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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• We identified core copper excess 
responsive genes in grapevine roots.

• Leaf and root ionomes are altered by 
copper excess.

• Copper is differentially partitioned in 
grapevine rootstock genotypes.

• We identified candidate genes that 
might be involved in copper tolerance.

• Some genes might be interesting for 
engineering copper tolerance in 
grapevine.
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A B S T R A C T

Copper (Cu) is an essential element for plants, participating in photosynthesis, oxidative metabolism and cell 
wall synthesis. However, excessive Cu may become toxic, as Cu participates in Fenton chemistry and cause 
oxidative stress. Grapevine (Vitis sp.) is an important perennial crop, used for in natura consumption as well as 
for wine and juice. Vineyards are susceptible to fungal diseases that are commonly controlled by using Cu-based 
fungicides, which can lead to Cu accumulation in the soil. Since grape production is based on grafting scions of 
consumed-friendly varieties onto rootstocks that can withstand soil-borne diseases and stresses, it is important to 
identify rootstock genotypes that are tolerant to Cu excess. In this work, we compared physiological and mo
lecular responses of four Vitis sp. rootstock genotypes to Cu excess, namely IAC, IBCA, Paulsen and Isabel. While 
IAC, IBCA, Paulsen were similarly tolerant, Isabel was the most sensitive to Cu excess. IAC and IBCA showed 
higher Cu accumulation in shoots, suggesting distinct partitioning strategy. We identified core Cu excess- 
responsive genes in grapevine roots of all four genotypes, including a putative HMA vacuolar Cu transporter 
and Cu-binding proteins. Genes related to the homeostasis of other elements are altered, such as iron (Fe) and 
phosphorus (P), suggesting that Cu excess alters the ionome balance. IAC and IBCA had extensive changes in 
their laccase gene repertoire, suggesting that could be related to the distinct Cu partitioning. Moreover, genes 
associated specifically with Isabel could be related to the genotype Cu excess sensitivity. Our work provides a 
valuable dataset for understanding variation in Cu tolerance how roots respond transcriptionally to Cu stress, and 
provide candidate genes for engineering Cu tolerance in grapevines.

1. Introduction

Copper (Cu) is an essential micronutrient for plants. It can be found 
in two transition states, Cu+ and Cu2+. Cu ability to lose and gain 
electrons makes it useful in electron transfer reactions, and it is involved 
in photosynthesis, respiration, antioxidant metabolism and cell wall 
synthesis [1]. Cu is part of the structure of plastocyanin, the thylakoid 
lumen protein that transfers electrons from cytochrome b6f to photo
system I; cytochrome c oxidases, involved in mitochondrial electron 
transport; superoxide dismutase, that convert O−

2 into H2O2; and poly
phenol oxidases, amine oxidases and multicopper oxidases, involved in 
several aspects of plant growth and development [1–3]. Cu deficiency 
leads to a reorganization of Cu homeostasis to save Cu for photosyn
thesis while decreasing or substituting other functions such as Cu/Zn 
superoxide dismutase, laccases and Cu chaperones [3,4]. However, Cu 
excess can also be toxic since Cu can produce reactive oxygen species 
(ROS) through Fenton chemistry, substitute other metals, disrupt 
membrane integrity and other cellular functions [1,2,5,6]. Therefore, 
plants must keep Cu concentration optimal for adequate growth.

Grapevine (Vitis vinifera sp.) is a major cultivated plant worldwide, 
and a crop with deep connections with human history and culture, being 
consumed as table grape, raisins, alcoholic drinks such as wine and non- 
alcoholic beverages [7,8]. Secondary metabolites derived from grapes 
are used in cosmetics, food and pharmaceutical applications [9]. 

Grapevine plants have a diploid, relatively small genome, and good 
genomic resources, such as reference genome and resequenced genomes 
for several Vitis sp. genotypes, including cultivated and wild species 
[10–13]. Since its domestication ~6,000 years ago, grapevine diversi
fied into more 12,000 documented cultivars. Although only a fraction of 
these are important economically [14,15], the genetic diversity of Vitis 
sp. can be explored to identify interesting traits.

In vineyards, control of fungal diseases, such as downy mildew, is of 
paramount importance. One of the most common fungicides used are 
Cu-based solution, such as the Bordaux mixture, which also function as 
insecticide [16–19]. However, continuous use leads to Cu accumulation 
in vineyard soils, which can reach toxic levels, as reported in Europe and 
South America [5,20–23]. Especially for young plants with shallow 
roots, high Cu levels in soils can cause oxidative stress, decrease primary 
root growth while increasing lateral root length, decreasing photosyn
thesis, and reducing chances of vine successful establishment [6,24,25]. 
Since grapes are produced by grafting a scion onto a rootstock, it is 
important to identify rootstock genotypes with the ideal characteristics, 
such as genotypes showing higher exudation of organic acids and with 
higher ability to secrete phenolic compounds which are involved in Cu 
chelation [25]. However, little is known about the molecular response of 
grapevine plants to Cu excess, as well as the variation in response be
tween distinct genotypes.

The Cu uptake mechanism is relatively well known in the model 

V.H.R. Fiorentini et al.                                                                                                                                                                                                                         Journal of Hazardous Materials 480 (2024) 136301 

2 



species Arabidopsis thaliana. In the rhizosphere, Cu is reduced from Cu2+

to Cu+ by the plasma-membrane reductases AtFRO4/AtFRO5, and Cu+

is transported into root cells by members of the COPT (Copper Trans
porter) family [1]. Inside the cells, Cu is chelated by chaperones to avoid 
deleterious effects of free Cu. Chaperone proteins deliver Cu safely to 
transporters, such as members of Heavy Metal Associated (HMA) family. 
HMA proteins are involved in xylem loading, vacuolar detoxification 
and plastid/chloroplast transport [1,3]. Under Cu excess, oxidative 
stress responses involving superoxide dismutase (SOD), catalase and 
other ROS scavenging molecules are up-regulated. The COPT family in 
grapevine has eight members, some of which are transcriptionally 
regulated by Cu [17,25,26]. VvCtr1 (VvCOPT1) was the only grapevine 
Cu-related protein characterized to date [17]. Other putative Cu 
homeostasis-related genes where shown to be regulated by Cu excess in 
leaves in transcriptomic studies [27,28]. However, there is no tran
scriptomic analyses in grapevine roots exposed to excess Cu in the 
literature.

