery, linear and nonlinear regression
models (machine learning), and NDVI. The authors found that proximal sensors performed
best in predicting early-season grape quality parameters, while remote sensors performed
better in later growth stages.

Navarro et al., 2021 [47] developed the 3DeepM architecture for classifying a sample of
12,210 multispectral images of seedless table grape varieties. 3DeepM was superior to other
techniques in terms of number of parameters, number of classes, accuracy, and training
time. Also, a computer vision system was designed for the acquisition of multispectral
images in the range of 400 nm to 1000 nm. According to the authors, the fact that 3DeepM
has relatively few parameters makes it suitable for real-time applications.

Barriguinha et al., 2022 [48] developed a vineyard yield estimation model based
on remote sensing (Sentinel-2) and climate data coupled with machine learning (Long
Short-Term Memory (LSTM) neural networks). The model was tested from 2016 to 2021
using yield data from 169 administrative areas covering 250,000 ha, of which 43,000 ha
are vineyards in production in Portugal. The authors considered three main phenological
stages: (1) budbreak (BUD); (2) flowering (FLO); and (3) veraison (VER). Stages 2 and 3
were explored to estimate wine grape yield in advance. The best prediction was achieved
in 2020 during VER, with a yield per hectare overestimation of 8% and with an average
absolute error for the entire period of 17%. The optimal combination of input features,
which led to a Mean Absolute Error (MAE) of 672.55 kg/hectare and a Mean Squared Error
(MSE) of 81.30 kg/hectare, included NDVI, temperature, relative humidity, precipitation,
and wind intensity.

Tao et al., 2023 [56] analyzed soil moisture during key grape growth stages from
2009 to 2018. Seven features based on evapotranspiration (ET), land surface temperature
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(LST), and spectral reflectance (SR) were derived from Moderate Resolution Imaging
Spectroradiometer (MODIS) data and then integrated with topographic features. Twenty-
five-period models covering April–October and having an 8-day temporal resolution were
constructed. The authors also compared three individual machine learning models (random
forest, gradient boosting decision tree, and category boosting) with the ensemble model
using the stacking algorithm. The authors observed that the stacking-based ensemble model
could retrieve soil moisture more accurately (R2 = 0.7504 and RMSE = 0.0245 m3/m3). It
was also reported that, during the main grape growth stages, spring and summer droughts
were more severe than autumn droughts in the study area.

Santos et al. 2020 [59] proposed a methodology with the development of a new
algorithm, based on image collection via SLAM and a convolutional network for detecting
grapes in an espalier training system, that reached scores superior to 0.9 for detection in
wine grapes, a challenging crop that presents enormous variability in shape, size, color,
and compactness, which can be used in other crops that adopt the same training system,
such as apples, peaches, and berries.

As indicated in Table 1, several sensors, algorithms, and metrics have already been
used to analyze different aspects related to grapes, such as water stress [36]; classification,
prediction and estimation of grapes and grapevine variables [24,35,38,40,42,43,47,48,54,57];
smoke taint prediction [37,41]; irrigation management [39]; fruit growth prediction [46];
sugar prediction [44,49,55]; prediction of total soluble solids [45]; nutrient content predic-
tion [51,58]; in-field fruit-ripening measurement [50]; soil moisture retrieval [56]; disease
detection [53]; and pomological recommendations [52].

The articles analyzed in this review included many suggestions for future work, in-
cluding the following: apply hybrid machine vision techniques and deep learning models
to develop precision agriculture systems [60]; explore high-resolution images such as
those delivered by Sentinel-2 and PlanetScope images [24,56]; use different deep learning
models with an increased number of convolution layers and using hyperspectral data
to predict sugar and pH levels [44]; implement different deep learning algorithms using
datasets collected in different countries and comparing fruit production in developed and
developing countries [46]; combine spectral variables to predict nitrogen, phosphorus,
and potassium [51]; improve resource use across agricultural production systems to ad-
dress problems like climate change, rising costs, and excessive waste [61]; use seasonal
calibration for grapevine quality prediction [45]; explore a model that identifies high- and
low-productivity fruit orchards [57]; expand the number of grape samples and varieties,
and extend the use of multispectral images to other fruits, vegetables, leaves, and flow-
ers [41,47,50,52,54]; integrate vegetation indices such as LAI, SAR, and LIDAR [48]; scale
up UAV-based models and utilize deep learning to explore their potential superiority over
traditional methods [38]; understand the relationship between equivalent water thickness
and nitrogen [58]; develop cheaper multispectral devices [35]; collect more spectral data
from healthy and infected leaf samples and study different biotic and abiotic stressors
for disease diagnosis [53]; and combine evapotranspiration and plant-based sensors to
maximize water use efficiency [43].

Table 2 summarizes the studies that used remote sensing and ML/DL algorithms to
study apples.
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Table 2. Characteristics of the studies dedicated to apples.

Reference Fruit(s)-
Research Focus

Data/Imagery/Sensor
(Origin)

ML/DL-
Algorithm Accuracy

Chen et al., 2020
[62]

Apple;

Estimation of leaf
nitrogen content in

apple-trees

An ASD FieldSpec 3
portable spectroradiometer

(Analytical Spectral
Devices, Inc., St, Boulder,

CO, USA)

PLSR, SVM, BPANN,
ELM, and RF

The model by Rfrog-ELM
achieved the best results

(R2P = 0.843,
RMSEP = 2.461 g·kg−1,

and RPD = 2.508).

Wu et al., 2020
[23]

Apple;

Extracting apple tree
crown information

UAV (Phantom 4 Pro, DJI
Company, Guangdong,
China) equipped with a
spatial resolution vision
spectrum (RGB) camera

Proposed model is
based on the Faster

R-CNN detector and
U-Net

Precision and recall of
91.1% and 94.1%,

respectively, branch
segmentation with an

overall accuracy of 97.1%,
and crown parameter

estimation with an overall
accuracy exceeding 92%.

Bai et al., 2021
[63]

Apple;

Predicting apple fruit
yields

Qianxun positioning SR2
satellite-based RTK

receiver mobile device
(Qianxun Spatial
Intelligence Inc.,

Hangzhou, China);

Satellite—PlanetScope

RF∑NDVI and
CASASR model

∑NDVI was the optimal
predictor to construct an
RF model for apple fruit
yield, and the R2, RMSE,
and RPD values of the

RF∑NDVI model reached
0.71, 16.40 kg/tree, and

1.83, respectively.

Biffi et al., 2021
[64]

Apple;

Detect apple fruits

Canon EOS—T6 camera
(Tokyo, Japan, CMOS

sensor of 5184 × 3456 pixel
(17.9 Mp) and pixel size of

4.3 µm)

ATSS, RetinaNet,
Libra-RCNN, Cascade
R-CNN, Faster R-CNN,

FSAF, and HRNet

The ATSS-based approach
outperformed the other

methods with a maximum
average precision of 0.946.

Fan et al., 2021
[22]

Apple;

A method for
segmenting apples

Canon PowerShot G16
camera and Intel Realsense

Depth camera D435

Mask R-CNN

Patch-based
segmentation

algorithm that is a
generalization of the
K-means clustering

algorithm

Average accuracy rate of
99.26%, recall rate of

98.69%, false positive rate
of 0.06%, and false

negative rate of 1.44%.

Khan et al., 2021
[46]

Apple, banana, citrus,
pear, grape;

Fruit growth prediction

Publicly available dataset
from the Food and

Agriculture Organization
(FAO) of the United

Nations

AdaBoost, MLP, SVR,
and LR

Agricultural Deep
Learning

(AGR-DL)—Proposed
model

Precision of
LR—87.65%;

SVR—88.96%;
AdaBoost—90.37%;

MLP—91.23%;
AGR-DL—94.12% (capable
of achieving up to 95.56%).

Ta, Chang &
Zhang., 2021

[65]

Apple;

Estimation of apple tree
leaf chlorophyll content

Spectroradiometer SVC
HR1024i (Spectra Vista

Crop., Poughkeepsie, NY,
USA);

Hand-held chlorophyll
meter (SPAD-502, Minolta

Osaka Company Ltd.,
Tokyo, Japan)

RF, SVR, ULR, and
MLR

RF—best model: R2 value
was greater than 0.94, and
RMSE was less than 1.37 at

different growth stages.
The prediction accuracy for

the 1st growth stage
(R2 = 0.96; RMSE = 0.95)

was best with the RF.
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Table 2. Cont.

Reference Fruit(s)-
Research Focus

Data/Imagery/Sensor
(Origin)

ML/DL-
Algorithm Accuracy

Chen et al., 2022
[66]

Apple;

Yield prediction of
individual apple trees

LiDAR data were acquired
using the Riegl VUX-1

(RIEGL Co., Austria) laser
sensor on a DJI M600 (SZ

DJI Technology Co.,
Shenzhen, China) flight
platform. Multispectral
images were acquired
using a Parrot Sequoia
multispectral camera

(MicaSense Inc., USA) on a
DJ PHANTOM 4 PRO (SZ
DJI Technology Co., China)

SVM, KNN, EL, and
SVM-RFE

SVM performs best,
followed by KNN. The

performance of the SVM
model fluctuates

around 0.80.

The accuracy of all models
is satisfactory, with the
validation R2 exceeding

0.740 and the test R2

exceeding 0.650.

Li et al., 2022
[67]

Apple;

Retrieval of nitrogen
content in apple

canopy

UAV—an eight-rotor UAV
M600 Pro with a UHD185

imager (produced by
Cubert, Ulm, Germany)

MLR, PLS, SVM,
BPNN, and RF

SVM—best model: training
set with an R2 of 0.733, an
RMSE of 6.00%, an nRMSE

of 12.76%, and a MAE of
4.49%. Good performance
in validation with an R2 of
0.671, an RMSE of 4.73%,

an nRMSE of 14.83%, and a
MAE of 3.98%.

Liu et al., 2022
[68]

Apple;

Prediction of apple first
flowering date

MOD11A1 LST (V006)
from the Terre satellite and
elevation data from ASTER

GDEM V1

STR and RF
LST using STR: MAE from
0.51 to 0.68 ◦C and RMSE

from 1.07 to 1.21 ◦C.