Given (1) the economic importance of grapevines; (2) the prevalence 
of Cu toxicity in vineyards, especially the negative impact on young 
ones; (3) the need to understand the molecular responses to Cu excess in 
grapevine roots; and (4) how this response can vary between diverse 
Vitis sp. genotypes; we aimed to compare the physiological and tran
scriptional responses of four rootstocks exposed to Cu excess. We iden
tify core genes that are up- and down-regulated in roots of plants 
exposed to high Cu concentration, which can have functional signifi
cance to how grapevine plants detoxify Cu. We also identified differ
ences comparing genotypes, which may be involved in variation in Cu 
homeostasis, and might be used as candidates for engineering Cu 
tolerance grapevines. Our study provides valuable molecular datasets 
for how Vitis sp. roots respond to Cu excess, as well as identify promising 
candidate genes for Cu tolerance.

2. Material and methods

2.1. Plant material

We generate plants by regenerating micropropagated calli from tis
sue culture. The following genotypes were used: IAC-572 101–14 
[(V. riparia x V. rupestris) x V. caribaea]; IBCA-125 (V. labrusca x 
V. rotundifolia); Isabel (V. labrusca); and Paulsen 1103 (V. berlandieri x 
V. rupestris) – hereafter IAC, IBCA, Isabel and Paulsen, respectively. The 
selection of genotypes is based on their genetic wide variability, use in 
vineyards in southern Brazil and inclusion as materials in breeding 
programs for several traits at Embrapa Uva e Vinho. Plantlets with one 
fully expanded leaf were transplanted from axenic conditions to 500 mL 
containers filled with soil. The plants were grown in samples of Humic 
Cambisol soil [29], characterized by the following attributes: clay 
225.0 g kg-1; organic matter 30.0 g kg-1; pH in water 5.9; exchangeable 
Ca 9.7 cmolc dm-3 and exchangeable Mg 1.8 cmolc dm-3, both using 
1 mol L-1 KCl; available P 16.5 mg dm-3 and available K 140 mg dm-3, 
measured by the Mehlich 1 method. The samples were collected from 
the top layer of soil, 0 to 20 cm deep, in an uncultivated area covered by 
natural pasture in the municipality of Bento Gonçalves, Rio Grande do 
Sul State, Brazil (29◦9’48” S and 51◦31’55” O). After collection, the soils 
were air-dried, sieved through a 2 mm mesh, fertilized, and subjected to 
liming, following the regional recommendation of CQFS-RS/SC (2004) 
for grapevine cultivation. In the treatments, we used two copper (Cu) 
concentrations – 0.1 µM (as control) and 250 µM (as excess) – sourced 
from copper sulfate (CuSO4⋅5H2O). To prepare the higher concentration 
(250 µM), we dissolved the necessary amount of Cu in water, followed 
by mixing and distribution in a pot containing 1 kg of soil. After com
plete drying, we combined the soil from this pot with an additional 
volume of the same soil type, reaching the required amount for all 
treatments. We carried out this combination using a concrete mixer, 
ensuring uniform Cu distribution. Similarly, we performed liming and 
nutrient addition using the concrete mixer, aiming for uniformity in 

these processes. Plant irrigation occurred by adding water to the pot 
saucers whenever they were dry.

The experiment was conducted at Embrapa Uva e Vinho in Bento 
Gonçalves, Rio Grande do Sul, Brazil (29◦09′48″S, 51◦31′42″O, at 616 m 
altitude). Pots were organized in a growth chamber (26–27ºC, 60–66 % 
humidity, 16/8 light / dark cycle). Plants were produced from in vitro 
regeneration and acclimated in greenhouse conditions before the start of 
the experiment. We conducted experiments with young grapevine plants 
because Cu contamination in vineyards usually affects young plants that 
are used to install new vines after old ones die. Plants were completely 
randomized in three replicates containing 15 plants per experimental 
unit (n = 15). After 28 days of treatment, plants were collected and had 
their roots washed to remove soil, and dried in paper towel to remove 
excess water. These samples were either used to measured root and 
shoot dry weight measurements, or were frozen in liquid nitrogen, 
stored at − 80ºC, and used for RNA extraction.

2.2. Root RNA extraction and sequencing

Roots from each replicate were pooled for RNA extraction. In total, 
we prepared 24 libraries (4 genotypes x 2 treatments x 3 replicates). 
Root samples were extracted according to the protocol described [30]
using RNA selective precipitation with LiCl 7.5 M (Invitrogen®). After 
RNA extraction, quantification was performed using NanoDrop 2000 
(Thermo Scientific™), and RNA integrity was inferred in 1.2 % agarose 
gel visualization. Afterwards, the 24 samples were treated with DNAse 
(DNase I, RNase-free – Invitrogen®) to remove genomic DNA. For 
sequencing, 20 μg of total RNA for each of the 24 libraries were sent to 
the Roy J. Carver Biotechnology Center at the University of Illinois, USA. 
Sequencing of root transcriptomes was carried out using the Illumina 
NovaSeq 6000 platform, using the manufacturer standard protocols. 
Libraries were sequenced using paired-end reads of 150 bp, and read 
quality was analyzed using FastQC (https://www.bioinformatics.ba 
braham.ac.uk/projects/fastqc/). All low-quality reads and adaptor se
quences were removed from analyses.

2.3. Photosynthesis and chlorophyll parameters

Leaf analyzes were performed at 26 days after planting (days of 
treatments), considering three plants per replicate in each combination 
of genotype and soil copper treatments. The gas exchange measures 
were carried out at the 3rd or 4th expanded leaf blade of each plant, 
using an infrared gas analyzer (IRGA, model LI-6400 XT, LI-COR, 
Lincoln, USA) equipped with a light source model LI-6400–2B. The 
analysis was performed from 9 am to 2 pm, setting the speed of airflow 
at 500 μmol s-1 and the intensity of photosynthetic active radiation 
(PAR) to obtain the net photosynthesis in the light saturation point 
(1000 μmol CO2 m− 2 s− 1) and the dark respiration point (0 μmol CO2 
m− 2 s− 1). The environmental CO2 was used, which the concentration 
ranged from 415 to 438 μmol mol-1 during the measurements. The leaf 
temperature ranged from 21.4 to 30.6 ◦C, while the air relative humidity 
was between 42 % and 53.9 %. Gas exchange data were recorded only 
when the system variation coefficient was less than 0.5 %.