Uryasheva et al.,
2022 [69]

Apple;

Apple leaf
segmentation under

field conditions
(assessment of plant

health and
identification of
stressed plants)

Three cameras to acquire
close-range multispectral

images: Seek Thermal
CompactPro, Logitech Brio
4 K, and the multispectral
sensor camera MicaSense

RedEdge-MX

CNN-based
segmentation

CNN algorithm:
IoU = 0.72.

Zhang et al.,
2022 [70]

Apple;

Estimation of flowering
intensity in an apple

orchard

Aerial vehicle: DJI™
Phantom 3 PRO, Shenzhen,

China (quad-rotor);
Camera: FC300X,

Shenzhen, China (RGB);

Ground vehicle: Tractor
(generic); camera type:

Intel® RealSense™ Depth
Camera D435 (RGB-Depth)

K-Means clustering and
hierarchical clustering

Both models with R2 > 0.65,
RRMSE < 20%, and

p-stat < 0.005.

Zhou et al., 2022
[71]

Apple, peach, pear;

Classification of fruit
trees

Sentinel-2 DT

The accuracy of DT
constructed using the

vegetation index under the
three treatments (SVIs,
∑VIs, and ∆VIs) were

0.8936, 0.9153, and 0.8887
on the training set and

0.8355, 0.7611, and 0.7940
on the test set.
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Table 2. Cont.

Reference Fruit(s)-
Research Focus

Data/Imagery/Sensor
(Origin)

ML/DL-
Algorithm Accuracy

Dutta et al.,
2023 [52]

Raspberry, coconut,
papaya, orange, apple,

muskmelon,
watermelon, grapes,
mango, banana, and

pomegranate;

Pomological
recommendation

system

Dataset from the Kaggle
source Light GBM

The accuracy of the model
is 99%, the macro average
is 0.99, and the weighted

average is 0.9.

Jiang et al.,
2023 [72]

Apple;

Monitoring the severity
of mosaic disease in

apple leaves

A portable plant leaf
measuring instrument

(Dualex Scientific+, Force-a,
Orsay Cedex, France);

A SOC-710 portable
hyperspectral spectrometer
(Surface Optics Corp, San

Diego, CA, USA);

ENVI 5.3 (Exelis, McLean,
VA, USA)

PLSR, RF, ANN, and
XGB

The VPs-XGBoost
estimation model based on

multiple parameters
(R2v = 0.849; RPD = 2.572)

was more accurate.

Singha et al.,
2023 [73]

Apple;

Apple yield prediction
mapping

Various satellite
multisensor data

RF, SVM, XGBoost,
KNN, and Cubist

The Cubist model
performed best, with R2 of

0.83, RMSE of 0.56 t/ha,
and MAE of 0.2 t/ha.

Wu et al.,
2023 [57]

Grape, peach, apple,
cherry;

Classification and
identification of

orchards

UAV—DJI Phantom 4
four-rotor

FCN, SegNet, U-Net,
and

ISDU-Net model
(proposed model)

ISDU-Net obtained pixel
accuracy, mean IoU,

frequency weight IoU, and
Kappa coefficient of

87.73%, 70.68%, 78.69%,
and 0.84, respectively.

Yang et al.,
2023 [74]

Apple;

Assess
spatiotemporally

varied ecohydrological
effects of apple

orchards

Landsat 5/7/8 RF, SVM, and ANN

RF, ANN, and SVM had
overall accuracy of 0.95,

0.84, and 0.94, Kappa
coefficients of 0.93, 0.76,

and 0.91, and elapsed time
of 19, 40, and 55 min,

respectively.

Zhang et al.,
2023 [75]

Apple;

Canopy nitrogen
content inversion in

apple orchards

Analytical Spectra Devices
Field spec 4 (ASD

FieldSpec 4);

DJI DJ M600 Pro UAV,
equipped with a Parrot
Sequoia multispectral

camera

RBF-NN, ELM, RFR,
XGBoost, and SVR

The XGBoost model was
the optimal model for the
canopy nitrogen content

inversion (R2 = 0.759,
RMSE = 0.098, and

RPD = 1.855).
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Table 2. Cont.

Reference Fruit(s)-
Research Focus

Data/Imagery/Sensor
(Origin)

ML/DL-
Algorithm Accuracy

Zhao et al.,
2023 [76]

Walnut, apple, pear,
jujube;

Extraction method of
fruit planting
distribution

SRTM, Sentinel-1 SAR, and
Sentinel-2

RF, SVM, OO, and RF +
OO

RF + OO had the highest
accuracy (OA = 0.94;

Kappa = 0.92), and SVM
had the lowest accuracy

(OA = 0.52; Kappa = 0.31).

Chen et al.,
2024 [77]

Apple;

Assess apple leaf
nitrogen content

ASD FieldSpec spectral
radiometer [FieldSpec® Pro
FR and FieldSpec 4, ASD
Inc. Boulder, CO, USA]

Boruta-Iteration-DNN

Boruta-iteration-DNN—
without DAA (Day After
Anthesis): validation R2

improved from 0.69 to 0.75;
NRMSE reduced from
11.92% to 9.97%; with
DAA: validation R2

improved from 0.72 to 0.79;
NRMSE reduced from

11.09% to 9.06%.