After this analysis and in the same leaves, the indices of chlorophyll a 
(Chl.a) and b (Chl.b) were measured, using a portable measuring device 
(ClorofiLOG, model CFL 1030, Falker). From these indices, chlorophyll 
a/b ratio and total chlorophyll were calculated. For the same leaves, the 
variables of chlorophyll fluorescence were determined using a pulse- 
amplitude modulated fluorometer (Junior-PAM, Walz). The leaves 
were previously kept in the dark for 30 min, using a dark adaptation clip, 
for the opening of the reaction centers of photosystem II (PSII). For the 
determination of initial fluorescence (Fo), a modulated light pulse (< 0.1 
μmol m-2 s-1) was used; while a pulse of 0.6 s of saturating white light 
(10000 μmol m-2 s-1) was used for the maximum fluorescence (Fm). 
From these parameters, the variable fluorescence (Fv = Fm - Fo) and the 
maximum quantum yield of PSII [(Fv/Fm or Y(II), just after dark period] 
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were calculated. Immediately after this initial condition, a light curve 
was performed with pulses of PAR at 125, 190, 285, 420, 625, 820, 1150 
and 1500 μmol m-2 s-1, interspersed with actinic light of 285 μmol m-2 s-1 

and using the activated mode of far-red radiation for the measurement of 
Fo’ (minimal fluorescence from light-adapted leaf). From this curve, the 
effective quantum yield of PSII [ΦPSII = (Fm’ - F’)/Fm; where F’ 
= fluorescence recorded just before the beginning of a strong light pulse 
and Fm’ = maximum fluorescence yield when the reaction centers of 
PSII are closed by a strong light pulse]; the photochemical quenching 
[qP = (Fm’ - F’) / (Fm’ - Fo’)]; the non-photochemical quenching of 
variable fluorescence [qN = (Fm - Fm’) / (Fm – Fo’)]; and the electron 
transport rate in PSII (E TR  = 0.84. 0.5. PAR. ΦPSII) were obtained.

2.4. Elemental profiling

The protocol for analyzing the elemental profile in tissues of young 
grapevine plants was developed to establish a method for the quanti
tative determination of essential elements for plant growth. The initial 
sample collection focused on plant selection, using tools to collect root 
and shoot samples, avoiding contamination, and preserving tissue 
integrity. During the preparation phase, collected roots and aerial parts 
were washed with distilled water to eliminate soil residues and debris, 
reducing external contamination. Then, the tissues were dried in an 
oven with forced ventilation at 60 ◦C until they reached constant weight. 
The samples were then decomposed in an acidic medium, according to 
[31] and the resulting solutions were analyzed by inductively coupled 
plasma optical spectroscopy (ICP-OES) using the Perkin-Elmer Optima 
7300 DV equipment. The total concentration of nitrogen (N) was 
determined by the Kjeldahl digestion method (BUCHI, Digest automat 
K-439, and Distillation Kjelflex K-360, Switzerland).

2.5. Transcriptome analyses

Transcript abundance was quantified according to an in-house pro
tocol from Embrapa Recursos Genético e Biotecnologia. Reads were quality 
filtered using filterbytile script from BBMap v. 38.33, with the following 
parameters: ud= 0.75, qd= 1, ed= 1, ua= 0.5, ea= 0.5, overwrite=true 
(Bushnell B - sourceforge.net/projects/bbmap/). High-quality reads 
were mapped to gene regions of the reference genome Vitis vinifera v2.1 
from Phytozome v13 (Phytozome genome ID: 457). Alignment was 
performed using the STAR v2.7.2a program [32]. To calculate gene 
expression based on aligned data, raw counts mapped per gene were 
calculated using the Python script HTSeq-count with the following pa
rameters: -r pos –mode=union –format=bam –type=gene –idattr=ID 
–stranded=no (https://htseq.readthedocs.io/en/release_0.11.1/) [33]. 
Differential expression analyses were conducted using EdgeR’s exact test 
[34]. First, the reproducibility of biological replicates and the differ
ences between genotypes were analyzed using the normalized counts 
and DeSeq and rlog commands from DESeq2 package [35]. The distant 
matrix was visualized by heatmap and Principal Component Analysis 
(PCA) and plots were produced by web tool [36]. Transcripts from 
different genotypes or from different treatments were considered 
differentially expressed when the false discovery rate (FDR) corrected 
p-value ≤ 0.05 and a log2foldchange ≥ 2 (up-regulation) or ≤ − 2 
(down-regulation). Raw data can be found at Sequence Read Archive 
(SRA) database at NCBI (National Center for Biotechnology Informa
tion), accession number PRJNA1110246. Heatmap and one-dimensional 
hierarchical clustering were generated based on the expression levels of 
differentially expressed genes among the IAC, IBCA, Isabel, and Paulsen 
genotypes, according to the applied filtering and statistical criteria. Each 
column represents a genotype, while each row corresponds to a differ
entially expressed gene. The heatmap was created using Clustvis [36]
with no row centering, no row scaling, and no clustering distance 
applied to the columns. Transcripts from different genotypes or from 
different treatments were considered differentially expressed when the 
false discovery rate (FDR) corrected p-value ≤ 0.05 and a 

log2foldchange ≥ 1 (up-regulation) or ≤ − 1 (down-regulation).
Gene Ontology (GO) enrichment analysis were done using func 

package [37] with in-house scripts. Up- and down-regulated gene IDs 
were created for each genotype differential expression results. The hy
pergeometric statistics were used. The statistical significance threshold 
was FDR < 0.05. A bubble plot presenting the enriched GO terms was 
created using ggplot2 package [38].

2.6. Statistical analyses

Data analysis was performed using the GraphPad Prism software 
(version 8.0.2). Difference between treatment groups within genotypes 
was measured by t test, while the difference among genotypes within 
group treatments was measured by two-way ANOVA, followed by 
Tukey’s multiple range tests. The statistical significance threshold was 
established at p < 0.05.

3. Results

3.1. Copper excess affects grapevine rootstocks’ growth when applied to 
the soil

We exposed four distinct rootstock genotypes, namely IAC, IBCA, 
Isabel and Paulsen to Cu excess in the soil. Overall, we found that Cu 
excess affected all genotypes (Fig. 1). Root dry weight was decreased, 
with Paulsen (PLS) showing the least pronounced decrease in dry weight 
compared to control, while IBCA and Isabel (ISA) showed the most 
pronounced (Fig. 2A). IBCA and Isabel also had more root biomass under 
control condition compared to Paulsen, which suggests that those with 
more carbon investment in the root system are more severely affected by 
Cu excess (Fig. 2A). In shoots, IAC and Paulsen had the clearest decrease 
in biomass when exposed to Cu excess. IBCA and Isabel showed no 
decrease in shoot dry weight. Paulsen also showed the lowest biomass 
compared to other genotypes, whereas IBCA and IAC showed the highest 
(Fig. 2B). These results suggested that rootstock genotypes responded 
differently to Cu excess.

3.2. Copper excess impact on photosynthesis in grapevine rootstocks

To gain insight into how Cu excess may affect photosynthesis in each 
genotype, we measured ETR in leaves of plants from the four genotypes 
under control and Cu excess after 26 days of treatment. There was wide 
variation in values comparing the four genotypes, with IBCA showing 
lower ETR values, and the other three having comparable values (Fig. 3). 
When plants were exposed to Cu excess, ETR decreased only in Isabel 
(Fig. 3A-D). This suggests that Isabel was the most affected genotype.