Zhao et al.,
2024 [78]

Apple;

Estimation of the leaf
nitrogen content of
apple tree canopies

UAV—A DJI M600 UAV
equipped with a

Micro-MCA Snap
multispectral imager

(Tetracam Inc., Chatsworth,
CA, USA)

PLSR, RR, and RFR

RF best accuracy: the
validation set of the four

periods of apple trees
ranged from 0.670 to 0.797

for R2, 0.838 mg L−1 to
4.403 mg L−1 for RMSE,

and 1.74 to 2.222 for RPD.

Similar to grapes, apples have also been studied for various purposes using remote
sensing and ML/DL algorithms (Table 2). Studies increasingly highlight the efficiency
of artificial intelligence in fruit cultivation, particularly in the case of apples. Zhao et al.,
2024 [78] conducted a study to estimate the nitrogen content in apple canopy leaves using
UAV images and three machine learning methods, partial least squares regression (PLSR),
ridge regression (RR), and random forest regression (RFR). The authors studied nitrogen
estimation of apple trees at the flowering and fruiting stage, pre-fruit expansion stage,
and post-fruit expansion stage in Xinjiang, China. They reported that the use of machine
learning can considerably improve the accuracy of nitrogen estimation in apple trees and
that the best method for this task is RF, with R2 values ranging from 0.670 to 0.797, RMSE
from 0.838 mg L−1 to 4.403 mg L−1, and RPD from 1.740 to 2.222.

Zhang et al., 2023 [75] proposed a method to estimate nitrogen content in apple orchard
canopies using ground hyper-spectral data, UAV multispectral data, and apple leaf samples.
The authors extracted the canopy information and fused the hyperspectral and UAV
multispectral data using the Convolution Calculation of the Spectral Response Function
(SRF-CC). Five machine learning algorithms were investigated: radial basis function neural
network (RBF-NN), extreme learning machine (ELM), random forest regression (RFR),
extreme gradient boosting (XGBoost), and support vector regression (SVR). The authors
found that SRF-CC was an effective method (R2 > 0.70). In addition, the XGBoost model
was the most accurate for estimating canopy nitrogen content (R2 = 0.759, RMSE = 0.098,
and RPD = 1.855).

The study by Ta, Chang, and Zhang., 2021 [65] evaluated four approaches (univariate
linear regression—ULR; multivariate linear regression—MLR; support vector regression—
SVR; and random forest regression—RF) to estimate leaf chlorophyll content (LCC) in
apple trees at five different growth stages. Samples were collected from 2016 to 2018 in
10–20-year-old orchards. The MLR, SVR, and RF models achieved R2 values of 0.79, 0.82,
and 0.94 and RMSEs of 2.27, 2.02, and 1.37, respectively. Considering only the first growth
stage, RF was also the best model, with R2 = 0.96, and RMSE = 0.95.
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Fan et al., 2021 [22] proposed an apple segmentation method based on gray-centered
RGB color space. The method proposed by the authors is a patch-based segmentation
algorithm that is a generalization of the K-means clustering algorithm. The algorithm
explores illumination and shadow patterns in apple images to distinguish the fruits from
other objects. According to the authors, the proposed method was tested on 180 apple
images and showed an average precision of 99.26%, recall rate of 98.69%, false positive rate
of 0.06%, and false negative rate of 1.44%. Wu et al., 2020 [23] described a technique for
orchard data acquisition and analysis that uses UAV images and neural networks. The goal
was to automatically detect and segment individual trees and measure the width, perimeter,
and canopy projection area of apple trees. The model is based on the Faster R-CNN and
U-Net detector, achieving a precision and recall of 91.1% and 94.1%, respectively. Branches
were segmented with an overall accuracy of 97.1%, and canopy parameters were estimated
with an overall accuracy of over 92%. The authors emphasized that the technique allows
growers to monitor tree growth and saves labor by avoiding field measurements.

Uryasheva et al., 2022 [69] developed a plant health detection system using 360,000 im-
ages of healthy and infected apple trees. The CNN algorithm was used for leaf segmenta-
tion, and VIs were also calculated for a single pixel. In addition, the authors developed an
application for post-processing and data visualization that allows assessing the health of
large agricultural areas and analyzing each tree individually. The model achieved an IoU
of 0.72.

Yang et al., 2023 [74] proposed a method to estimate the age of apple trees and quantify
the impacts of apple orchards on soil water balance. The authors used Landsat 5, 7, and
8 images and tested three algorithms (RF, SVM, and ANN). RF had the best performance
in terms of accuracy and running time, and thus, it was selected for further experiments.
The area and age of apple orchard trees were identified with R2 values of 0.94 and 0.68,
respectively. Also, in the study, the authors found that the cumulative regional-scale soil
water consumption by apple orchards and old trees reached 129 GL (gigalitres) in 2020, and
the ratio of actual evapotranspiration to precipitation was 109% when the apple tree was
22 years old. This is another example of a study that contributes to agricultural production
and sustainable water resource management.

Zhang et al., 2023 [79] built and made available a database containing data collected
by a UAV during the full flowering period of an apple orchard for the years 2018, 2019,
and 2020. According to the authors, the data aim to support research on machine vision,
remote sensing, image classification, and deep learning. As shown in Table 2, the combi-
nation of remote sensing and artificial intelligence has also been extensively explored for
apple applications.

This study identified many techniques for the prediction of nutrient content [62,65,
67,75,77,78]; the extraction of apple tree crown information [23]; the prediction of apple
yields [63,66,73]; apple detection, classification, mapping, and segmentation [22,57,64,69,
71,76]; fruit growth prediction [46]; the prediction or estimation of apple flowering [68,70];
pomological recommendations [52]; disease recognition [72]; and the assessment of the
ecohydrological impacts of apple orchards [74].

The suggestions for future work in the articles analyzed include the following: improve
the quality of input data, change image acquisition, test different altitudes and flight
speeds (in the case of UAV), diversify training data, increase samples and acquire more
accurate information from fruit trees [23,70,78,80]; test with other fruit varieties and add
color, weight, and shape attributes [22,52,64]; use multiple independent base learners [66];
apply hybrid machine vision techniques and deep learning models to develop automated
systems [60]; improve the model algorithm, integrating multidimensional features utilizing
bands, spectral features, and texture [71,72,75]; adopt larger-scale applications for spatial
distribution and pattern analysis [68]; implement algorithms for data collected in other
countries [46]; generate a new remote sensing index for fruit tree detection using radar [76];
develop deep learning methods [62,65]; explore a model that identifies high- and low-
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productivity orchards [57]; and employ advanced data preprocessing techniques and
hyperspectral images, and improve the hyperspectral data already being used [67,77].

According to Tables 1 and 2, the most commonly used algorithms in grape and apple
studies are random forest and support vector machine, with neural networks also featured
in several analyses. In fruit growing, neural networks can be particularly effective for
large sample sizes, while RF and SVM may be more suitable for smaller datasets with
lower computational demands. No minimum limit per model/algorithm is established
for ML and DL algorithms and models. Depending on the study’s focus, different values
can be considered. In the studies analyzed, most presented metrics above 80%, which
can serve as a parameter for new tests. Regarding sensors, satellite data from Sentinel-2,
Landsat, and MODIS, among others, are frequently utilized. However, hyperspectral and
UAV-derived data still predominate in fruit growing studies due to their higher level of
detail. Proximal data are also notable for providing enhanced precision, which is crucial for
in-depth analysis.

3.3. Challenges, Limitations, and Potential Applications for Brazil

Fruit growing plays an important role in the economy and society [1,2]. Grape and
apple production stands out in many countries around the world, including the USA,
Brazil, Spain, Italy, China, and Australia (Figures 4 and 7). The geographic distribution of
grapes and apples shows that these can be successfully cultivated under different climatic
and soil conditions.

The city of Vacaria (Figure 8), in the state of Rio Grande do Sul, Brazil (latitude of
28◦30′44′′S and longitude of 50◦56′02′′W), has 2124.5 km2 of territorial area and 23.59 km2

of urbanized area [81]. Vacaria is among the most important fruit producing areas in
Brazil [82], being responsible for 25% of the national apple production with 254 thou-
sand metric tons harvested in 2020 [30,83]. In 2022, its area covered with apple orchards
reached 6672 hectares, with an average yield of 29,250 kg/hectare. Vacaria also produced
873 tons of grapes in 2022, with 117 hectares of harvested area and an average yield of
7462 kg/hectare [84]. In 2023, Vacaria was the largest producer of apples in the state of Rio
Grande do Sul. The state produced 553,768 metric tons of apples [85] and 904,794 metric
tons of grapes in 2023 [86].

The research using remote sensing in viticulture mainly focuses on estimating and
predicting yield and fruit quality, managing water resources and irrigation, detecting dis-
eases and assessing fruit ripeness, monitoring nutrient levels, and detecting grapevines
and grape types. When conducting studies in viticulture, most researchers have used
proximal hyperspectral sensors for close-range measurements. These sensors are often
mounted on ground-based platforms or handheld devices. The next most favored choice
are multispectral sensors mounted on multirotor UAVs (drones) for suborbital-level mea-
surements. Additionally, medium-resolution multispectral sensors on satellites are also
useful for regional tasks like estimating soil moisture and modeling fruit productivity and
growth. These satellite images provide larger-scale and cost-effective solutions. Locally,
remote sensing is losing its prominence as demands require greater image detail in order
to obtain meaningful results that are of interest to producers, such as pest and disease
mapping, production mapping, both for productivity and quality, and organization of
management and production zones. In these cases, very high-resolution satellite-based or
proximal sensing images become important for the production process.
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3.3.1. Enological Parameters for Fruit Quality Assessment