We also measured net photosynthesis (Fig S1). The observations 
agreed with ETR measurements, with IBCA plants showing the lower 
value in net photosynthesis. However, we did not find significant 
changes when comparing control and Cu excess, suggesting that 
although ETR is affected in plants exposed to excessive Cu, carbon 
assimilation is not. We also measured chlorophyll concentrations and 
observed no change comparing control and Cu excess in all four geno
types (Fig S2). Taken together, our data suggest that Cu excess affected 
ETR but no other photosynthesis-related parameters in grapevine plants.

3.3. Copper compartmentalization and ionomic changes in rootstock 
genotypes

To gain insight into elemental accumulation in rootstock genotypes, 
we measured elements concentrations in roots and shoots of plants 
under control and Cu excess treatments. As expected, all genotypes 
accumulated Cu in the roots when exposed to metal excess. Comparing 
Cu concentration in roots from plants cultivated under control and Cu 
excess, the increase was between 22-fold (Isabel) and 42-fold (IBCA). 
The concentrations, however, were similar when comparing genotypes, 
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Fig. 1. Copper excess affects grapevine rootstock genotypes. (A) IAC plants under control conditions. (B) IAC plants under copper excess. (C) IBCA plants under 
control conditions. (D) IBCA plants under copper excess. (E) Isabel plants under control conditions. (F) Isabel plants under copper excess. (G) Paulsen plants under 
control conditions. (H) Paulsen plants under copper excess. Images represent four independent replicates at the end of the experiment (28 days).

Fig. 2. Grapevine rootstock genotypes dry weight under control and copper excess conditions. (A) Root dry weight. (B) Shoot dry weight. Asterisks indicate 
statistically significant differences when comparing control and copper excess conditions for the same genotype (Student t-test, p ≤ 0.05). Lowercase letters indicate 
statistically significant differences comparing genotypes under control conditions, while uppercase letters indicate differences comparing genotypes under copper 
excess (Two-way ANOVA and Tukey’s multiple range test, p ≤ 0.05).
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either under control or Cu excess conditions (Fig. 4A).
Cu also accumulated in shoots in all genotypes when exposed to Cu 

excess (Fig. 4B). Comparing Cu concentration in control conditions and 
Cu excess, the increase was between 1.9-fold (Isabel) and 2.8-fold 
(IBCA), which is significantly lower than those observed in roots 
(Fig. 4A). Interestingly, IAC and IBCA showed a more pronounced in
crease in Cu concentration compared to Isabel and Paulsen, suggesting a 
distinct Cu partitioning strategy. This difference is not observed under 
control conditions (Fig. 4B). Altogether, the data indicates that IAC and 
IBCA translocated Cu to a larger extent from roots to shoots compared to 
Isabel and Paulsen.

The concentration of phosphorus (P) in roots was not affected by Cu 
excess (Fig. 4C). However, while shoot P concentration for Isabel and 
Paulsen did not show significant differences comparing control and Cu 
excess, IAC and IBCA increased P concentration under Cu excess 
compared to control, and values under Cu excess were higher when 
compared to Isabel and Paulsen (Fig. 4D). Once again, this suggests that 
IAC and IBCA behaved differently under Cu excess compared to the 
other two genotypes, and that variation in P might be linked to Cu 
accumulation in shoots of IAC and IBCA.

Calcium (Ca) concentrations were decreased to a similar extent in 
roots of all four rootstocks exposed to Cu excess when compared to 
control (Fig. 4E), while we found no changes in shoots except for a slight 
decrease in Ca concentration in Isabel (Fig. 4F). Iron (Fe) concentrations 
were also unchanged in roots (Fig. 4G), while IBCA showed increased Fe 
concentration in shoots comparing Cu excess with control (Fig. 4H). 
IBCA and Isabel decreased manganese (Mn) concentration in roots under 
Cu excess (Fig. 4I), and IBCA strongly decreased Mn concentration in 
shoots as well (Fig. 4J). IAC and Paulsen slightly increased Zn concen
trations in roots under Cu excess (Fig. 4K), but no change was observed 
in shoots (Fig. 4L). Interestingly, K concentration was decreased in roots 
of IAC, IBCA and Isabel under Cu excess (Fig. 4M) and increased in IAC 
shoot tissue (Fig. 4N). On the other hand, Paulsen showed lower po
tassium (K) concentration in shoot tissue when plants were cultivated 
under Cu excess (Fig. 4N). Magnesium (Mg) concentrations were 

increased in roots of IAC (Fig. 4O) and in shoots of Paulsen under Cu 
excess (Fig. 4P). Taken together, these data show that Cu excess had an 
impact in both root and leaf ionomes, and that these changes can be 
different for each genotype.

3.4. Transcriptome responses to Cu excess in rootstock genotypes

Even though the genotypes used in this work are part of the same 
genus (Vitis sp.), they showed different responses to Cu excess, espe
cially in the ionome of roots and shoots (Fig. 4). To understand possible 
differences in the transcriptional responses to this stress, we performed 
transcriptome analyses in roots of the four genotypes, comparing control 
and Cu excess-cultivated plants, after 28 days of treatment.

We sequenced three independent libraries composed of independent 
biological replicates for each genotype and treatment. During analyses, 
we removed one sample from IAC control, which showed lower quality 
compared to others in preliminary analyses. Clustering of our samples 
show that samples derived from the same genotype grouped together, as 
well as samples from the same treatment (Fig. 5). PCA analysis and hi
erarchical clustering analysis also demonstrated that genotype is the 
main factor separating our samples, suggesting that larger differences in 
transcriptome were due to genotype, not treatment, which was expected 
considering that we have sequence information derived from different 
genotypes and hybrids of Vitis sp. species (Fig. 5A). PCA analysis also 
suggested that IBCA had the most pronounced differences when 
comparing control and Cu excess samples, while Paulsen had the least 
(Fig. 5A). Moreover, hierarchical clustering showed that samples from 
the same genotypes and treatments cluster together (Fig. 5B), indicating 
that biological replicates are adequate for subsequent analyses.

Comparing control and Cu excess conditions, we found 2452 
differentially expressed genes (DEGs) for IAC (1431 up-regulated and 
1021 down-regulated); 2415 for IBCA (1190 up-regulated and 1225 
down-regulated); 1203 for Isabel (465 up-regulated and 738 down- 
regulated) and 1694 for Paulsen (819 up-regulated and 875 down- 
regulated) (Fig. 6A and B; Supplemental Table 1). We also analyzed 

Fig. 3. Electron transport rate in leaves of rootstock genotypes under control and copper excess conditions. (A) Electron transport rate (ETR) in leaves of IAC, 
(B) IBCA, (C) Isabel, and (D) Paulsen plants. Asterisks indicate statistically significant differences when comparing control and copper excess conditions for the same 
genotype (Student t-test, p ≤ 0.05).
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the general expression pattern of all four genotypes based on fold change 
(Fig. 6C). The data showed that IBCA has pronounced changes in gene 
expression, with several up and down-regulated genes that are either not 
regulated or are regulated to a lower extent in the other genotypes. IAC 
also had several genes up-regulated to a larger extent compared to the 
other genotypes, whereas Isabel and Paulsen both showed less extensive 
changes in gene expression (Fig. 6C). Altogether, these data demonstrate 
that the four genotypes use different sets of genes to respond to Cu 
excess, as well as respond transcriptionally at different intensities.