Estimating enological parameters such as sugar content (Brix), pH, anthocyanin,
and maturity level using non-destructive methods is an essential task directly related to
determining the best time for harvest, evaluating production yield, and assessing wine
quality and consistency. Studies of this nature have been conducted exclusively on a
local scale, in commercial farms or experimental areas, employing linear and non-linear
regression techniques based on machine learning, primarily using high-spatial-resolution
data obtained from multispectral sensors at a suborbital level (mounted on UAVs) and
hyperspectral sensors at a proximal level (handheld or on-terrain devices) [38,44,45,49,54,
55]. The complexity of the task has led researchers to test various algorithms with different
structures (based on decision trees, linear regression and regularization, support vector
machines, boosting, nearest neighbors, and neural networks), achieving better results
when used with data from different phenological stages, from flowering through veraison
and harvest, and using variable selection steps for dimensionality reduction [44,45,49,
54,55]. High spatial resolution in these cases limits the spectral range of applications
to around 1100 nm, but vegetation indices based mainly on near-infrared and red-edge
reflectance have produced models with good predictive power (R2 between 0.52 and 0.87).
However, the best estimates were obtained by Gomes et al., 2021 [44] with proximal and
hyperspectral imaging, analyzed using convolutional neural networks for sugar content
and pH. Although not directly comparable, significantly inferior results were obtained with
vegetation indices associated with multispectral images at suborbital levels and decision
tree-based algorithms (RF and XGBoost) for estimation [54].
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3.3.2. Grapevine Yield Estimation

One of the main applications of RS and AI in viticulture is the generation of multi-
variate regression models for yield estimation, a task of high complexity due to spatial
variability, and this is also related to monitoring fruit quality, given that plants may offer
a high yield but produce poor-quality fruit [38,40]. To achieve this objective, the authors
usually develop models at larger scales of operation, from local to regional, mainly us-
ing multispectral images acquired at orbital [42,48] and suborbital [40] levels; although,
proximal hyperspectral data have also been employed [38]. The accuracy of the models
varies depending on sensor resolution and application scale, with less accurate results at
lower scales [38]. The combination of orbital sensor data (such as Sentinel-2) and suborbital
data can provide broader and more detailed coverage, improving estimates. Integrating
climatic data with vegetation indices can provide a more comprehensive understanding of
grapevine productivity. ML models like ELM and RF prove effective, but neural networks
and modeling with DL techniques, such as LSTM, can improve results due to DL’s ability
to capture more complex relationships in the data. The applicability may vary by region
due to differences in climate, soil type, and cultivation practices, so adjusting models to
local conditions may be essential.

3.3.3. Grape Type Classification and Vineyard Detection

The integration of artificial intelligence and remote sensing in viticulture has led to
significant advancements in grape type classification [35,47] and vineyard detection [24,
57]. Hyperspectral proximal imaging has produced classifications of more than 30 grape
varieties, including both white and red types, such as Cabernet Sauvignon, Pinot Noir,
Chardonnay, and Tempranillo, with remarkable accuracies (>99%), using both machine and
deep learning algorithms. Proximal sensing and hyperspectral data, specifically analyzing
up to 300 bands within the 488–953 nm range, have enabled models to capture detailed
spectral information crucial for identifying subtle differences in grapevine characteristics,
particularly in Spain [35,47]. Single- and multi-year deep-learning-based classifications
using sub-orbital multispectral (400–850 nm) images have been performed in Serbia [24]
and China [57], with outstanding results. Although not directly comparable, the YOLO and
ISDU-Net networks yielded models with accuracies up to 96% in a one-year analysis and
85% in a three-year test. Accurate detection of vineyards is essential for characterizing the
spatial variability of production and establishing management zones combining vegetation
indices and interpolated nutritional content data [24].

3.3.4. Nitrogen and Chlorophyll Estimation

Nitrogen is essential for apple trees’ growth, development, quality, and yield. Effec-
tive nitrogen management ensures optimal fruit production and quality while reducing
environmental impact. Overapplication of nitrogen-based fertilizers can lead to nutrient
imbalances and pollution. Studies conducted in apple production areas, particularly in
China, focused on modeling the relationship between spectral variables and biochemical
parameters of leaves and canopies, specifically N and chlorophyll content, which is often
related to N status [62,65,67,75,77,78].

These studies sought to estimate leaf or canopy nitrogen content using hyperspectral
and multispectral data acquired from proximal sensors or at suborbital levels. Ground-
level hyperspectral sensors yield the most accurate models, with R2 values > 0.80, but this
approach is highly localized and requires extensive preprocessing and a higher number
of samples [62,65,77]. On the other hand, suborbital-level analysis utilizing multitempo-
ral images and multispectral sensors, based on vegetation indices and machine learning
(particularly the random forest algorithm), also resulted in accurate estimates, with R2

values up to 0.75 [78]. In comparing analysis methods, it was found that nonlinear regres-
sion approaches based on machine learning algorithms outperformed multivariate linear
regression methods in all cases. Ensembles of decision trees, especially the random forest al-
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gorithm, were shown to produce the most accurate estimates, with XGBoost outperforming
RF in one case [75].

Regarding spectral variables, to accurately estimate the N levels in apple trees, it is impor-
tant to analyze various spectral bands and transformations. Nevertheless, the most valuable
ones are often located within the VNIR range (400–700 nm and 900–1200 nm) [62,67,75]. These
bands are essential as they are closely linked to leaf nitrogen levels due to their sensitivity
to chlorophyll content and leaf structure. Spectral transformations and vegetation indices
such as the Soil-Adjusted Vegetation Index (SAVI), the Modified Normalized Leaf Index
(MNLI), and the Green Normalized Difference Vegetation Index, for example, are useful
tools [75,78]. In addition to these primary bands and indices, the mid-infrared range
(1880–1891 nm) can also offer supplementary information [62].