3.5. Gene ontology analyses of differentially expressed genes

Given the large numbers of DEGs, we performed GO analyses using 
only genes with Log2FC > 1 for up-regulated genes, and Log2FC < –1 
for down-regulated genes (Fig. 7; Supplemental Table 1). We did not 
find GO terms that were up-regulated in all genotypes, pointing to the 
largely distinct responses of the four rootstocks to Cu excess (Fig. 7). We 

observed that the category “Copper Ion Binding” was up-regulated in 
IAC and IBCA but not in Isabel and Paulsen. Interestingly, these are the 
two genotypes that show higher Cu concentration in shoots (Fig. 4B). 
Therefore, we looked for other GO categories that may be differentially 
regulated in both IAC and IBCA but not in Isabel and Paulsen. This 
search then allowed us to identify categories such as “Heme binding”, 
“Chitin Binding”, “Iron Ion Binding”, “Abscisic Acid Binding”, also up- 
regulated in both IAC and IBCA (Fig. 7). Additionally, it was observed 
that “Lignin Catabolic Process”, “Abscisic acid− activated signaling 
pathway”, “Hydroquinone:oxygen oxidoreductase activity”, “Mono
oxygenase activity”, “Protein phosphatase inhibitor activity”, “Apo
plast” and “Extracellular region” were all exclusively up-regulated in 
both IAC and IBCA (Fig. 7).

The GO terms “Proteolysis”, “Systemic acquired resistance”, 
“Oxidoreductase activity”, “Serine− type peptidase activity”, “Hydrolase 
activity, hydrolyzing o− glycosyl compounds” “Membrane” and “Inte
gral component of plasma membrane” were down-regulated in all four 

Fig. 4. Ionome changes in roots and leaves of rootstock genotypes under control and copper excess conditions. (A) Copper concentration in roots and (B) in 
shoots. (C) Phosphorus concentration in roots and (D) in shoots. (E) Calcium concentration in roots and (F) in shoots. (G) Iron concentration in roots and (H) in 
shoots. (I) Manganese concentration in roots and (J) in shoots. (K) Zinc concentration in roots and (L) in shoots. (M) Potassium concentration in roots and (N) in 
shoots. (O) Magnesium concentration in roots and (P) in shoots. Asterisks indicate statistically significant differences when comparing control and copper excess 
conditions for the same genotype (Student t-test, p ≤ 0.05). Lowercase letters indicate statistically significant differences comparing genotypes under control con
ditions, while uppercase letters indicate differences comparing genotypes under copper excess (Two-way ANOVA and Tukey’s multiple range test, p ≤ 0.05).
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genotypes (Fig. 7). We have also observed that all genotypes except 
Paulsen down-regulated five GO terms associated with “Localization and 
transport activity”, as well as terms associated with “Binding” as 
“Manganese ion binding”, “Iron ion binding” and “Heme Ion Binding” 
(Fig. 7). These observations suggest that binding metals and transport 
activity could be related to copper stress response. Because physiological 
data suggests that Paulsen might be more tolerant to Cu excess, it is 
possible to speculate/suggest that these GO terms are associated with Cu 

stress tolerance.

3.6. The core Cu excess-responsive genes in grapevine roots

Based on the previous results, we sought to identify what could 
constitute the main cluster of genes regulated under Cu excess in 
grapevine roots. To identify such genes, we searched for common 
differentially expressed genes to all four genotypes. We identified 103 

Fig. 5. Transcriptomic data quality analyses. (A) Principal component analysis of all libraries. (B) Hierarchical clustering analysis using the whole transcriptome 
data for each library.

Fig. 6. General analyses of transcriptome data. (A) Venn diagrams of differentially up-regulated genes. (B) Venn diagrams of differentially down-regulated genes. 
(C) Heatmap for differentially expressed genes (DEG) comparing expression in roots of plants under control and Cu excess conditions, with log2 Fold Change ≥ 1.5 
for up-regulated genes and ≤ 1.5 for down-regulated genes in at least one genotype.
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genes that are up-regulated and 397 genes down-regulated in all four 
genotypes (Figs. 6A and 6B; Supplemental Table 1). The expression 
pattern analysis of all commonly regulated revealed that most genes 
were down-regulated, again with IBCA showing the strongest response 
compared to the other genotypes (Fig. 8A). We also selected a subset of 
genes based on their annotated function, focusing mainly on trans
porters and/or ionome-related gene function description based on sim
ilarity to Arabidopsis thaliana genes (Supplemental Table 2 and 
Supplemental Table 3). Thirteen (13) up-regulated and forty-two (42) 
down-regulated genes were selected as constituting the core responsive 
genes to Cu excess exposure (Fig. 8B).

Among up-regulated genes, we identified one HMA (Heavy Metal- 
Associated) transporter annotated as Heavy Metal ATPase 5 (Fig. 8B 
Supplemental Table 2). Genes from this family are known to be involved 
in Cu detoxification and transport to the vacuole or to the apoplast in 
other species [4,39,40]. We also found proteins containing Cu in their 
structure: a plantacyanin protein, a copper ion binding protein, a copper 
amine oxidase and a laccase genes (Fig. 8B; Supplemental Table 2). We 
found one iron/zinc-related transporter from the ZIP (Zinc-regulate
d/Iron-regulated Transporter Protein, which are involved in Fe, Zn and 
Mn transport [41,42], and two transcription factors of the bHLH family 
that are similar to bHLH038, known to regulate Fe deficiency responses 
in A. thaliana and to be involved in the crosstalk with Cu homeostasis 
[43]. Besides those, we found other transporters that could have a role in 

Cu excess responses (Fig. 8B, Supplemental Table 2). Altogether, the 
data suggest extensive regulation of the ionome in grapevine plants 
exposed to Cu excess.