Particularly in studies involving ground-based sensing using hyperspectral sensors,
variable selection or screening methods, especially those based on ensemble models, are
crucial for eliminating irrelevant or redundant spectral bands [65,77]. This simplifies the
data and focuses the analysis on the most informative features, leading to the creation of
models that generalize better and are less prone to overfitting. Screening variables based
on correlation was related to less accurate predictions [67,75,77].

The studies have shown a positive relationship between the number of days of data
collection (multiple phenology stages) and model performances, as measured by R2 values.
Regardless of the data level of acquisition (proximal or suborbital), assessments over
multiple periods tend to yield better estimates, with R2 values up to 0.94, compared to those
with fewer periods, which show lower R2 values around 0.67 [67,75]. This suggests that the
ideal time for estimating N varies throughout the season. Phenology affects the distribution
of nutrients in plants throughout the seasons and can influence leaf composition, including
nitrogen content. Studies by Chen et al. 2020 [62] and Chen et al. 2024 [77] demonstrate
that incorporating phenology as a variable could improve the estimates. Additionally, the
accuracy of N content assessment appears to enhance as fruit development progresses,
with the pre-fruit expansion stage demonstrating the best validation metrics compared to
flowering, fruiting, and other stages [78].

Therefore, in the analyzed studies, remote sensing techniques offered non-destructive,
rapid, and more precise assessments of N content. These methods are more efficient than
traditional lab tests and help in timely management decisions. Using proximal or suborbital
spectral data acquired at different growth stages, analyzed by variable screening techniques and
machine learning algorithms to monitor canopy or leaf N levels, enables precise and accurate
fertilization strategies, leading to better crop management and environmental sustainability.

3.3.5. Assessment of Apple Yield and Fruit Detection

Remote sensing is commonly used to estimate crop yield through statistical or mecha-
nistic modeling for fruit detection [87]. Statistical models examine the connection between
spectral features (such as vegetation indices and spectral bands) and crop yield using
linear or non-linear regression based on machine learning, while mechanistic approaches
use remotely sensed data on crop health, soil moisture, temperature, and other environ-
mental factors to simulate crop growth. These methods can be applied at various scales,
from on-farm use to national yield predictions [63,66,73]. However, for fruit production,
particularly in apple growing, machine vision techniques like image segmentation and
object detection based on deep learning are becoming local strategies for detecting and
counting fruits, as well as assessing fruit quality. These techniques support the monitoring
of crop dynamics and aid decision-making in precision agriculture and intelligent orchard
management [22,64,76].

The authors of the analyzed studies used these techniques, seeking to estimate produc-
tion directly (in kg/tree or t/ha), as was the case of Bai et al., 2021 [63], Chen et al., 2022 [66],
and Singha et al., 2023 [73], or to detect and count fruits in an automated way [22,64,76].
Regarding the direct estimation of yield, whether at the individual tree or orchard level,
studies reveal that multisensor approaches, with the integration of spectral variables linked
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to vegetation status (VIs or spectral bands) and complementary remote sensing data, such
as climate parameters, terrain characteristics, soil factors, and morphological features re-
lated to canopy structure, can significantly improve the estimates, whether at the suborbital
level [66] or with time series of satellite images [63,73].

For the analysis of multivariate data sets, algorithms based on ensemble learning,
whether individual, such as random forest [63] and Cubist [73], or based on the integration
of algorithms with different structures, such as SVM and KNN [66], are the main choices. EL
algorithms are effective in capturing complex relationships between multiple variables and
building multiple models to combine predictions. Thus, they work to reduce overfitting
and offer flexibility to deal with high-dimensional datasets. In addition, they are widely
used in selecting the most appropriate variables.

Remote sensing sensors and computer vision frameworks based on deep learning (DL)
are increasingly gaining traction in detecting and counting apple fruits, which is crucial
for accurate yield estimation, presenting outstanding results. This is particularly useful
for small farms with limited resources, where this task is traditionally carried out through
manual fruit counting and orchard extrapolation. However, these methods face challenges
related to occlusion caused by high-density orchards, anti-haze systems, and variations in
illumination, all of which affect fruit visibility. To address these challenges, proximal-level
images using the visible spectrum (RGB images) were employed, as they provide very
high-resolution data with reduced operational costs. Simple transformations for lightness
normalization can improve fruit identification in unbalanced lighting conditions, and data
impaired by fog or compression issues can still yield good results. However, it is important
to note that model scalability may be limited, and bounding box sizes must be carefully
evaluated to achieve more precise segmentation in different environments [22,64].

4. Final Considerations

Based on studies integrating remote sensing (RS) and AI to improve grape and apple
production, several factors merit attention, especially operational costs, pre- and post-
processing methods, and spatial dependency. Studies in viticulture using RS and AI have
been conducted in more than 10 countries across six continents. However, over 80% of
apple production research (17 of 20 studies) has been conducted in China, primarily on the
Fuji variety in the Shandong and Shaanxi provinces. These results may not fully represent
other regions due to environmental and strategic production differences.