In the group of down-regulated genes, we found a metallothionein, a 
protein family that is described as involved in metal binding and 
detoxification, including Cu (Fig. 8B, Supplemental Table 3) [44,45]. 
Other cupreproteins, such as Cu transport protein family and four 
cupredoxin superfamily proteins, were commonly down-regulated in all 
four genotypes (Fig. 8B, Supplemental Table 3), suggesting that these 
proteins might be involved in Cu excess detoxification or sequestration. 
We found extensive down-regulation of iron/zinc-related genes, such as 
a ZIP family gene [41], an iron reductase/oxidase gene of the FRO 
family, and a proton ATPase of the AHA family, which suggests 
down-regulation of Fe uptake mechanism [46,47]. Three genes from the 
YELLOW-STRIPE gene family were also down-regulated, as well as one 
Vacuolar Iron Transporter-Like (VIT) gene and two Cytochrome b561 
ferric reductases (Fig. 8B, Supplemental Table 3). Therefore, it seems 
that Fe homeostasis is being largely affected by Cu excess.

Down-regulation of genes related to homeostasis of macro- and 
micro-nutrients were also observed. For example, we found a homolog 
of the SPX genes, known to regulate phosphorus deficiency [48], and 
three PHT (Phosphate Transporters) genes (Fig. 8B, Supplemental 
Table 3), suggesting that phosphorus uptake is also being perturbed by 
Cu excess. Nitrogen uptake also seems to be affected, since two nitrate 

Fig. 7. Gene Ontology (GO) categories enriched in up- and down-regulated gene dataset for each genotype root transcriptomic data. General categories are 
shown on the right, genotypes at the top, and specific enriched GO categories on the left. Red circles (up-regulated) and black circles (down-regulated) represent 
significantly enriched categories in each genotype; circle size represent the number of genes in each enriched category.
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and three ammonium transporters were down-regulated in all genotypes 
(Fig. 8B, Supplemental Table 3). A sulfate transporter and other trans
porters from Major Facilitator Superfamily and ABC family were found 
to be down-regulated consistently in all genotypes (Fig. 8B, Supple
mental Table 3). Moreover, we found a protein of the PLAC8 family 
down-regulated, which might be involved in metal detoxification and 
xylem loading [49].

3.7. Differentially expressed genes in response to Cu stress when 
comparing IAC and IBCA rootstock genotypes

We also used the transcriptomic data to find candidate genes that 
could explain the distinct Cu partitioning strategies observed in IAC and 
IBCA compared to Isabel and Paulsen (Figs. 4A and 4B). We therefore 
sought to find genes commonly up- and down-regulated in IAC and IBCA 

Fig. 8. Gene expression analyses of differentially expressed genes common to all four genotypes. (A) Heatmap for differentially expressed genes (DEGs) in all 
four genotypes comparing expression in roots of plants under control and Cu excess conditions, with log2 Fold Change ≥ 1.0 for up-regulated genes and ≤ 1.0 for 
down-regulated genes in at least one genotype. (B) Heatmap with selected genes from A.

Fig. 9. Gene expression analyses of differentially expressed genes exclusive to IAC and IBCA genotypes. (A) Heatmap for differentially expressed genes (DEGs) 
in IAC and IBCA comparing expression in roots of plants under control and Cu excess conditions, with log2 Fold Change ≥ 1.0 for up-regulated genes and ≤ 1.0 for 
down-regulated genes in at least one genotype. (B) Heatmap with selected genes from A.
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that were not differentially expressed in Isabel and Paulsen. We found 
239 genes up-regulated, and 63 genes down-regulated only in IAC and 
IBCA (Figs. 6A and 6B, Fig. 9A). From these, we highlighted 21 up 
-regulated genes (Fig. 9B; Supplemental Table 4).

Strikingly, 17 genes annotated as laccases are up-regulated in both 
genotypes (Fig. 9B). Laccases are Cu oxidases/ Cu ion binding proteins 
which are poorly characterized but are likely to be down-regulated by 
Cu deficiency [1]. Therefore, the opposite regulation in Cu excess might 
be linked to their function in regulating Cu homeostasis. The large 
number of genes regulated in these two genotypes accounts at least 
partially for some of the GO categories that are enriched only in IAC and 
IBCA, such as “Copper Ion Binding”, “Lignin Catabolic Process” and 
“Hydroquinone:oxygen oxidoreductase activity” (Fig. 7). One gene an
notated as a COPT transporter is among the up-regulated [17] (Fig. 9B; 
Supplemental Table 4). Another interesting gene shares similarity with a 
well-known PLAC8 A. thaliana protein named Plant Cadmium Resis
tance 2 (PCR2), which is a known efflux excessive carrier of Cd and Zn 
into the rhizosphere and xylem [49]. Moreover, we also found a Zn ion 
binding protein (Fig. 9B; Supplemental Table 4). These genes might be 
linked to Cu partitioning in these two genotypes, although functional 
characterization would be needed to test this hypothesis.

3.8. Genes specifically regulated in Isabel

Isabel is the most Cu-sensitive rootstock in our experiments. There
fore, we analyzed which genes are regulated specifically in this geno
type. There were 123 genes up-regulated and 83 down-regulated 
specifically in Isabel (Figs. 6A and 6B; Supplemental Table 1), of which 
we highlight the ones with the most pronounced fold-change (Fig. 10). 
Among the up-regulated genes, we identified one gene similar to auxin- 
responsive GH3 protein that in A. thaliana was described as involved in 
jasmonic acid conjugation with aminoacids [50] and, when overex
pressed, results in decreased hypocotyl growth [51]; one Leucine-rich 
repeat protein kinase and one Leucine-rich repeat transmembrane pro
tein receptor kinase, with the last sharing similarity to SCHENGEN3/
GASSHO1, which is necessary for the formation of the diffusional barrier 
at the endodermis, the Casparian Strip [52]; and a dirigent-like (DIR-
Like) protein, which might be involved in lignin and cell wall synthesis 
and modification [53] (Fig. 10). Among the down-regulated genes, we 
found transporters such as Aquaporin NIP2.1 and an ammonium trans
porter of the AMT gene family [54]; a carboxylesterase that could be 
involved in strigolactones catabolism [55]; and one SAUR (SMALL 
AUXIN UPREGULATED RNA 4) (Fig. 10). Taken together, the data 
suggest that Isabel might specifically regulate distinct processes such 
diffusional barrier and phytormone signaling when exposed to Cu 

Fig. 10. Gene expression analyses of differentially expressed genes exclusive to Isabel genotype. Heatmap for differentially expressed genes (DEG) exclusive 
to Isabel.
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excess. Whether that is related to Cu excess sensitivity will need further 
functional characterization.

4. Discussion

4.1. Genetic variation in tolerance and sensitivity to Cu excess in 
grapevine rootstocks

Cu stress has become a problem in vineyards, especially when there 
is a need to install new plants in old fields that have been historically 
grown using Cu-containing solutions to control diseases. Despite its 
importance, Cu homeostasis is understudied in grapevines, and little is 
known about Cu uptake and distribution mechanisms, as well as how 
plants respond to Cu stress [1,5,6]. In addition, we have only a few 
works available attempting to identify genetic variation in Cu responses 
in roots of grapevine plants, and yet we do not know which genes might 
be involved in such observed differences [25]. Moreover, it is important 
to note that Cu excess can affect plants both when a Cu solution is 
applied directly to leaves and when plants grow in soils containing high 
concentration of Cu. Responses are expected to be different, and since 
they are mostly impinged on scions and rootstocks, respectively, they 
can be considered two distinct Cu toxicity stresses that overlap. In this 
work, we focused on how the roots transcriptome of four rootstock ge
notypes respond to Cu stress. Importantly, we found that roots and 
shoots both accumulate higher Cu concentrations when exposed to Cu 
stress; however, concentrations in roots were similar in all four geno
types, while concentration in shoots were significantly higher in shoots 
of IAC and IBCA (Figs. 4A and 4B). Our transcriptome analyses per
formed on root tissues of rootstocks contribute to understand how roots 
might be regulating root uptake as well as root to shoot nutrient 
translocation.

Two previous studies provided molecular details on how grapevine 
plants respond to Cu excess stress [27,28]. Leng et al. [27] applied 
100 µM Cu to leaves of a hybrid cultivar (V. vinifera × V. labrusca), and 
analyzed changes in the transcriptome after 24 h of treatment. Xia et al. 
[28] screened 302 cultivars for Cu tolerance, identified two contrasting 
hybrid cultivars (V. vinifera × V. labruscana) and compared the tran
scriptome changes after 48 h of 10 mM Cu treatment to leaves. Although 
these authors used very different concentrations, both focused on 
short-term leaf transcriptional responses, which largely differ from our 
root-focused, longer-term experiment. Moreover, these two earlier 
studies used scion cultivars, whereas we analyzed rootstock genotypes, 
except for Isabel, which despite eventually used directly rooted in soil, it 
is more commonly used as a scion [56].

In accordance with previous results, we identified Isabel as the most 
susceptible genotype to Cu excess [5]. The genotype showed reduction 
in root growth and decreased ETR (Figs. 2 and 3), suggesting Cu excess 
affects both root growth and photosynthesis. Since Isabel is not a com
mon rootstock genotype, it was likely not selected for root traits, which 
may explain increased sensitivity. However, it is important to highlight 
that clear contrasting tolerant and sensitive genotypes were not 
observed in our experiments, as all genotypes had their root dry weight 
affected (Fig. 2A), increased Cu concentration in roots and shoots 
(Figs. 4A and 4B) and responded dramatically to Cu excess (Fig. 6 and 
Fig. 7). We do not point to one genotype as clearly more tolerant as well. 
Paulsen seems to be the best candidate, as it showed the least effect in 
root growth and no effect in ETR (Figs. 2 and 3). This is also in agree
ment with previous results [5]. However, IAC and IBCA, both similarly 
tolerant, grew more vigorously (Fig. 2), which may compensate when 
dealing with heterogeneous Cu distribution in the soil. Interestingly, the 
distinction between IAC/IBCA and Isabel/Paulsen regarding Cu parti
tioning, with the former genotypes translocating more Cu to shoots 
compared to the later (Figs. 4A and 4B), does not seem to be related to 
Cu tolerance. Therefore, these results suggest that Vitis sp. might have 
varying mechanisms of Cu tolerance depending on genotype, such as 
exclusion and tissue-based tolerance, similar as observed for Fe excess 

[57,58].

4.2. Effects of copper excess on the ionome

The ionome, defined as the inorganic composition of an organism, is 
known to be integrated, as changes in concentration of one element may 
affect others [59,60]. Therefore, it is expected that Cu excess may affect 
the homeostasis of other elements. We found evidence of that using 
measurements of elemental concentration (Fig. 4), which show ionomic 
perturbations in plants exposed to high Cu; and in the root tran
scriptomic data, where grapevine genes with similarity to A. thaliana 
genes known to be involved in uptake or regulatory networks of nutri
ents were found as differentially regulated by Cu excess.

Interaction of Cu and Fe homeostasis has been explored in several 
studies [1,25,61–64]. Under Cu deficiency, Cu economy response in
cludes substitution of Cu-containing superoxide dismutases (Cu/Zn 
SODs, or CSDs), which are down-regulated while Fe-SODs (FSDs) are 
up-regulated [3]. This mechanism is well described in A. thaliana and 
seems to be conserved in Vitis sp. [65]. Two Vitis sp. CSDs up-regulated 
by Cu excess in both roots and shoots are post-transcriptionally 
down-regulated by VvmIR398, while FSD is transcriptionally 
down-regulated [65,66]. Interestingly, we did not find extensive SODs 
regulated in our transcriptome data. Only IBCA showed CSD DEGs, with 
two genes being up-regulated and one down-regulated, while no FSD 
genes were regulated (Supplemental Table 1). IBCA was the only ge
notype showing changes in Fe concentration, which increased in shoots 
under Cu excess (Fig. 4H).

Still, putative Fe homeostasis-related genes were regulated in our 
transcriptome data. Two genes with similarity with AtbHLH038, a 
known Fe deficiency responsive transcription factor, were up-regulated 
in all four genotypes Supplemental Table 2. AtbHLH038 forms a 
homodimer with other bHLH proteins and induces the Fe uptake genes 
AtIRT1 and AtFRO2 in A. thaliana roots [67]. Interestingly, it was 
recently shown that AtbHLH038 controls the uptake of Cu, which is 
induced under Fe deficiency conditions. Up-regulation of Cu+ uptake 
transporter AtCOPT2 and Cu2+ planta membrane reductases AtFRO4 
and AtFRO5 are dependent on bHLH transcription factors when plants 
are in low Fe conditions [43]. Therefore, it is possible that bHLH pro
teins also control aspects of the crosstalk of Fe and Cu homeostasis in 
Vitis sp., although the transcriptional up-regulation does not suggest the 
same mechanism found in A. thaliana.

Besides that, one putative Fe/Zn/Mn transporter from the ZIP family 
was up-regulated in all genotypes, whereas transporters from ZIP, YSL 
and VIT were found to be down-regulated (Fig. 8B Supplemental Table 2 
and 3). One ferric-chelate reductase/oxidase (FRO) and two other re
ductases were also down-regulated, together with an H+-ATPase from 
the AHA family (Fig. 8B Supplemental Table 2 and 3). Both Fe and Cu 
need to be reduced before uptake, and proton-pumping is a common 
mechanism to reduce rhizospheric pH and change elemental availability 
[1,7,61]. These genes might be involved in rewiring Fe homeostasis in 
grapevine roots exposed to Cu stress. Further work will be necessary to 
uncover mechanisms involved in such crosstalk.