The operational costs of predictive models for estimating grape yield and quality vary
by technology, method, phenological stage, and variety. While non-destructive methods,
like hyperspectral imaging and UAV sensors, enhance accuracy and scalability, they can be
costly. More accessible methods, such as NIR spectroscopy, offer lower costs but may have
limitations in resolution and coverage.

Models often require field data for calibration and validation, especially in areas
with high spatial variability. While effective locally, field-based models may struggle with
scalability due to regional variability, spatial dependency, and technological limitations.
Reproducibility can also be affected by data availability and environmental diversity.

Orbital data provide a broad, continuous, and often free view of crops but may lack
the spatial resolution needed for detailed analyses. Although the SWIR band, related to
water content and lignin, in satellite imagery has been useful for estimating grape yield
on a large scale, it is less accessible in proximal and suborbital sensors due to cost and
technology constraints.

Dimensionality reduction, widely used in grape and apple RS and AI studies, sim-
plifies data, reduces processing time, and improves interpretation without compromising
accuracy. Variable selection techniques, such as Variable Importance in Ensemble Models,
Recursive Feature Elimination (RFE), and Genetic Algorithms (GA), are frequently used.

Modeling approaches increasingly include stacking, which combines multiple models
to improve prediction accuracy. Ensemble algorithms, primarily random forest (RF) and
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support vector machines (SVMs), remain prominent, though deep learning algorithms
show promise, especially in classification and segmentation tasks.

Vacaria, one of Brazil’s leading apple producers, presents a promising environment
for implementing RS and AI technologies. By employing high-resolution satellite im-
agery, multispectral UAV data, and proximal hyperspectral sensors, Vacaria could optimize
resource use, enhance productivity, and improve fruit quality through more efficient plan-
ning. These technologies would allow local farmers to monitor fruit quality, predict yields,
and manage resources like water and fertilizers more effectively. Precision agriculture in
Vacaria could support practices such as managing nitrogen levels in apple orchards and
identifying grapevine diseases, aligning with sustainable agriculture trends. Future studies
will further analyze the performance of satellite and UAV imagery, along with machine
learning and deep learning algorithms in Vacaria. Regarding literature reviews, future
studies will use the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines.

In conclusion, integrating RS and AI in Vacaria has the potential to transform fruit
cultivation, boosting sustainability, productivity, and profitability in the region. This
supports the objectives of the Center for Development in Digital Agriculture (CCD-SemeAr)
project, in which Vacaria is one of ten Agrotechnological Districts. The project aims to
support small- and medium-sized producers, promote rural connectivity, and advance
digital technologies in agriculture, including AI, RS, and precision agriculture. Integrating
advanced technology with traditional farming practices is essential for sustaining Vacaria’s
competitive edge in the global fruit market.
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Abbreviations

∑VIs Accumulated monthly vegetation indices
∆VIs Difference in vegetation indices between adjacent months
ANN Artificial neural network
ARD Automatic relevance determination
ATSS Adaptive training sample selection
BPANN Back-propagation artificial neural network
BPNN Back propagation neural network
BRT Gradient boosted regression tree
CASASR Carnegie–Ames–Stanford approach ratio vegetation index
CatBoost Category boosting
CNN Convolutional neural network
Cubist Cubist regression
DL Deep learning
DNN Deep neural network
DT Decision tree
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EBM Explainable boosting machine
ELM Extreme learning machine
ESA European Space Agency
EWT Equivalent water thickness
Extra
Trees

Extremely randomized trees

FAO Food and Agriculture Organization
Fc Fraction cover
FCN Fully convolutional networks
FSAF Feature selective anchor-free
GBDT Gradient boosting decision tree
GL Gigalitres
GPR Gaussian process regression
HRNet High-resolution network
IoU Intersection over Union
ISDU-Net Improved U-Net model
KNN k-Nearest neighbor
LAI Leaf area index
Libra-
RCNN

Libra regions with convolutional neural network

LIDAR Light detection and ranging
Light
GBM

Light gradient boosting machine

LR Logistic regression
LST Land surface temperature
LSTM Long short-term memory
ML Machine learning
MLP Multilayer perceptron
MLR Multiple linear regression
NDVI Normalized difference vegetation index
NDWI Normalized difference water index
NRMSE Normalized root mean square error
OLI Operational land imager
OLS Ordinary least squares
OO Object-oriented
pH Potential of hydrogen
PLSR Partial least squares regression
R2 Coefficient of determination
RBF-NN Radial basis function neural network
RE Relative error
RF Random forest

RF∑NDVI
Random forest with accumulated values of the
normalized difference vegetation index

RGB Red–green–blue
RPD Relative prediction deviation
RR Ridge regression
RFR Random forest regression
RMSEP Root-mean-square error of predictions
RRMSE Relative root mean square error
SAR Synthetic aperture radar
SRTM Shuttle radar topography mission
STR Spatio-temporal reconstruction
SVIs Single month vegetation indices
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SVM Support vector machine
SVM-RFE Support vector machine–recursive feature elimination
SVR Support vector regression
SWIR Short-wave infrared
UAV Unmanned aerial vehicle
ULR Univariate linear regression
VIs Vegetation indices
VPs Multiple parameters
WIA Willmott consistency index
WRELM Weighted regularized extreme learning machine
XGBoost Extreme gradient boosting
YOLO You only look once
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