We also found down-regulated genes that share similarity with 
proteins that transport nitrate, ammonium, sulfate and phosphorus, 
again suggesting extensive effects on the ionome. However, that did not 
necessarily affect concentration of elements, since most changes in 
elemental distribution were not the same in all genotypes (Fig. 4). 
Interestingly, we observed that Ca concentrations decreased in roots of 
all four genotypes under Cu excess (Fig. 4E). Calcium ions are particu
larly abundant in pectins, which are part of the cell wall matrix. Pectins 
can have variable degree of methyl esterification, and unmethylated 
residues have negative charges that can interact with positively charged 
ions. Changes in cell wall composition have been linked to metal over
load responses [3,68]. There is evidence that Cu excess hypertolerant 
species might exclude Cu by decreasing the total pectin and increasing 
the level of pectin methylation, which decreases binding sites for cations 
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[69,70]. Therefore, it is possible that Cu is replacing Ca in the pectin 
fraction under Cu excess.

4.3. Differences in copper partitioning between IAC/IBCA and Isabel/ 
Paulsen

Grapevine plants exposed to Cu excess accumulate Cu in both roots 
and shoots. Roots accumulate to a much larger extent. However, we 
observed that IAC and IBCA had higher shoot Cu concentration under Cu 
excess compared to Isabel and Paulsen (Fig. 4A and B), suggesting they 
actively translocate more Cu from roots to shoots. Changes in metal 
partitioning by roots can be regulated by root-expressed proteins, which 
explain natural variation by changes in expression levels or transporter 
activity [59,71]. Interestingly, both IAC and IBCA also increased P 
concentration in shoots, whereas Isabel and Paulsen did not, while all 
four genotypes showed similar P concentrations in roots (Fig. 4C and D). 
These data suggest that P accumulation might be linked to higher Cu in 
shoots. In our root transcriptome data we found one transcript with 
similarity to SPX-family protein and three with PHT transporters among 
the down-regulated genes for all four genotypes (Fig. 8B Supplemental 
Table 3). SPX proteins are known to control P uptake at multiple levels, 
whereas PHT are phosphate uptake transporters, and both function in 
systemic P starvation response [46,72], suggesting that P homeostasis is 
being affected by Cu excess. Among the genes down-regulated only in 
IAC and IBCA, we identified a Purple Acid Phosphatase (PAP) and a gene 
with similarity to AtSPDT transporter, both down regulated at low fold 
change (Supplemental Table 1). PAP are important for P mobilization 
from the soil, and AtSPDT is involved in xylem to phloem P transfer, 
increasing P distribution to developing shoot tissues [73]. Therefore, 
IAC and IBCA shoots might be signaling high P to roots, which 
down-regulate P uptake machinery. Moreover, it is known that P and Fe 
homeostasis have antagonistic crosstalk [74], and down-regulation of P 
uptake could be linked to changes in Fe uptake.

We also found striking differences in IAC and IBCA root transcrip
tional responses regarding Cu-related genes (Fig. 9, Supplemental 
Table 4). We observed up-regulation of 17 laccase genes. Laccases are 
poorly characterized proteins containing Cu in their structure and are 
involved in oxidation of monolignol monomers for lignin synthesis, an 
activity that depends on the presence of Cu ions [3]. Laccase genes are 
down-regulated under Cu deprivation as part of the Cu economy 
response, which is partially explained by miRNAs induced by low Cu 
that post transcriptionally decrease laccase mRNA expression [61,75]. 
Under high Cu treatment, laccases are up-regulated in roots, and in
crease lignin content [76,77], which could be linked to metal tolerance 
as already observed for Fe [57].

Another interesting gene specifically up-regulated in IAC and IBCA 
was transcript with similarity to PCR2 (PLANT CADMIUM RESISTANCE 
2) [49] (Fig. 9, Supplemental Table 4). PCR2 is a Zn and Cd efflux 
transporter that detoxifies Cd from the roots to the rhizosphere, as well 
as into the xylem. Although there is no information whether these 
proteins can transport Cu, it is possible that Vitis sp. PCR2-like protein is 
involved in Cu xylem loading, explaining increased Cu concentration in 
shoots of these two genotypes (Fig. 4B). We also identified one Copper 
transport protein from the HIPP gene family [78] which may function
ally to be involved in Cu partitioning (Fig. 9, Supplemental Table 4). 
Members of this gene family were shown to be involved in Cu homeo
stasis in rice [79]. Transcriptional regulation of these genes in IAC and 
IBCA suggest that, as these two genotypes have higher Cu concentration 
in shoots compared to Isabel and Paulsen, up-regulation is controlled 
systemically, with high Cu in shoots signaling to roots to induce a 
particular set of genes. It will be interesting to understand how distinct 
partitioning of Cu affects tolerance in future experiments.

4.4. Candidate genes for engineering copper tolerance

Our root transcriptome dataset can be used to suggest genes that may 

be functionally characterized in detail and used in biotechnological 
approaches. PCR2-like and laccases are good examples (see above; 
Fig. 9, Supplemental Table 4, and Section 3.6). The most promising 
example is an HMA transporter which was up-regulated in all four ge
notypes, VIT_206s0004g01890 Supplemental Table 2. HMA proteins are 
known to be localized in the plasma membrane or tonoplast and to efflux 
either Zn/Cd or Cu from the cytosol or into the vacuole, but not both 
[59]. The gene identified in our data is similar to A. thaliana AtHMA5, 
which is involved in Cu detoxification [80]. However, AtHMA5, does not 
have a clearly determined subcellular localization [1]. In rice, OsHMA5 
is at the plasma membrane and is involved in Cu loading from the 
symplast into the xylem [81]. Interestingly, rice OsHMA4 is another Cu 
efflux transporter localized in the vacuole, and is involved in Cu 
detoxification in rice roots [39]. Both genes are induced under Cu excess 
[81]. Therefore, it is possible that the Vitis sp. homologous protein might 
function either as a plasma membrane or as a tonoplast transporter. It 
would be interesting to understand the exact function of this protein, 
and whether manipulation of its expression could increase Cu tolerance 
in grapevine plants.

5. Conclusion

Here we provided the first dataset of Cu excess-regulated genes in 
roots of grapevine plants. We identified a cluster of genes regulated by 
Cu excess that may be involved in differential Cu partitioning between 
roots and shoots, and new candidate genes that might be explored for 
biotechnological approaches to increase Cu tolerance in grapevine.

Environmental Implication

Copper-based mixtures are commonly used in vineyards to control 
fungal diseases. However, excessive copper accumulates in the soil, 
becoming toxic. When vines need to be replaced, toxicity impairs plant 
establishment. Therefore, copper is a common contaminant in vineyard 
soils, and is important to identify rootstocks that can withstand copper 
excess. We provide physiological and transcriptional analyses of how 
four rootstock genotypes respond to copper excess, and how that might 
be related to copper tolerance and copper partitioning, and identify 
candidate genes that can be used in biotechnological applications.
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